Prognostic Factors of Platinum-Refractory Advanced Urothelial Carcinoma Treated with Pembrolizumab
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Clinical Data
2.2. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Efficacy of Pembrolizumab and Adverse Events
3.3. Risk Factors for Shorter Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AEs | Adverse events |
BSC | best supportive care |
CD4 | cluster of differentiation 4 |
CD8 | cluster of differentiation 8 |
CR | complete response |
CRP | C-reactive protein |
CTCAE | common terminology criteria for adverse events |
DNA | deoxyribonucleic acid |
ECOG-PS | Eastern Cooperative Oncology Group performance status |
FN | febrile neutropenia |
GC | gemcitabine, cisplatin |
ICI | immune checkpoint inhibitor |
IgG4κ | immunoglobulin G4κ |
MVAC | methotrexate, vinblastine, doxorubicin, and cisplatin |
NLR | neutrophil-to-lymphocyte ratio |
ORR | objective response rate |
OS | overall survival |
PD | progressive disease |
PD-L1 | programmed death ligand-1 |
PFS | progression-free survival |
PR | partial response |
PS | performance status |
RECIST | response evaluation criteria in solid tumors |
SD | stable disease |
SPSSs | Statistical Package for the Social Sciences |
TMB | tumor mutational burden |
UC | urothelial carcinoma |
References
- von der Maase, H.; Sengelov, L.; Roberts, J.T.; Ricci, S.; Dogliotti, L.; Oliver, T.; Moore, M.J.; Zimmermann, A.; Arning, M. Long-Term Survival Results of a Randomized Trial Comparing Gemcitabine Plus Cisplatin, With Methotrexate, Vinblastine, Doxorubicin, Plus Cisplatin in Patients with Bladder Cancer. J. Clin. Oncol. 2005, 23, 4602–4608. [Google Scholar] [CrossRef] [PubMed]
- Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and Its Ligands in Tolerance and Immunity. Annu. Rev. Immunol. 2008, 26, 677–704. [Google Scholar] [CrossRef]
- Francisco, L.M.; Salinas, V.H.; Brown, K.E.; Vanguri, V.K.; Freeman, G.J.; Kuchroo, V.K.; Sharpe, A.H. PD-L1 Regulates the Development, Maintenance, and Function of Induced Regulatory T Cells. J. Exp. Med. 2009, 206, 3015–3029. [Google Scholar] [CrossRef] [PubMed]
- Bellmunt, J.; de Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.-L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- Guidelines Detail. Available online: https://www.nccn.org/guidelines/guidelines-detail (accessed on 4 September 2023).
- Topalian, S.L.; Taube, J.M.; Anders, R.A.; Pardoll, D.M. Mechanism-Driven Biomarkers to Guide Immune Checkpoint Blockade in Cancer Therapy. Nat. Rev. Cancer 2016, 16, 275–287. [Google Scholar] [CrossRef]
- Kuziora, M.; Higgs, B.W.; Brohawn, P.Z.; Raja, R.; Bais, C.; Ranade, K. Association of Early Reduction in Circulating Tumor DNA (ctDNA) with Improved Progression-Free Survival (PFS) and Overall Survival (OS) of Patients (Pts) with Urothelial Bladder Cancer (UBC) Treated with Durvalumab (D). J. Clin. Oncol. 2017, 35, 11538. [Google Scholar] [CrossRef]
- Yarchoan, M.; Hopkins, A.; Jaffee, E.M. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N. Engl. J. Med. 2017, 377, 2500–2501. [Google Scholar] [CrossRef]
