In Vitro Three-Dimensional (3D) Models for Melanoma Immunotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. In Vitro 3D Melanoma Models
2.1. Melanoma Tumor Organoids
2.2. Biofabrication of Human Planar Skin Constructs for Melanoma Research
2.3. Melanoma-on-a-Chip; Microfluidic Systems
3. In Vitro 3D Models of Immune-Competent Skin
3.1. Immune-Reactive Spherical Skin Constructs (Organoids)
3.2. Immune-Reactive Human Planar Skin Constructs (hPSkCs)
3.3. Skin-on-Chip
4. In Vitro 3D Models of Immune-Competent Melanoma
4.1. Immune-Competent Melanoma Spherical Skin Organoids
4.2. In Vitro 3D Immune-Competent Human Planar Skin Constructs Containing Melanoma
4.3. Immune-Competent Melanoma-on-a-Chip
5. Future Perspectives on the Clinical Applications of Melanoma In Vitro 3D Models
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gray-Schopfer, V.; Wellbrock, C.; Marais, R. Melanoma biology and new targeted therapy. Nature 2007, 445, 851–857. [Google Scholar] [CrossRef]
- Matthews, N.H.; Li, W.Q.; Qureshi, A.A.; Weinstock, M.A.; Cho, E. Epidemiology of Melanoma. In Cutaneous Melanoma: Etiology and Therapy; Ward, W.H., Farma, J.M., Eds.; Codon Publications: Brisbane, Australia, 2017. [Google Scholar]
- Eddy, K.; Shah, R.; Chen, S. Decoding Melanoma Development and Progression: Identification of Therapeutic Vulnerabilities. Front. Oncol. 2020, 10, 626129. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Hamid, O.; Robert, C.; Daud, A.; Hodi, F.S.; Hwu, W.J.; Kefford, R.; Wolchok, J.D.; Hersey, P.; Joseph, R.; Weber, J.S.; et al. Five-year survival outcomes for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001. Ann. Oncol. 2019, 30, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef]
- Mao, X.; Xu, J.; Wang, W.; Liang, C.; Hua, J.; Liu, J.; Zhang, B.; Meng, Q.; Yu, X.; Shi, S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol. Cancer 2021, 20, 131. [Google Scholar] [CrossRef]
- Wu, T.; Dai, Y. Tumor microenvironment and therapeutic response. Cancer Lett. 2017, 387, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, R.W.; Aref, A.R.; Lizotte, P.H.; Ivanova, E.; Stinson, S.; Zhou, C.W.; Bowden, M.; Deng, J.; Liu, H.; Miao, D.; et al. Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Cancer Discov. 2018, 8, 196–215. [Google Scholar] [CrossRef]
- Powley, I.R.; Patel, M.; Miles, G.; Pringle, H.; Howells, L.; Thomas, A.; Kettleborough, C.; Bryans, J.; Hammonds, T.; MacFarlane, M.; et al. Patient-derived explants (PDEs) as a powerful preclinical platform for anti-cancer drug and biomarker discovery. Br. J. Cancer 2020, 122, 735–744. [Google Scholar] [CrossRef]
- Votanopoulos, K.I.; Forsythe, S.; Sivakumar, H.; Mazzocchi, A.; Aleman, J.; Miller, L.; Levine, E.; Triozzi, P.; Skardal, A. Model of Patient-Specific Immune-Enhanced Organoids for Immunotherapy Screening: Feasibility Study. Ann. Surg. Oncol. 2020, 27, 1956–1967. [Google Scholar] [CrossRef]
- Wallmeyer, L.; Dietert, K.; Sochorova, M.; Gruber, A.D.; Kleuser, B.; Vavrova, K.; Hedtrich, S. TSLP is a direct trigger for T cell migration in filaggrin-deficient skin equivalents. Sci. Rep. 2017, 7, 774. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.U.; Abaci, H.E.; Herron, L.; Guo, Z.; Sallee, B.; Pappalardo, A.; Jackow, J.; Wang, E.H.C.; Doucet, Y.; Christiano, A.M. Recapitulating T cell infiltration in 3D psoriatic skin models for patient-specific drug testing. Sci. Rep. 2020, 10, 4123. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Getschman, A.E.; Hwang, S.; Volkman, B.F.; Klonisch, T.; Levin, D.; Zhao, M.; Santos, S.; Liu, S.; Cheng, J.; et al. Investigations on T cell transmigration in a human skin-on-chip (SoC) model. Lab Chip 2021, 21, 1527–1539. [Google Scholar] [CrossRef]
