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Simple Summary: Neurofibromatosis 1 (NF1) is a genetic disorder that predisposes patients to
developing nerve sheath tumors that are difficult to treat. There is currently just one drug approved
for the treatment of NF1-related inoperable plexiform neurofibromas (for a limited patient population),
highlighting the need for further drug discovery in this field. High-throughput screening data are
used to guide drug development, but identifying and selecting promising targets can be complex. The
aim of our study is to improve the value of high-throughput screening data by combining potency
and effectiveness into single-value indices (S, ∆S, and ∆S mean), which are used to assess and rank
drug sensitivity and drug resistance in cells exposed to potential therapeutic drugs. Our approach
with S indices was applied to cell lines derived from plexiform neurofibromas of patients with NF1
gene mutations. The use of S indices provides valuable additional and independent information for
discriminating among candidate compounds for follow-up pre-clinical evaluations.

Abstract: Background: Neurofibromatosis type 1 (NF1) is a genetic disorder characterized by heterozy-
gous germline NF1 gene mutations that predispose patients to developing plexiform neurofibromas,
which are benign but often disfiguring tumors of the peripheral nerve sheath induced by loss of
heterozygosity at the NF1 locus. These can progress to malignant peripheral nerve sheath tumors
(MPNSTs). There are no approved drug treatments for adults with NF1-related inoperable plexiform
neurofibromas, and only one drug (selumetinib), which is an FDA-approved targeted therapy for the
treatment of symptomatic pediatric plexiform neurofibromas, highlighting the need for additional
drug screening and development. In high-throughput screening, the effectiveness of drugs against
cell lines is often assessed by measuring in vitro potency (AC50) or the area under the curve (AUC).
However, the variability of dose–response curves across drugs and cell lines and the frequency
of partial effectiveness suggest that these measures alone fail to provide a full picture of overall
efficacy. Methods: Using concentration–response data, we combined response effectiveness (EFF)
and potency (AC50) into (a) a score characterizing the effect of a compound on a single cell line,
S = log[EFF/AC50], and (b) a relative score, ∆S, characterizing the relative difference between a
reference (e.g., non-tumor) and test (tumor) cell line. ∆S was applied to data from high-throughput
screening (HTS) of a drug panel tested on NF1−/− tumor cells, using immortalized non-tumor
NF1+/− cells as a reference. Results: We identified drugs with sensitivity, targeting expected path-
ways, such as MAPK-ERK and PI3K-AKT, as well as serotonin-related targets, among others. The ∆S
technique used here, in tandem with a supplemental ∆S web tool, simplifies HTS analysis and may
provide a springboard for further investigations into drug response in NF1-related cancers. The tool
may also prove useful for drug development in a variety of other cancers.
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1. Introduction

Neurofibromatosis type 1 (NF1) is a rare chronic neurocutaneous disease caused
by loss-of-function alterations in the gene NF1, encoding the tumor suppressor neurofi-
bromin [1,2]. Via RAS inhibition, NF1 mutations affect multiple signaling pathways linked
to cell survival and proliferation and the development of cancers. NF1 patients often
develop neurofibromas, which are benign peripheral nerve sheath tumors. In 8% to 16%
of NF1 patients, however, these benign neurofibromas progress to malignant peripheral
nerve sheath tumors (MPNSTs) [3,4]. MPNSTs are characterized by the deletion or loss
of function of tumor suppressors, including neurofibromin itself, and amplifications or
gain of function mutations in several oncogenes, including MET, EGFR, and other receptor
tyrosine kinases. Other deregulated pathways in MPNSTs include the MTOR, HIPPO,
WNT, and RAS signaling pathways [5].

Currently, the sole FDA-approved drug treatment for NF1-associated inoperable
plexiform neurofibromas is the MEK inhibitor selumetinib [6–8], which is indicated for the
treatment of pediatric (but not adult) NF1-associated nerve sheath tumors. This deficit
highlights the need for different ways to derive promising targets and new drugs.