- Ogihara, K.; Kikuchi, E.; Shigeta, K.; Okabe, T.; Hattori, S.; Yamashita, R.; Yoshimine, S.; Shirotake, S.; Nakazawa, R.; Matsumoto, K.; et al. The Pretreatment Neutrophil-to-Lymphocyte Ratio Is a Novel Biomarker for Predicting Clinical Responses to Pembrolizumab in Platinum-Resistant Metastatic Urothelial Carcinoma Patients. Urol. Oncol. Semin. Orig. Investig. 2020, 38, 602.e1–602.e10. [Google Scholar] [CrossRef]
- Tamura, D.; Jinnouchi, N.; Abe, M.; Ikarashi, D.; Matsuura, T.; Kato, R.; Maekawa, S.; Kato, Y.; Kanehira, M.; Takata, R.; et al. Prognostic Outcomes and Safety in Patients Treated with Pembrolizumab for Advanced Urothelial Carcinoma: Experience in Real-World Clinical Practice. Int. J. Clin. Oncol. 2020, 25, 899–905. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Yatsuda, J.; Shimokawa, M.; Fuji, N.; Aoki, A.; Sakano, S.; Yamamoto, M.; Suga, A.; Tei, Y.; Yoshihiro, S.; et al. Prognostic Value of Pre-Treatment Risk Stratification and Post-Treatment Neutrophil/Lymphocyte Ratio Change for Pembrolizumab in Patients with Advanced Urothelial Carcinoma. Int. J. Clin. Oncol. 2021, 26, 169–177. [Google Scholar] [CrossRef]
- Kobayashi, T.; Ito, K.; Kojima, T.; Kato, M.; Kanda, S.; Hatakeyama, S.; Matsui, Y.; Matsushita, Y.; Naito, S.; Shiga, M.; et al. Risk Stratification for the Prognosis of Patients with Chemoresistant Urothelial Cancer Treated with Pembrolizumab. Cancer Sci. 2021, 112, 760–773. [Google Scholar] [CrossRef] [PubMed]
- Yanagisawa, T.; Mori, K.; Katayama, S.; Mostafaei, H.; Quhal, F.; Laukhtina, E.; Rajwa, P.; Motlagh, R.S.; Aydh, A.; König, F.; et al. Pretreatment Clinical and Hematologic Prognostic Factors of Metastatic Urothelial Carcinoma Treated with Pembrolizumab: A Systematic Review and Meta-Analysis. Int. J. Clin. Oncol. 2022, 27, 59–71. [Google Scholar] [CrossRef]
- Oken, M.M.; Creech, R.H.; Tormey, D.C.; Horton, J.; Davis, T.E.; McFadden, E.T.; Carbone, P.P. Toxicity and Response Criteria of the Eastern Cooperative Oncology Group. Am. J. Clin. Oncol. 1982, 5, 649–655. [Google Scholar] [CrossRef]
- Bajorin, D.F.; Dodd, P.M.; Mazumdar, M.; Fazzari, M.; McCaffrey, J.A.; Scher, H.I.; Herr, H.; Higgins, G.; Boyle, M.G. Long-Term Survival in Metastatic Transitional-Cell Carcinoma and Prognostic Factors Predicting Outcome of Therapy. J. Clin. Oncol. 1999, 17, 3173–3181. [Google Scholar] [CrossRef] [PubMed]
- Khaki, A.R.; Li, A.; Diamantopoulos, L.N.; Bilen, M.A.; Santos, V.; Esther, J.; Morales-Barrera, R.; Devitt, M.; Nelson, A.; Hoimes, C.J.; et al. Impact of Performance Status on Treatment Outcomes: A Real-World Study of Advanced Urothelial Cancer Treated with Immune Checkpoint Inhibitors. Cancer 2020, 126, 1208–1216. [Google Scholar] [CrossRef]
- Ocáriz-Díez, M.; Cruellas, M.; Gascón, M.; Lastra, R.; Martínez-Lostao, L.; Ramírez-Labrada, A.; Paño, J.R.; Sesma, A.; Torres, I.; Yubero, A.; et al. Microbiota and Lung Cancer. Opportunities and Challenges for Improving Immunotherapy Efficacy. Front. Oncol. 2020, 10, 568939. [Google Scholar] [CrossRef]