- Lin, Y.; Jiang, L.; He, Q.; Yuan, M.; Cao, J. Progress and perspective of organoid technology in cancer-related translational medicine. Biomed. Pharmacother. 2022, 149, 112869. [Google Scholar] [CrossRef] [PubMed]
- Flach, E.H.; Rebecca, V.W.; Herlyn, M.; Smalley, K.S.; Anderson, A.R. Fibroblasts contribute to melanoma tumor growth and drug resistance. Mol. Pharm. 2011, 8, 2039–2049. [Google Scholar] [CrossRef]
- Cho, W.W.; Ahn, M.; Kim, B.S.; Cho, D.W. Blood-Lymphatic Integrated System with Heterogeneous Melanoma Spheroids via In-Bath Three-Dimensional Bioprinting for Modelling of Combinational Targeted Therapy. Adv. Sci. 2022, 9, e2202093. [Google Scholar] [CrossRef] [PubMed]
- Lugano, R.; Ramachandran, M.; Dimberg, A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell. Mol. Life Sci. 2020, 77, 1745–1770. [Google Scholar] [CrossRef]
- Shoval, H.; Karsch-Bluman, A.; Brill-Karniely, Y.; Stern, T.; Zamir, G.; Hubert, A.; Benny, O. Tumor cells and their crosstalk with endothelial cells in 3D spheroids. Sci. Rep. 2017, 7, 10428. [Google Scholar] [CrossRef]
- Klicks, J.; Masslo, C.; Kluth, A.; Rudolf, R.; Hafner, M. A novel spheroid-based co-culture model mimics loss of keratinocyte differentiation, melanoma cell invasion, and drug-induced selection of ABCB5-expressing cells. BMC Cancer 2019, 19, 402. [Google Scholar] [CrossRef]
- Mertsching, H.; Weimer, M.; Kersen, S.; Brunner, H. Human skin equivalent as an alternative to animal testing. GMS Krankenhhyg. Interdiszip. 2008, 3, 11. [Google Scholar]
- Haridas, P.; McGovern, J.A.; McElwain, S.D.L.; Simpson, M.J. Quantitative comparison of the spreading and invasion of radial growth phase and metastatic melanoma cells in a three-dimensional human skin equivalent model. PeerJ 2017, 5, e3754. [Google Scholar] [CrossRef] [PubMed]
- Michielon, E.; Lopez Gonzalez, M.; Burm, J.L.A.; Waaijman, T.; Jordanova, E.S.; de Gruijl, T.D.; Gibbs, S. Micro-environmental cross-talk in an organotypic human melanoma-in-skin model directs M2-like monocyte differentiation via IL-10. Cancer Immunol. Immunother. 2020, 69, 2319–2331. [Google Scholar] [CrossRef]
- Li, L.; Fukunaga-Kalabis, M.; Herlyn, M. The three-dimensional human skin reconstruct model: A tool to study normal skin and melanoma progression. J. Vis. Exp. 2011, 54, e2937. [Google Scholar] [CrossRef]
- Vorsmann, H.; Groeber, F.; Walles, H.; Busch, S.; Beissert, S.; Walczak, H.; Kulms, D. Development of a human three-dimensional organotypic skin-melanoma spheroid model for in vitro drug testing. Cell Death Dis. 2013, 4, e719. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.S.; Robinson, N.D.; Caley, M.P.; Chen, M.; O’Toole, E.A.; Armstrong, J.L.; Przyborski, S.; Lovat, P.E. A Novel Fully Humanized 3D Skin Equivalent to Model Early Melanoma Invasion. Mol. Cancer Ther. 2015, 14, 2665–2673. [Google Scholar] [CrossRef] [PubMed]
- Weng, T.; Zhang, W.; Xia, Y.; Wu, P.; Yang, M.; Jin, R.; Xia, S.; Wang, J.; You, C.; Han, C.; et al. 3D bioprinting for skin tissue engineering: Current status and perspectives. J. Tissue Eng. 2021, 12, 20417314211028574. [Google Scholar] [CrossRef] [PubMed]
- Bourland, J.; Fradette, J.; Auger, F.A. Tissue-engineered 3D melanoma model with blood and lymphatic capillaries for drug development. Sci. Rep. 2018, 8, 13191. [Google Scholar] [CrossRef]