One drug development technique involves using high-throughput screening (HTS)
to assess the effect of an array of drugs on cancer cells and, thereby, identify promising
targets for further experimentation. The effective prioritization of drugs depends on
the appropriate analysis of the resulting data. Typically, the prioritization of drugs has
been quantified through evaluating AC50, or area under the curve (AUC) values. Both
techniques have limitations. AC50 is the concentration of a drug that induces half-maximal
activity. The relative potency of two compounds can be compared by computing the log of
the ratio of two AC50 values (∆pAC50). For drugs generating complete cytotoxic responses
within a given concentration range, AC50 and ∆pAC50 values can effectively be used for
comparison. This relationship breaks down, however, when one or both of the drugs being
compared are only partially effective, which is a common finding in HTS [9–11].

The AUC is the area under the response curve for a cell population over the tested
drug concentration range. There are, however, reports of poor concordance of half-maximal
inhibitory concentration (IC50) and AUC measures [12] (as well as AC50 and AUC).
Guha et al. [13] have also pointed out additional issues involving the use of AUC, which
may limit its general utility.

To address these limitations, we developed relative activity scales (S indices) for
normalizing and measuring drug activity. The S-index combines potency and effectiveness
data, facilitating a comparison of the relative activity of compounds across drug classes and
cell lines. Normalizing activity by including the maximal response corrects for differences
in full or partial drug sensitivity and can be determined without the need to re-fit the
underlying concentration–response data to a more complex model [14]. We applied our
S-index analysis to a high-throughput screening dataset [15], which screened a panel of
1912 drugs against NF1-patient-derived neurofibroma cell lines and reference peripheral
nerve cell lines (see Table 1). The resulting list of drugs to which these cell lines are sensitive
or resistant, and the algorithm itself, may prove useful in drug development efforts.
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Table 1. Description of immortalized human cell lines used in the study.

Human Cell Lines

Cell Line Immortalized Tissue Source Neurofibromin Status

ipnNF95.11C * yes Peripheral nerve (non-tumor) +/−
ipNF06.2A yes Plexiform Neurofibroma (PNF1) −/−
ipNF95.6 * yes Plexiform Neurofibroma (PNF1) −/−

ipNF95.11b C/T yes Plexiform Neurofibroma (PNF1) −/−
ipNF05.5 Mixed Clone

(ipNF05.5-MX) yes Plexiform Neurofibroma (PNF1) −/−

* A recent analysis (M.R. Wallace, personal communication) has suggested that the cell lines ipnNF95.11C and
ipNF95.6 may consist of a mixed population of homozygous NF1−/− and heterozygous NF1+/− cells, although
the initial testing [15,16] reported them as in the table above and we analyzed them as such.

2. Materials and Methods
2.1. Cell Lines, Data Access, and Extraction

To assess our analysis algorithm and identify promising targets, we analyzed an HTS
dataset produced by Ferrer et al. [15], which reported pharmacologic and genomic profiling
of plexiform neurofibroma-derived Schwann cells from NF1 patients and control nerve
cells. Proliferation assays were used to screen a panel of 1912 small molecules (the MIPE
4.0 library [17]) against immortalized NF1−/−, NF1+/−, and NF1+/+ cell lines [16], with
the fluorescence intensity indicating survival and proliferation after treatment.

Primary files [15] were accessed from Single Agent Screens through Synapse
https://doi.org/10.7303/syn4939906 (accessed on 1 May 2023). Access was provided
by the Children’s Tumor Foundation through their 2022 Hack4NF project.

The following data were extracted from primary files: cell line name, drug name
and target, log AC50 (LAC50, i.e., the log of the active concentration for a half-maximal
response in molar concentration), R2 (R2, goodness of fit for the 4-parameter logistic
regression model) values of dose–response curves, AUC (TAUC, total area under the
curve), the asymptote minimum (“INF”, response extrapolated to infinite concentration),
and the asymptote maximum (“ZERO”, response extrapolated to zero concentration).