- Pinato, D.J.; Howlett, S.; Ottaviani, D.; Urus, H.; Patel, A.; Mineo, T.; Brock, C.; Power, D.; Hatcher, O.; Falconer, A.; et al. Association of Prior Antibiotic Treatment with Survival and Response to Immune Checkpoint Inhibitor Therapy in Patients with Cancer. JAMA Oncol. 2019, 5, 1774–1778. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; et al. Gut Microbiome Modulates Response to Anti-PD-1 Immunotherapy in Melanoma Patients. Science 2018, 359, 97–103. [Google Scholar] [CrossRef]
- Matson, V.; Fessler, J.; Bao, R.; Chongsuwat, T.; Zha, Y.; Alegre, M.-L.; Luke, J.J.; Gajewski, T.F. The Commensal Microbiome Is Associated with Anti-PD-1 Efficacy in Metastatic Melanoma Patients. Science 2018, 359, 104–108. [Google Scholar] [CrossRef]
- Derosa, L.; Hellmann, M.D.; Spaziano, M.; Halpenny, D.; Fidelle, M.; Rizvi, H.; Long, N.; Plodkowski, A.J.; Arbour, K.C.; Chaft, J.E.; et al. Negative Association of Antibiotics on Clinical Activity of Immune Checkpoint Inhibitors in Patients with Advanced Renal Cell and Non-Small-Cell Lung Cancer. Ann. Oncol. 2018, 29, 1437–1444. [Google Scholar] [CrossRef]
- Yu, Y.; Zheng, P.; Gao, L.; Li, H.; Tao, P.; Wang, D.; Ding, F.; Shi, Q.; Chen, H. Effects of Antibiotic Use on Outcomes in Cancer Patients Treated Using Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. J. Immunother. 2021, 44, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Kaderbhai, C.; Richard, C.; Fumet, J.D.; Aarnink, A.; Foucher, P.; Coudert, B.; Favier, L.; Lagrange, A.; Limagne, E.; Boidot, R.; et al. Antibiotic Use Does Not Appear to Influence Response to Nivolumab. Anticancer Res. 2017, 37, 3195–3200. [Google Scholar] [PubMed]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New Response Evaluation Criteria in Solid Tumours: Revised RECIST Guideline (Version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Common Terminology Criteria for Adverse Events (CTCAE). Protocol Development CTEP. Available online: https://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm#ctc_50 (accessed on 4 September 2023).
- Yasuoka, S.; Yuasa, T.; Nishimura, N.; Ogawa, M.; Komai, Y.; Numao, N.; Yamamoto, S.; Kondo, Y.; Yonese, J. Initial Experience of Pembrolizumab Therapy in Japanese Patients with Metastatic Urothelial Cancer. Anticancer Res. 2019, 39, 3887–3892. [Google Scholar] [CrossRef] [PubMed]
- Swami, U.; Haaland, B.; Kessel, A.; Nussenzveig, R.; Maughan, B.L.; Esther, J.; Sirohi, D.; Pal, S.K.; Grivas, P.; Agarwal, N. Comparative Effectiveness of Immune Checkpoint Inhibitors in Patients with Platinum Refractory Advanced Urothelial Carcinoma. J. Urol. 2021, 205, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Bañobre, J.; Molina-Díaz, A.; Calvo, O.; Fernández, N.; Medina-Colmenero, A.; Santome, L.; Lazaro, M.; Mateos-González, M.; García-Cid, N.; López-López, R.; et al. Rethinking Prognostic Factors in Locally Advanced or Metastatic Urothelial Carcinoma in the Immune Checkpoint Blockade Era: A Multicenter Retrospective Study. ESMO Open 2021, 6, 100090. [Google Scholar] [CrossRef] [PubMed]
- Bellmunt, J.; Choueiri, T.K.; Fougeray, R.; Schutz, F.A.B.; Salhi, Y.; Winquist, E.; Culine, S.; von der Maase, H.; Vaughn, D.J.; Rosenberg, J.E. Prognostic Factors in Patients with Advanced Transitional Cell Carcinoma of the Urothelial Tract Experiencing Treatment Failure with Platinum-Containing Regimens. J. Clin. Oncol. 2010, 28, 1850–1855. [Google Scholar] [CrossRef]