- Schmid, R.; Schmidt, S.K.; Detsch, R.; Horder, H.; Blunk, T.; Schrüfer, S.; Schubert, D.W.; Fischer, L.; Thievessen, I.; Heltmann-Meyer, S.; et al. A New Printable Alginate/Hyaluronic Acid/Gelatin Hydrogel Suitable for Biofabrication of In Vitro and In Vivo Metastatic Melanoma Models. Adv. Funct. Mater. 2022, 32, 2107993. [Google Scholar] [CrossRef]
- Xie, H.; Appelt, J.W.; Jenkins, R.W. Going with the Flow: Modeling the Tumor Microenvironment Using Microfluidic Technology. Cancers 2021, 13, 6052. [Google Scholar] [CrossRef]
- Ayuso, J.M.; Sadangi, S.; Lares, M.; Rehman, S.; Humayun, M.; Denecke, K.M.; Skala, M.C.; Beebe, D.J.; Setaluri, V. Microfluidic model with air-walls reveals fibroblasts and keratinocytes modulate melanoma cell phenotype, migration, and metabolism. Lab Chip 2021, 21, 1139–1149. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.; Kim, D.H.; Shin, J.U. In Vitro Models Mimicking Immune Response in the Skin. Yonsei Med. J. 2021, 62, 969–980. [Google Scholar] [CrossRef]
- Hsu, Y.C.; Li, L.; Fuchs, E. Emerging interactions between skin stem cells and their niches. Nat. Med. 2014, 20, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Higgins, C.A.; Chen, J.C.; Cerise, J.E.; Jahoda, C.A.; Christiano, A.M. Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth. Proc. Natl. Acad. Sci. USA 2013, 110, 19679–19688. [Google Scholar] [CrossRef] [PubMed]
- Boonekamp, K.E.; Kretzschmar, K.; Wiener, D.J.; Asra, P.; Derakhshan, S.; Puschhof, J.; Lopez-Iglesias, C.; Peters, P.J.; Basak, O.; Clevers, H. Long-term expansion and differentiation of adult murine epidermal stem cells in 3D organoid cultures. Proc. Natl. Acad. Sci. USA 2019, 116, 14630–14638. [Google Scholar] [CrossRef] [PubMed]
- Diao, J.; Liu, J.; Wang, S.; Chang, M.; Wang, X.; Guo, B.; Yu, Q.; Yan, F.; Su, Y.; Wang, Y. Sweat gland organoids contribute to cutaneous wound healing and sweat gland regeneration. Cell Death Dis. 2019, 10, 238. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Rabbani, C.C.; Gao, H.; Steinhart, M.R.; Woodruff, B.M.; Pflum, Z.E.; Kim, A.; Heller, S.; Liu, Y.; Shipchandler, T.Z.; et al. Hair-bearing human skin generated entirely from pluripotent stem cells. Nature 2020, 582, 399–404. [Google Scholar] [CrossRef]
- Lin, Y.T.; Seo, J.; Gao, F.; Feldman, H.M.; Wen, H.L.; Penney, J.; Cam, H.P.; Gjoneska, E.; Raja, W.K.; Cheng, J.; et al. APOE4 Causes Widespread Molecular and Cellular Alterations Associated with Alzheimer’s Disease Phenotypes in Human iPSC-Derived Brain Cell Types. Neuron 2018, 98, 1141–1154.e1147. [Google Scholar] [CrossRef]
- Schreurs, R.; Baumdick, M.E.; Sagebiel, A.F.; Kaufmann, M.; Mokry, M.; Klarenbeek, P.L.; Schaltenberg, N.; Steinert, F.L.; van Rijn, J.M.; Drewniak, A.; et al. Human Fetal TNF-alpha-Cytokine-Producing CD4(+) Effector Memory T Cells Promote Intestinal Development and Mediate Inflammation Early in Life. Immunity 2019, 50, 462–476.e468. [Google Scholar] [CrossRef]
- Hammoudi, N.; Hamoudi, S.; Bonnereau, J.; Bottois, H.; Perez, K.; Bezault, M.; Hassid, D.; Chardiny, V.; Grand, C.; Gergaud, B.; et al. Autologous organoid co-culture model reveals T cell-driven epithelial cell death in Crohn’s Disease. Front. Immunol. 2022, 13, 1008456. [Google Scholar] [CrossRef] [PubMed]
- Kakni, P.; Truckenmuller, R.; Habibovic, P.; van Griensven, M.; Giselbrecht, S. A Microwell-Based Intestinal Organoid-Macrophage Co-Culture System to Study Intestinal Inflammation. Int. J. Mol. Sci. 2022, 23, 15364. [Google Scholar] [CrossRef]
- Harvey, A.; Cole, L.M.; Day, R.; Bartlett, M.; Warwick, J.; Bojar, R.; Smith, D.; Cross, N.; Clench, M.R. MALDI-MSI for the analysis of a 3D tissue-engineered psoriatic skin model. Proteomics 2016, 16, 1718–1725. [Google Scholar] [CrossRef] [PubMed]