Separately, response data (dat0–dat10) and concentration (C0–C10, in µM) were down-
loaded and analyzed using a 4-parameter fit in SigmaPlot and with the DREA web tool
(see Supplemental Materials). The DREA web tool recreates our final compound rankings
using the application’s default filters, based on the data files from Ferrer et al. [15].

2.2. Data Analysis
2.2.1. AC50 (Potency) and Relative Potency

The log AC50 values (in M) were converted to AC50 (in µM), which is a commonly
used potency measure. The relative potency (∆pAC50) of a compound exposed to two cell
lines is defined in Equations (1) and (2). For the data presented in the Results section, the
reference (ref ) cell line was ipnNF95.11C (note that other reference lines can be selected—
see our discussion on multiple controls) and the test (test) was one of the PNF1 cell lines.
Generally, ∆AC50 > 0 indicates that the test cell lines were more sensitive to a compound
than the reference cell line.

∆AC50 =
[
log AC50re f − log AC50test

]
= log

[ AC50re f

AC50test

]
(1)

∆pAC50 = −
[
log AC50re f − log AC50test

]
= −log

[ AC50re f

AC50test

]
(2)

In an analogous manner, the AUC, as provided in the original dataset (TAUC. total
AUC), was used to determine the relative AUC (∆pAC50) using a method analogous to

https://doi.org/10.7303/syn4939906
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those described in Equations (1) and (2), except that the appropriate AUC values were used
(in place of AC50). As described above, the reference cell line was ipnNF95.11C and the
test was one of the PNF1 cell lines.

2.2.2. The S and ∆S Indices

We establish an algorithm for creating a single value score ∆S, which compares the
relative effect of a given compound between a test cell line and a reference cell line. This
is, in turn, generated from S, which incorporates both AC50 (potency) and the effective-
ness into a single value for a single compound in a single cell line. Equation (3) defines
effectiveness (EFF) from concentration–response curves and is calculated as the response
asymptote at the maximum dose concentration (ASMMax) minus the response asymptote
at the minimum dose concentration (ASMMin). These two values (EFF and AC50) were
incorporated into a single value S, reflecting both effectiveness and potency (Equation (4))
and, therefore, the overall response for a single compound in a single cell line. The relative
value ∆S assesses change in S from a reference cell line (Sref) to S from a test cell line (Stest);
that is to say (Sref − Stest) (Equation (5)).

EFF = ASMMax − ASMMin (3)

S = log
(

EFF
AC50

)
(4)

∆S = Sre f − Stest = log
(

EFF
AC50

)
re f

− log
(

EFF
AC50

)
test

= log

[( EFFre f

EFFtest

)(
AC50test

AC50re f

)]
(5)

The ∆S value can be envisioned as a theoretical log molar ratio where both the reference
and test are compared in a way that both reports complete responses and correct for partial
responses based on the input data. The test response is normalized, relative to the reference.
Note that the magnitude of S depends on the units of response and concentration, but ∆S
is a unitless quantity. This approach is analogous to that described by others and used in
receptor pharmacology [10,14,18].

The ∆S score was used to monitor the relative effects of compounds across cell lines
and monitor the effects of several compounds in a single cell line. When the compound
resulted in a higher ∆S in the reference cell line than in the test cell line, the test cell line
was considered resistant to the compound.

Drug resistant, ∆S =
(

Sre f − Stest

)
> 0 (6)

When the compound gave a lower ∆S in the reference cell line than in the test cell line,
the test cell line was considered sensitive to the compound.

Drug sensitive, ∆S =
(

Sre f − Stest

)
< 0 (7)

Since the tumor cell lines could have different drug sensitivities and harbor mutations
that impact different intracellular signaling pathways and processes, we ranked compounds
with ∆S for individual cell lines. Then a consolidated evaluation of cell lines was established
as the ∆S mean, which is a simple mean of the ∆S values for a compound across the PNF1
cell lines.