- Balar, A.V.; Castellano, D.; O’Donnell, P.H.; Grivas, P.; Vuky, J.; Powles, T.; Plimack, E.R.; Hahn, N.M.; de Wit, R.; Pang, L.; et al. First-Line Pembrolizumab in Cisplatin-Ineligible Patients with Locally Advanced and Unresectable or Metastatic Urothelial Cancer (KEYNOTE-052): A Multicentre, Single-Arm, Phase 2 Study. Lancet Oncol. 2017, 18, 1483–1492. [Google Scholar] [CrossRef]
- Parikh, R.B.; Galsky, M.D.; Gyawali, B.; Riaz, F.; Kaufmann, T.L.; Cohen, A.B.; Adamson, B.J.S.; Gross, C.P.; Meropol, N.J.; Mamtani, R. Trends in Checkpoint Inhibitor Therapy for Advanced Urothelial Cell Carcinoma at the End of Life: Insights from Real-World Practice. Oncologist 2019, 24, e397–e399. [Google Scholar] [CrossRef]
- Shaul, M.E.; Fridlender, Z.G. Tumour-Associated Neutrophils in Patients with Cancer. Nat. Rev. Clin. Oncol. 2019, 16, 601–620. [Google Scholar] [CrossRef]
- Kargl, J.; Busch, S.E.; Yang, G.H.Y.; Kim, K.-H.; Hanke, M.L.; Metz, H.E.; Hubbard, J.J.; Lee, S.M.; Madtes, D.K.; McIntosh, M.W.; et al. Neutrophils Dominate the Immune Cell Composition in Non-Small Cell Lung Cancer. Nat. Commun. 2017, 8, 14381. [Google Scholar] [CrossRef] [PubMed]
- Fridlender, Z.G.; Albelda, S.M. Tumor-Associated Neutrophils: Friend or Foe? Carcinogenesis 2012, 33, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Sivan, A.; Corrales, L.; Hubert, N.; Williams, J.B.; Aquino-Michaels, K.; Earley, Z.M.; Benyamin, F.W.; Lei, Y.M.; Jabri, B.; Alegre, M.-L.; et al. Commensal Bifidobacterium Promotes Antitumor Immunity and Facilitates Anti–PD-L1 Efficacy. Science 2015, 350, 1084–1089. [Google Scholar] [CrossRef] [PubMed]
- Elkrief, A.; El Raichani, L.; Richard, C.; Messaoudene, M.; Belkaid, W.; Malo, J.; Belanger, K.; Miller, W.; Jamal, R.; Letarte, N.; et al. Antibiotics Are Associated with Decreased Progression-Free Survival of Advanced Melanoma Patients Treated with Immune Checkpoint Inhibitors. OncoImmunology 2019, 8, e1568812. [Google Scholar] [CrossRef] [PubMed]
- Araujo, D.V.; Watson, G.A.; Oliva, M.; Heirali, A.; Coburn, B.; Spreafico, A.; Siu, L.L. Bugs as Drugs: The Role of Microbiome in Cancer Focusing on Immunotherapeutics. Cancer Treat. Rev. 2021, 92, 102125. [Google Scholar] [CrossRef]
- Vétizou, M.; Pitt, J.M.; Daillère, R.; Lepage, P.; Waldschmitt, N.; Flament, C.; Rusakiewicz, S.; Routy, B.; Roberti, M.P.; Duong, C.P.M.; et al. Anticancer Immunotherapy by CTLA-4 Blockade Relies on the Gut Microbiota. Science 2015, 350, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Iida, N.; Dzutsev, A.; Stewart, C.A.; Smith, L.; Bouladoux, N.; Weingarten, R.A.; Molina, D.A.; Salcedo, R.; Back, T.; Cramer, S.; et al. Commensal Bacteria Control Cancer Response to Therapy by Modulating the Tumor Microenvironment. Science 2013, 342, 967–970. [Google Scholar] [CrossRef] [PubMed]
- Ishiyama, Y.; Kondo, T.; Nemoto, Y.; Kobari, Y.; Ishihara, H.; Tachibana, H.; Yoshida, K.; Hashimoto, Y.; Takagi, T.; Iizuka, J.; et al. Antibiotic Use and Survival of Patients Receiving Pembrolizumab for Chemotherapy-Resistant Metastatic Urothelial Carcinoma. Urol. Oncol. Semin. Orig. Investig. 2021, 39, 834.e21–834.e28. [Google Scholar] [CrossRef]