- Sriram, G.; Bigliardi, P.L.; Bigliardi-Qi, M. Full-Thickness Human Skin Equivalent Models of Atopic Dermatitis. In Skin Stem Cells: Methods and Protocols; Turksen, K., Ed.; Springer: New York, NY, USA, 2019; pp. 367–383. [Google Scholar] [CrossRef]
- Kosten, I.J.; Spiekstra, S.W.; de Gruijl, T.D.; Gibbs, S. MUTZ-3 derived Langerhans cells in human skin equivalents show differential migration and phenotypic plasticity after allergen or irritant exposure. Toxicol. Appl. Pharmacol. 2015, 287, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Van den Bogaard, E.H.; Tjabringa, G.S.; Joosten, I.; Vonk-Bergers, M.; van Rijssen, E.; Tijssen, H.J.; Erkens, M.; Schalkwijk, J.; Koenen, H. Crosstalk between keratinocytes and T cells in a 3D microenvironment: A model to study inflammatory skin diseases. J. Investig. Dermatol. 2014, 134, 719–727. [Google Scholar] [CrossRef]
- Lègues, M.; Milet, C.; Forraz, N.; Berthelemy, N.; Pain, S.; André-Frei, V.; Cadau, S.; McGuckin, C. The World’s First 3D Bioprinted Immune Skin Model Suitable for Screening Drug; International Federation of Societies of Cosmetic Chemists: New York, NY, USA, 2020; pp. 233–239. Available online: https://ifscc.org/wp-content/uploads/2022/03/Maxime-Legues-2022-Henry-Maso-winner.pdf (accessed on 11 October 2023).
- Poblete Jara, C.; Catarino, C.M.; Lei, Y.; Velloso, L.A.; Karande, P.; Velander, W.H.; Pereira de Araujo, E. Demonstration of re-epithelialization in a bioprinted human skin equivalent wound model. Bioprinting 2021, 24, e00102. [Google Scholar] [CrossRef]
- Ohta, S.; Veraitch, O.; Okano, H.; Ohyama, M.; Kawakami, Y. The Potential of Using Induced Pluripotent Stem Cells in Skin Diseases. In Cell and Molecular Biology and Imaging of Stem Cells; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 223–245. [Google Scholar] [CrossRef]
- Wufuer, M.; Lee, G.; Hur, W.; Jeon, B.; Kim, B.J.; Choi, T.H.; Lee, S. Skin-on-a-chip model simulating inflammation, edema and drug-based treatment. Sci. Rep. 2016, 6, 37471. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, Q.; Ting, F.C.W. In vitro micro-physiological immune-competent model of the human skin. Lab Chip 2016, 16, 1899–1908. [Google Scholar] [CrossRef]
- Kwak, B.S.; Jin, S.-P.; Kim, S.J.; Kim, E.J.; Chung, J.H.; Sung, J.H. Microfluidic skin chip with vasculature for recapitulating the immune response of the skin tissue. Biotechnol. Bioeng. 2020, 117, 1853–1863. [Google Scholar] [CrossRef]
- Zhang, J.; Tavakoli, H.; Ma, L.; Li, X.; Han, L.; Li, X. Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment. Adv. Drug Deliv. Rev. 2022, 187, 114365. [Google Scholar] [CrossRef]
- Cherne, M.D.; Sidar, B.; Sebrell, T.A.; Sanchez, H.S.; Heaton, K.; Kassama, F.J.; Roe, M.M.; Gentry, A.B.; Chang, C.B.; Walk, S.T.; et al. A Synthetic Hydrogel, VitroGel((R)) ORGANOID-3, Improves Immune Cell-Epithelial Interactions in a Tissue Chip Co-Culture Model of Human Gastric Organoids and Dendritic Cells. Front. Pharmacol. 2021, 12, 707891. [Google Scholar] [CrossRef]
- Russell, B.L.; Sooklal, S.A.; Malindisa, S.T.; Daka, L.J.; Ntwasa, M. The Tumor Microenvironment Factors That Promote Resistance to Immune Checkpoint Blockade Therapy. Front. Oncol. 2021, 11, 641428. [Google Scholar] [CrossRef]
- Neal, J.T.; Li, X.; Zhu, J.; Giangarra, V.; Grzeskowiak, C.L.; Ju, J.; Liu, I.H.; Chiou, S.H.; Salahudeen, A.A.; Smith, A.R.; et al. Organoid Modeling of the Tumor Immune Microenvironment. Cell 2018, 175, 1972–1988.e1916. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Yu, W.; Grzeskowiak, C.L.; Li, J.; Huang, H.; Guo, J.; Chen, L.; Wang, F.; Zhao, F.; von Boehmer, L.; et al. Nanoparticle-enabled innate immune stimulation activates endogenous tumor-infiltrating T cells with broad antigen specificities. Proc. Natl. Acad. Sci. USA 2021, 118, e2016168118. [Google Scholar] [CrossRef] [PubMed]