2.2.3. Prioritization

To further prioritize compounds for a more in-depth follow-up, we selected com-
pounds that generated concentration–response curves with an average R2 of at least 0.8
in all four test cell lines. R2 values from the reference cell line were similarly set to at
least 0.8, and compounds that did not meet this threshold were excluded from the pri-
oritized list, except for cases where there was no concentration–response. For the com-
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pounds meeting prioritization criteria, the ∆S mean and ∆S variance of the mean were
calculated. Compounds displaying drug resistance (∆S mean > 0.5) or drug sensitivity
(∆S mean < −0.5) were considered potentially biologically meaningful, as they would
represent approximately a 3-fold change on an arithmetic scale (Figure 1). An additional
threshold of 0.3 was set for the lower boundary of variance of the mean to ensure that the
mean values were at least non-inferior to a null response. Non-inferiority can be shown if
the difference between the two treatments does not cross a predefined inferiority margin.
A threshold of 0.3 would represent approximately a 2-fold difference in an arithmetic scale.
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Figure 1. The ∆S values for all tested compounds comparing ipNF95.6 against the reference cell
line ipnNF95.11C. The figure illustrates the order of ∆S values from low to high based on concentra-
tion/response curves, wherein the R2 values were ≥ 0.8. The ∆S thresholds 0.5 and −0.5 are marked
with a dotted line, and values beyond those were deemed to be biologically significant during the
subsequent candidate selection. Other PNF1 cell lines had similar distributions (not shown).

2.2.4. Reference Cell Line and Use of Alternate and Multiple Controls

For our analysis, we primarily used the NF1+/− cell line ipnNF95.11C as our reference
cell line and the NF1−/− plexiform neurofibroma cell lines (PNF1 cells) ipNF05.5-MX,
ipNF06.2A, ipNF95.11b C/T, and ipNF95.6 as test lines. The reference ipnNF95.11C cell line
is derived from the non-tumor peripheral nerve of an NF1 patient and was selected because
individuals with NF1 syndrome have a constitutional heterozygosity for NF1. Neurofibro-
mas often arise from cells with additional somatic mutations of NF1 [14]. Ideal therapies
would, therefore, target NF1−/− neurofibroma cells, but not background NF1+/− cells to
yield maximum anti-tumor specificity.

The dataset from Ferrer et. al. also included additional neurofibromin-competent cell
lines, specifically human foreskin fibroblasts [HFF] and the Schwann cell lines ipNF02.3 2λ,
ipNF02.8. ∆S calculations using these other control lines can be investigated via the DREA
web app.

One way to adapt ∆S to the comparison of multiple control or tumor cell lines involves
selecting one of the control cell lines as the reference and using that reference to evaluate
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the other control cell lines versus tumor cell lines. ∆S could be determined using HFF,
for example, as the reference for each control cell line and tumor cell line. The ∆S means
of the reference and tumor cell lines would be determined. Then, one can additionally
derive the change in the ∆S means of the reference lines against the tumor cell lines (∆∆S).
This approach can be used for a group of different control cell lines or similarly applied
to replicates of a single control cell line and multiple tumor cell lines. See supplement
Figure S1 on ∆∆S for an example.

∆∆S = ∆S meantumor − ∆S meancontrol (8)

3. Results
3.1. Drug Resistance and Sensitivity Focusing Primarily on a Single PNF1 Cell Line

To validate the algorithm, we initially evaluated the effects of selumetinib and other
MEK inhibitors on one test cell line. We assessed the ∆S drug sensitivity of ipNF05.5-MX
cells (NF1−/−) using ipnNF95.11C (NF1+/−) as the reference cell line. Using our ∆S
measure, we show that these cells are particularly sensitive to PD-0325901 (mirdametinib)
and trametinib, and to a lesser extent, selumetinib (Figure 2). In this case, ∆S scores appear
to have reasonable concordance with the concentration–response curves. These results
agree with clinical trial results, showing significant reductions in plexiform tumor volume
after treatment with mirdametinib or trametinib [19–22].