- Cortellini, A.; Ricciuti, B.; Facchinetti, F.; Alessi, J.V.M.; Venkatraman, D.; Dall’Olio, F.G.; Cravero, P.; Vaz, V.R.; Ottaviani, D.; Majem, M.; et al. Antibiotic-Exposed Patients with Non-Small-Cell Lung Cancer Preserve Efficacy Outcomes Following First-Line Chemo-Immunotherapy. Ann. Oncol. 2021, 32, 1391–1399. [Google Scholar] [CrossRef]
- Wang, J.-R.; Li, R.-N.; Huang, C.-Y.; Hong, C.; Li, Q.-M.; Zeng, L.; He, J.-Z.; Hu, C.-Y.; Cui, H.; Liu, L.; et al. Impact of Antibiotics on the Efficacy of Immune Checkpoint Inhibitors in the Treatment of Primary Liver Cancer. Liver Res. 2022, 6, 175–180. [Google Scholar] [CrossRef]
- Hopkins, A.M.; Kichenadasse, G.; Karapetis, C.S.; Rowland, A.; Sorich, M.J. Concomitant Antibiotic Use and Survival in Urothelial Carcinoma Treated with Atezolizumab. Eur. Urol. 2020, 78, 540–543. [Google Scholar] [CrossRef]
- Dethlefsen, L.; Huse, S.; Sogin, M.L.; Relman, D.A. The Pervasive Effects of an Antibiotic on the Human Gut Microbiota, as Revealed by Deep 16S rRNA Sequencing. PLoS Biol. 2008, 6, e280. [Google Scholar] [CrossRef]
- Eng, L.; Sutradhar, R.; Niu, Y.; Liu, N.; Liu, Y.; Kaliwal, Y.; Powis, M.L.; Liu, G.; Peppercorn, J.M.; Bedard, P.L.; et al. Impact of Antibiotic Exposure Before Immune Checkpoint Inhibitor Treatment on Overall Survival in Older Adults with Cancer: A Population-Based Study. J. Clin. Oncol. 2023, 41, 3122–3134. [Google Scholar] [CrossRef]
- Routy, B.; Le Chatelier, E.; Derosa, L.; Duong, C.P.M.; Alou, M.T.; Daillère, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti, M.P.; et al. Gut Microbiome Influences Efficacy of PD-1–Based Immunotherapy against Epithelial Tumors. Science 2018, 359, 91–97. [Google Scholar] [CrossRef]
- Lu, P.-H.; Tsai, T.-C.; Chang, J.W.-C.; Deng, S.-T.; Cheng, C.-Y. Association of Prior Fluoroquinolone Treatment with Survival Outcomes of Immune Checkpoint Inhibitors in Asia. J. Clin. Pharm. Ther. 2021, 46, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Stewardson, A.J.; Gaïa, N.; François, P.; Malhotra-Kumar, S.; Delémont, C.; Martinez de Tejada, B.; Schrenzel, J.; Harbarth, S.; Lazarevic, V. Collateral Damage from Oral Ciprofloxacin versus Nitrofurantoin in Outpatients with Urinary Tract Infections: A Culture-Free Analysis of Gut Microbiota. Clin. Microbiol. Infect. 2015, 21, 344.e1–344.e11. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.-U.; Zaura, E.; Buijs, M.J.; Keijser, B.J.F.; Crielaard, W.; Nord, C.E.; Weintraub, A. Determining the Long-Term Effect of Antibiotic Administration on the Human Normal Intestinal Microbiota Using Culture and Pyrosequencing Methods. Clin. Infect. Dis. 2015, 60, S77–S84. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Cobas, A.E.; Artacho, A.; Knecht, H.; Ferrús, M.L.; Friedrichs, A.; Ott, S.J.; Moya, A.; Latorre, A.; Gosalbes, M.J. Differential Effects of Antibiotic Therapy on the Structure and Function of Human Gut Microbiota. PLoS ONE 2013, 8, e80201. [Google Scholar] [CrossRef] [PubMed]
- Barone, B.; Calogero, A.; Scafuri, L.; Ferro, M.; Lucarelli, G.; Di Zazzo, E.; Sicignano, E.; Falcone, A.; Romano, L.; De Luca, L.; et al. Immune Checkpoint Inhibitors as a Neoadjuvant/Adjuvant Treatment of Muscle-Invasive Bladder Cancer: A Systematic Review. Cancers 2022, 14, 2545. [Google Scholar] [CrossRef] [PubMed]