- Troiani, T.; Giunta, E.F.; Tufano, M.; Vigorito, V.; Arrigo, P.D.; Argenziano, G.; Ciardiello, F.; Romano, M.F.; Romano, S. Alternative macrophage polarisation associated with resistance to anti-PD1 blockade is possibly supported by the splicing of FKBP51 immunophilin in melanoma patients. Br. J. Cancer 2020, 122, 1782–1790. [Google Scholar] [CrossRef]
- Michielon, E.; López González, M.; Stolk, D.A.; Stolwijk, J.G.C.; Roffel, S.; Waaijman, T.; Lougheed, S.M.; de Gruijl, T.D.; Gibbs, S. A Reconstructed Human Melanoma-in-Skin Model to Study Immune Modulatory and Angiogenic Mechanisms Facilitating Initial Melanoma Growth and Invasion. Cancers 2023, 15, 2849. [Google Scholar] [CrossRef] [PubMed]
- Di Blasio, S.; van Wigcheren, G.F.; Becker, A.; van Duffelen, A.; Gorris, M.; Verrijp, K.; Stefanini, I.; Bakker, G.J.; Bloemendal, M.; Halilovic, A.; et al. The tumour microenvironment shapes dendritic cell plasticity in a human organotypic melanoma culture. Nat. Commun. 2020, 11, 2749. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Ecker, B.L.; Douglass, S.M.; Kugel, C.H., 3rd; Webster, M.R.; Almeida, F.V.; Somasundaram, R.; Hayden, J.; Ban, E.; Ahmadzadeh, H.; et al. Remodeling of the Collagen Matrix in Aging Skin Promotes Melanoma Metastasis and Affects Immune Cell Motility. Cancer Discov. 2019, 9, 64–81. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Revach, O.-y.; Anderson, S.; Kessler, E.A.; Wolfe, C.H.; Jenney, A.; Mills, C.E.; Robitschek, E.J.; Davis, T.G.R.; Kim, S.; et al. Targeting TBK1 to overcome resistance to cancer immunotherapy. Nature 2023, 615, 158–167. [Google Scholar] [CrossRef]
- Espinoza-Sánchez, N.A.; Götte, M. Role of cell surface proteoglycans in cancer immunotherapy. Semin. Cancer Biol. 2020, 62, 48–67. [Google Scholar] [CrossRef]
- Ramos-Espinosa, G.; Wang, Y.; Brandner, J.M.; Schneider, S.W.; Gorzelanny, C. Melanoma Associated Chitinase 3-Like 1 Promoted Endothelial Cell Activation and Immune Cell Recruitment. Int. J. Mol. Sci. 2021, 22, 3912. [Google Scholar] [CrossRef]
- Chen, M.B.; Hajal, C.; Benjamin, D.C.; Yu, C.; Azizgolshani, H.; Hynes, R.O.; Kamm, R.D. Inflamed neutrophils sequestered at entrapped tumor cells via chemotactic confinement promote tumor cell extravasation. Proc. Natl. Acad. Sci. USA 2018, 115, 7022–7027. [Google Scholar] [CrossRef]
Model | Method | Experimental Testing | Limitations | Reference | ||||
---|---|---|---|---|---|---|---|---|
Design | Cells | Support Matrix | ||||||
Healthy | Cancer | Immune | ||||||
Spherical Melanoma Tumor Organoids | Co-culture with fibroblasts | Primary human skin fibroblasts (FF2441) | Human melanoma cell lines WM1366 or 1205Lu. | - | Bovine collagen I | Role of the stroma in tumor progression and therapy resistance. | Only one healthy skin cell type. No layered architecture. | [16] |
Co-culture with endothelial cells | Human umbilical vascular endothelial cells (HUVECs). | Human melanoma cell line A375. Melanoma cells derived from patient’s lymph node M21. | - | - | Tumor angiogenesis—crosstalk between melanoma cells and endothelial cells. | No healthy skin cells. Spheroid model is static so capillary networks are not functional. High variability depending on melanoma cells used. | [19] | |