- Necchi, A.; Anichini, A.; Raggi, D.; Briganti, A.; Massa, S.; Lucianò, R.; Colecchia, M.; Giannatempo, P.; Mortarini, R.; Bianchi, M.; et al. Pembrolizumab as Neoadjuvant Therapy Before Radical Cystectomy in Patients with Muscle-Invasive Urothelial Bladder Carcinoma (PURE-01): An Open-Label, Single-Arm, Phase II Study. J. Clin. Oncol. 2018, 36, 3353–3360. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, N.; Gil-Jimenez, A.; Silina, K.; Hendricksen, K.; Smit, L.A.; de Feijter, J.M.; van Montfoort, M.L.; van Rooijen, C.; Peters, D.; Broeks, A.; et al. Preoperative Ipilimumab plus Nivolumab in Locoregionally Advanced Urothelial Cancer: The NABUCCO Trial. Nat. Med. 2020, 26, 1839–1844. [Google Scholar] [CrossRef]
- Powles, T.; Kockx, M.; Rodriguez-Vida, A.; Duran, I.; Crabb, S.J.; Van Der Heijden, M.S.; Szabados, B.; Pous, A.F.; Gravis, G.; Herranz, U.A.; et al. Clinical Efficacy and Biomarker Analysis of Neoadjuvant Atezolizumab in Operable Urothelial Carcinoma in the ABACUS Trial. Nat. Med. 2019, 25, 1706–1714. [Google Scholar] [CrossRef]
- Van Der Heijden, M.S.; Loriot, Y.; Durán, I.; Ravaud, A.; Retz, M.; Vogelzang, N.J.; Nelson, B.; Wang, J.; Shen, X.; Powles, T. Atezolizumab Versus Chemotherapy in Patients with Platinum-Treated Locally Advanced or Metastatic Urothelial Carcinoma: A Long-Term Overall Survival and Safety Update from the Phase 3 IMvigor211 Clinical Trial. Eur. Urol. 2021, 80, 7–11. [Google Scholar] [CrossRef]
- Khunger, M.; Hernandez, A.V.; Pasupuleti, V.; Rakshit, S.; Pennell, N.A.; Stevenson, J.; Mukhopadhyay, S.; Schalper, K.; Velcheti, V. Programmed Cell Death 1 (PD-1) Ligand (PD-L1) Expression in Solid Tumors as a Predictive Biomarker of Benefit From PD-1/PD-L1 Axis Inhibitors: A Systematic Review and Meta-Analysis. JCO Precis. Oncol. 2017, 1, 1–15. [Google Scholar] [CrossRef]
- Lopez-Beltran, A.; López-Rios, F.; Montironi, R.; Wildsmith, S.; Eckstein, M. Immune Checkpoint Inhibitors in Urothelial Carcinoma: Recommendations for Practical Approaches to PD-L1 and Other Potential Predictive Biomarker Testing. Cancers 2021, 13, 1424. [Google Scholar] [CrossRef] [PubMed]
- Goodman, A.M.; Kato, S.; Bazhenova, L.; Patel, S.P.; Frampton, G.M.; Miller, V.; Stephens, P.J.; Daniels, G.A.; Kurzrock, R. Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers. Mol. Cancer Ther. 2017, 16, 2598–2608. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, J.E.; Hoffman-Censits, J.; Powles, T.; van der Heijden, M.S.; Balar, A.V.; Necchi, A.; Dawson, N.; O’Donnell, P.H.; Balmanoukian, A.; Loriot, Y.; et al. Atezolizumab in Patients with Locally Advanced and Metastatic Urothelial Carcinoma Who Have Progressed Following Treatment with Platinum-Based Chemotherapy: A Single-Arm, Multicentre, Phase 2 Trial. Lancet 2016, 387, 1909–1920. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.; Loriot, Y.; Ravaud, A.; Vogelzang, N.J.; Duran, I.; Retz, M.; De Giorgi, U.; Oudard, S.; Bamias, A.; Koeppen, H.; et al. Atezolizumab (Atezo) vs. Chemotherapy (Chemo) in Platinum-Treated Locally Advanced or Metastatic Urothelial Carcinoma (mUC): Immune Biomarkers, Tumor Mutational Burden (TMB), and Clinical Outcomes from the Phase III IMvigor211 Study. J. Clin. Oncol. 2018, 36, 409. [Google Scholar] [CrossRef]
- Snyder, A.; Nathanson, T.; Funt, S.A.; Ahuja, A.; Buros Novik, J.; Hellmann, M.D.; Chang, E.; Aksoy, B.A.; Al-Ahmadie, H.; Yusko, E.; et al. Contribution of Systemic and Somatic Factors to Clinical Response and Resistance to PD-L1 Blockade in Urothelial Cancer: An Exploratory Multi-Omic Analysis. PLoS Med. 2017, 14, e1002309. [Google Scholar] [CrossRef]
- Vandekerkhove, G.; Lavoie, J.-M.; Annala, M.; Murtha, A.J.; Sundahl, N.; Walz, S.; Sano, T.; Taavitsainen, S.; Ritch, E.; Fazli, L.; et al. Plasma ctDNA Is a Tumor Tissue Surrogate and Enables Clinical-Genomic Stratification of Metastatic Bladder Cancer. Nat. Commun. 2021, 12, 184. [Google Scholar] [CrossRef]
- Powles, T.; Assaf, Z.J.; Davarpanah, N.; Banchereau, R.; Szabados, B.E.; Yuen, K.C.; Grivas, P.; Hussain, M.; Oudard, S.; Gschwend, J.E.; et al. ctDNA Guiding Adjuvant Immunotherapy in Urothelial Carcinoma. Nature 2021, 595, 432–437. [Google Scholar] [CrossRef] [PubMed]
Variable | Patients (n = 41) |
---|---|
Age (years), median (range) | 75 (58~81) |
Observation period (months), median (range) | 16.5 (1.0~47.8) |
Male sex, n (%) | 35 (85.4%) |
Site of primary tumor, Upper urinary tract/Bladder, n (%) | 16/25 (40%/60%) |
Response criteria (RECIST), CR/PR/SD/PD, n (%) | 7/5/2/29 (17%/12%/5%/70%) |
ECOG-PS, 0/1/2, n (%) | 27/10/4 (66%/24%/10%) |
Number of prior regimens, 1/2/3/4, n (%) | 20/14/6/1 (82%/8%/8%/2%) |
Metastatic sites, liver/lung/bone/lymph node, n (%) | 6/20/9/27 (15%/49%/22%/66%) |
Number of metastatic organs, 1/2/3/4, n (%) | 20/14/6/1 (48%/34%/15%/2%) |
Hemoglobin, > 10 mg/dL/ < 10 ng/dL, n (%) | 33/8 (80%/20%) |
CRP baseline (mg/dL), median (range) | 0.56 (0.03~21) |
NLR baseline, median (range) | 2.96 (1.27~28.4) |
Antibiotic exposure, n (%) | 16 (39%) |
Duration of antibiotic exposure (days), median (range) | 7 (7–30) |
Antibiotic classes, Cephalosporin/fluoroquinolone/penicillin, n (%) | 7/5/4 (44%/31%/25%) |
Overall Response | n = 41 (%) |
---|---|
Complete response, n (%) | 7 (17.1) |
Partial response, n (%) | 5 (12.2) |
Stable disease, n (%) | 2 (4.88) |
Progressive disease, n (%) | 27 (65.9) |
Number of Patients (%) | ||
---|---|---|
Any Grade | Grade 3, 4, or 5 | |
Any event | 35 (85) | 5 (12) |
Event leading to treatment discontinuation | 0 | 1 (2) |
Event leading to death | 0 | 1 (2) |
Infusion reaction | 2 (5) | 2 (5) |
Interstitial pneumonia | 4(10) | 1 (2) |
Rash | 9 (22) | |
Liver dysfunction | 2 (5) | 1 (2) |
Dysgeusia | 1 (2) | |
Fatigue | 1 (2) | |
Hypothyroidism | 4 (10) | |
Anorexia | 2 (5) | |
Leg edema | 1 (2) | |
Adrenal disorder | 2 (5) | 1 (2) |
Isolated ACTH deficiency | 2 (5) | |
Parotiditis | 1 (2) | |
Constipation, diarrhea | 2 (5) | |
Melena | 1 (2) | |
Cutaneous sarcoidosis | 1 (2) |
Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|
Factor | Category | HR (95%CI) | p-Value | HR (95%CI) | p-Value |
Age (years) | <72 vs. ≥72 | 1.51 (0.72–3.21) | 0.28 | ||
Gender | Female vs. Male | 1.07 (0.37–3.09) | 0.90 | ||
ECOG-PS | 0.1 vs. ≥2 | 5.17 (1.62–16.5) | 0.01 | 2.63 (0.80–8.73) | 0.11 |