3 cell-type organoids | Human fibroblast cell line CCD-1137Sk Human keratinocyte cell line HaCaT | Human malignant melanoma cell line SK-MEL-28. | - | No ECM added. Collagen IV is produced by fibroblasts. | Early melanoma stages and response to chemotherapy. | Model lacks the formation of keratinocyte cornified layer. | [20] | |
5 cell-type organoids | Primary fibroblasts, keratinocytes, melanocytes and adipocytes. | Human malignant melanoma cell line SK-MEL-28. | - | - | Melanomagenesis and tumor-stroma interactions. | Model does not simulate melanoma penetration through the skin layers | Unpublished data | |
Immune-competent spherical skin constructs (Organoids) and Melanoma | Air-liquid-interface | - | Heterogeneous stromal cells contained in the tumor biopsy. | Tumor-infiltrating lymphocytes, macrophages, B and NK cells from the biopsy tissue. | Type I collagen. | Personalized immunotherapy. | Model does not include healthy skin environment nor shows layered skin architecture. | [55] |
Air-liquid-interface | - | Melanoma biopsy. Heterogeneous population. | Immune cells from tissue biopsy. | - | Personalized immunotherapy. | Model does not include healthy skin environment nor shows layered skin architecture. | [10] | |
Air-liquid-interface | - | Melanoma biopsy. Heterogeneous population. | Tumor-infiltrating lymphocytes | Type I collagen. | Immunotherapy. | Model does not include healthy skin environment nor shows layered skin architecture. | [56] | |
Combined lymph node/melanoma organoids | - | Melanoma biopsy. Heterogeneous population. | Patient-matched lymph node. | Hyaluronic acid /collagen-based hydrogel | Personalized immunotherapy. | Modest number of patients. Model lacks healthy skin components and layered architecture. | [11] | |
Co-culture with autologous lymphocytes | - | Melanoma biopsy. Heterogeneous population. | Autologous lymphocytes isolated from peripheral blood mononuclear cells | Matrigel. | Patient stratification and selection of candidates for immunotherapy. | Modest number of patients. Model lacks healthy skin components and layered architecture. | [57] | |
Melanoma on Planar Human Skin Constructs | Melanoma cells added to the cell mixture | Primary keratinocytes and fibroblasts. | Human melanoma cell lines WM35 and SK-MEL-28. | - | De-epidermised dermis (DED) prepared from skin tissue. | Melanoma progression and invasion to the dermis. | Model lacks interaction with other skin cell types such as melanocytes or adipocytes. | [22] |
Melanoma cells added as spheroids. | Primary keratinocytes and fibroblasts. | Human melanoma cell lines SBCL2, WM-115, and 451-LU. | - | Rat Tail Collagen I. | Drug testing for metastatic melanoma. | Model lacks other TME components such as endothelial cells that could modify tumor progression. | [25] | |
Melanoma cells added between the dermal and epidermal layers. | Primary keratinocytes and fibroblasts. | Human melanoma cell lines WM35 and SK-MEL-28. | - | Alvetex scaffold, which promotes ECM deposition by fibroblasts. | Melanoma progression and invasion. | Model lacks other TME components such as endothelial cells that could modify tumor progression. | [26] | |
Addition of melanoma spheroids and vascularization. | Primary human microvascular endothelial cells (HMVEC), fibroblasts and keratinocytes. | Human melanoma cell lines A375, Malme3M, RPMI-7951 and SK-MEL-28 | - | - | Drug testing. | Low throughput. Model takes 5 weeks to fully generate. | [28] | |
Immune-reactive Planar Human Skin Constructs | Addition of activated CD4+ T cells | Primary keratinocytes. | - | Allogeneic activated CD4+ T cells and in vitro polarized Th1 and Th17. | Decellularized de-epidermized dermis. | Skin inflammation and psoriasis. | Dermis does not contain fibroblasts or other skin cell types, which could also play a role in psoriatic pathology. | [45] |
Addition of MUTZ3-derived Langerhans cells | Primary keratinocytes and fibroblasts. | - | MUTZ-3 progenitor cell line differentiated into Langerhans cells (LCs). | Rat Tail Collagen I. | Allergy; irritant/allergen exposure. | Model does not account for the interaction with other skin cell types such as melanocytes or adipocytes. | [44] | |
Addition of activated CD4+ T cells. | Primary keratinocytes and fibroblasts. | - | Allogeneic CD4+ T cells from psoriatic patients and in vitro polarized Th1 and Th17 T cells. | Collagen I. | Psoriasis. Drug screening platform for psoriasis. | Skin cells and immune cells are not donor matched, which may yield unexpected immune responses | [13] | |
Filaggrin-deficient cells with activated CD4+ T cells | Primary keratinocytes and fibroblasts. | - | Allogeneic activated CD4+ T cells and in vitro polarized Th1 and Th17. | Bovine collagen I. | Atopic dermatitis. | Immune cell donors coud be dermatitis patients or have allergies that could affect the outcome of the study. | [12] | |
3D bioprinted constrcuts with macrophages. | Primary fibroblasts and keratinocytes isolated from human skin donors | - | Matched CD14+ monocytes differentiated into M1 and M2 macrophages. | Bioink with nanofibrilar cellulose, sodium alginate, fibrinogen, mannitol and HEPES. | Chronic skin irritation seen in atopic dermatitis | Model lacks other important cell types such as melanocytes and proper vascularization. | [46] | |
Wounded 3D bioprinted constructs containing macrophages and endothelial cells | Primary fibroblasts and keratinocytes. Human umbilical vascular endothelial cells (HUVECs). | - | KG-1 macrophage cell line. | Collagen I for the human planar skin construct. Plasma-derived fibrinogen-containing factor XIII, fibronectin, thrombin for the bioink. | Cutaneous wound healing. | Model lacks other important cell types such as melanocytes. | [47] | |
Melanoma on Immune-Competent Planar Human Skin Constructs Containing | Addition of melanoma cells. | Primary keratinocytes, melanocytes and fibroblasts. | Human melanoma cell lines SK-MEL-28, A375, COLO829, G361, MeWo and RPMI-7051. | - | Rat Tail Collagen I mixed with Fibrinogen. | Melanoma progression and invasion. Immune evasion mechanisms. | Model lacks integration of immune cells. | [23,58] |
Addition of melanoma and dendritic cells. | Primary keratinocytes and fibroblasts. | Human melanoma cells BLM, Mel624 and A375. | Immunostimulatory dendritic cells (cDC2s). | De-epidermized, decellularized dermis. | Melanoma immune-evasion mechanisms. Potential immunotherapy testing. | Model lacks blood vessels and lymphatics. Unable to reproduce angiogenesis and leukocyte extravasation. | [59] | |
Addition of melanoma and T cells. | Primary keratinocytes and fibroblasts (aged and young). | Human melanoma cell lines 1205Lu and WM3918 and patient-derived melanoma cells. | Autologous CD4+ T cells. | Rat Tail Collagen I. | Effects of young and aged fibroblasts on melanoma progression and immune interaction. | Model lacks blood vessels and lymphatics. Unable to reproduce angiogenesis and leukocyte extravasation. | [60] | |
Melanoma-on-a-chip | Microfluidic device connecting keratinocytes, fibroblasts and melanoma cells. | Primary keratinocytes and fibroblasts. | Primary melanoma cell line WM-115. | - | Collagen | Crosstalk between melanoma cells, fibroblasts and keratinocytes. | Model lacks layered skin architecture and other cell types that may be involved in the crosstalk with cancer cells. | [31] |