Surgical resection | No vs. Yes | 0.58 (0.28–1.23) | 0.16 | ||
Any irAEs | Negative vs. Positive | 0.72 (0.35–1.49) | 0.38 | ||
Neutrophil-to-lymphocyte ratio (NLR) | ≤3.0 vs. >3.0 | 3.01 (1.41–6.42) | 0.01 | 1.97 (0.85–4.57) | 0.12 |
Hb (g/dL) | ≤11 vs. >11 | 2.70 (1.26–5.75) | 0.01 | 1.89 (0.84–4.57) | 0.13 |
CRP (mg/dL) | ≤1.0 vs. >1.0 | 1.20 (0.58–2.47) | 0.63 | ||
Tumor site | Lower vs. Upper | 0.43 (0.20–0.94) | 0.03 | 0.57 (0.25–1.26) | 0.16 |
Site of metastasis | Bone | 1.14 (0.49–2.66) | 0.76 | ||
Lymph node | 1.07 (0.50–2.29) | 0.87 | |||
Lung | 1.07 (0.52–2.18) | 0.86 | |||
Liver | 0.89 (0.31–2.57) | 0.83 | |||
Number of metastases | <1 vs. ≥2 | 1.26 (0.61–2.59) | 0.53 | ||
Antibiotics prior to pembrolizumab administration | No vs. Yes | 1.16 (0.53–2.54) | 0.71 |
Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|
Factor | Category | HR (95%CI) | p-Value | HR (95%CI) | p-Value |
Age (years) | <72 vs. ≥72 | 2.25 (0.93–5.40) | 0.07 | ||
Gender | Female vs. Male | 1.19 (0.36–3.98) | 0.78 | ||
ECOG-PS | 0.1 vs. ≥2 | 20.4 (4.30–96.9) | 0.01 | 6.33 (1.24–32.3) | 0.03 |
Surgical resection | No vs. Yes | 0.49 (0.22–1.08) | 0.08 | ||
Any irAEs | Negative vs. Positive | 0.81 (0.37–1.79) | 0.60 | ||
Neutrophil-to-lymphocyte ratio (NLR) | ≤3.0 vs. >3.0 | 3.53 (1.49–8.36) | 0.01 | 2.79 (1.07–7.23) | 0.04 |
Hb (g/dL) | ≤11 vs. >11 | 3.38 (1.47–7.95) | 0.01 | 2.35 (0.94–5.90) | 0.07 |
CRP (mg/dL) | ≤1.0 vs. >1.0 | 2.34 (1.06–5.17) | 0.04 | 2.24 (0.92–5.46) | 0.07 |
Tumor site | Lower vs. Upper | 0.45 (0.19–1.08) | 0.07 | ||
Site of metastasis | Bone | 2.37 (0.95–5.76) | 0.06 | ||
Lymph node | 1.69 (0.70–4.05) | 0.24 | |||
Lung | 1.04 (0.47–2.28) | 0.92 | |||
Liver | 1.25 (0.43–3.64) | 0.69 | |||
Number of metastases | <1 vs. ≥2 | 2.27 (1.01–5.07) | 0.06 | ||
Antibiotics prior to pembrolizumab administration | No vs. Yes | 1.68 (0.74–3.80) | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akashi, Y.; Yamamoto, Y.; Hashimoto, M.; Adomi, S.; Fujita, K.; Kiba, K.; Minami, T.; Yoshimura, K.; Hirayama, A.; Uemura, H. Prognostic Factors of Platinum-Refractory Advanced Urothelial Carcinoma Treated with Pembrolizumab. Cancers 2023, 15, 5780. https://doi.org/10.3390/cancers15245780
Akashi Y, Yamamoto Y, Hashimoto M, Adomi S, Fujita K, Kiba K, Minami T, Yoshimura K, Hirayama A, Uemura H. Prognostic Factors of Platinum-Refractory Advanced Urothelial Carcinoma Treated with Pembrolizumab. Cancers. 2023; 15(24):5780. https://doi.org/10.3390/cancers15245780
Chicago/Turabian StyleAkashi, Yasunori, Yutaka Yamamoto, Mamoru Hashimoto, Shogo Adomi, Kazutoshi Fujita, Keisuke Kiba, Takafumi Minami, Kazuhiro Yoshimura, Akihide Hirayama, and Hirotsugu Uemura. 2023. "Prognostic Factors of Platinum-Refractory Advanced Urothelial Carcinoma Treated with Pembrolizumab" Cancers 15, no. 24: 5780. https://doi.org/10.3390/cancers15245780
APA StyleAkashi, Y., Yamamoto, Y., Hashimoto, M., Adomi, S., Fujita, K., Kiba, K., Minami, T., Yoshimura, K., Hirayama, A., & Uemura, H. (2023). Prognostic Factors of Platinum-Refractory Advanced Urothelial Carcinoma Treated with Pembrolizumab. Cancers, 15(24), 5780. https://doi.org/10.3390/cancers15245780