Immune-competent skin-on-chip | 2-layered skin-on-chip containing dendritic cells | Immortalized human keratinocytes (HaCaT). | - | Leukemic monocyte lymphoma cell line U937 | - | Skin allergy, skin sensitization, dermatitis. | Model lacks dermis, which homes immune cells that could modify immune responses. | [50] |
Vascularized skin-on-chip. | Primary or immortalized keratinocytes (HaCaT), primary fibroblasts and HUVECs. | - | Human promyelocytic leukemia cell line HL-60 | Collagen I. | Neutrophil migration to inflammation sites. | Model lacks skin-resident immune cells that could also affect the immune response against UV and skin irritants. | [51] | |
2-layered skin-on-chip containing HUVECs and T cells | Immortalized human keratinocytes (HaCaT), and HUVECs. | - | T cells isolated from peripheral blood samples. | Rat Tail Collagen I. | T cell migration in response to inflammation. Platform for drug testing. | Model lacks fibroblasts in the dermal component, which could affect migration of T cells towards the epidermis. | [14] | |
Immune-competent melanoma-on-chip | Addition of patient-derived melanoma spheroids. | - | Patient-derived melanoma spheoroids. | Autologous myelooid and lymphoid populations frombiopsy tissue. | Rat Tail Collagen I. | Immunotherapy testing. | Model lacks healthy skin components and layered architecture. They do not take into account the recruitment of other cell types to the TME. | [9] |
Addition of patient-derived melanoma spheroids. | - | Patient-derived melanoma spheoroids. | Immune cells from tissue biopsy. | Rat Tail Collagen I. | Immunotherapy target discovery. | Model lacks healthy skin components and layered architecture. They do not take into account the recruitment of other cell types to the TME. | [61] | |
Addition of endothelial cells stimulated with melanoma supernatants and perfused with whole blood | HUVECs. | Human melanoma cells BLM. | Whole blood | Gelatin. | Inflammation induced by the Interaction between melanoma ECM and endothelial cells. | Model lacks healthy skin cells and layered architecture. | [62] | |
Vascular network with circulated melanoma and immune cells | - | Human GFP expressing melanoma A-375 and A-375 MA2 | Human neutrophils from fresh human blood. | Fibrin. | Intravascular tumor-neutrophil interactions. Cancer cell arrest in vessels and extravassation — metastasis. | Model does not represent skin architecture. | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nomdedeu-Sancho, G.; Gorkun, A.; Mahajan, N.; Willson, K.; Schaaf, C.R.; Votanopoulos, K.I.; Atala, A.; Soker, S. In Vitro Three-Dimensional (3D) Models for Melanoma Immunotherapy. Cancers 2023, 15, 5779. https://doi.org/10.3390/cancers15245779
Nomdedeu-Sancho G, Gorkun A, Mahajan N, Willson K, Schaaf CR, Votanopoulos KI, Atala A, Soker S. In Vitro Three-Dimensional (3D) Models for Melanoma Immunotherapy. Cancers. 2023; 15(24):5779. https://doi.org/10.3390/cancers15245779
Chicago/Turabian StyleNomdedeu-Sancho, Gemma, Anastasiya Gorkun, Naresh Mahajan, Kelsey Willson, Cecilia R. Schaaf, Konstantinos I. Votanopoulos, Anthony Atala, and Shay Soker. 2023. "In Vitro Three-Dimensional (3D) Models for Melanoma Immunotherapy" Cancers 15, no. 24: 5779. https://doi.org/10.3390/cancers15245779
APA StyleNomdedeu-Sancho, G., Gorkun, A., Mahajan, N., Willson, K., Schaaf, C. R., Votanopoulos, K. I., Atala, A., & Soker, S. (2023). In Vitro Three-Dimensional (3D) Models for Melanoma Immunotherapy. Cancers, 15(24), 5779. https://doi.org/10.3390/cancers15245779