Since ∆S may be considered an alternative to AC50 and AUC-based methods, the
Pearson product-moment correlation was used to compare outcomes from ∆S, ∆pAC50,
and ∆pAUC (Figure 2B–D) from three MEK inhibitors (selumetinib, PD-0325901, and
trametinib). No strong correlation was found for any pair of endpoints (∆pAC50 and
∆pAUC, ∆pAC50 and ∆S, ∆pAUC and ∆S) across all plexiform neurofibroma cell lines. A
moderate correlation was found, however, when comparing ∆pAC50 and ∆S for individual
cell lines. This outcome could be largely anticipated as those endpoints measure different,
albeit interrelated, components of the concentration–response curve (also see Supplemental
Table S1). As an extension, no strong correlation was found when monitoring rank outcomes
(see Section 3.4—Comparing Ranking Methodologies) from the ∆S mean, ∆pAC50 mean,
and ∆pAUC mean, again suggesting that each endpoint is monitoring a different aspect of
the concentration–response curves.

We also note that multiple controls can be used in a single analysis by using Equation
(8). See Supplemental Figure S1 for an example.

Individual low-concentration responses higher than 100% of the DMSO control were
indicative of drug-stimulated growth, as found for ipNF05.5-MX treated with MEK in-
hibitors and doxorubicin (Figures 2 and 3). The underlying reason that some drugs display
asymptote maximum values above 100% of the DMSO control in Figures 2 and 3 (particu-
larly in ipNF05.5-MX) is not clearly understood. It is possible that these low-concentration
responses are due to an unknown experimental variability, or some inherent cell line-to-cell
line drug response variability. Supplement Figure S2 compares the histograms of the upper
asymptotes from all the plexiform cell lines, including ipNF05.5-MX. All the histograms
demonstrated a bell-shaped curve with broadly similar centers. This suggests that it is
unlikely that there was a gross plating error or focal cell number error that led to the
apparent stimulatory response. It is possible that there is some inherent cell line-to-cell line
cause of the low-dose drug response affecting ipNF05.5-MX, which might include hormesis
among other explanations.
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Figure 2. ((A) Top panel) Drug sensitivity of the plexiform neurofibroma cell lines to MEK inhibitors,
determined using ∆pAC50, ∆pAUC, and ∆S, wherein ipnNF95.11C was used as the reference cell
line. We compare ∆S to ∆pAC50 and ∆pAC50, which are frequently used indicators of relative
potency. Drug sensitivity responses are negative ∆S values. ((B–D) Middle panel) Strength of the
relationship of ∆S to ∆pAC50 and ∆pAUC was examined using the square of Pearson’s product-
moment correlation coefficient “r” for each pair of cell lines and with color scales applied. The
bright green color indicates a high correlation for the relationship, and yellow indicates a low
correlation. ((E–G) Bottom panel) Also see graphs that illustrate concentration–response curves for
three MEK inhibitors showing drug sensitivity: (E) selumetinib, (F) PD-0325901 (mirdametinib), and
(G) trametinib. Purple is used to indicate data from the reference non-tumor cell line, ipnNF9511.C.
Note how the concentration–response curves that are shifted below the respective reference lines
indicate a relative sensitivity for MEK inhibitors.

In contrast to compounds inducing sensitivity, ipNF05.5-MX cells showed resistance
to a panel of TOP2A inhibitors, compared to the response of the control ipnNF95.11C cell
line (Figure 3). Furthermore, drug resistance was found for 6/7 anthracyclines in ipNF05.5-
MX cells. These results were also observed in other PNF1 cell lines when examining the
concentration–response curves. Analyses of drugs against a single cell line may be useful
when developing precision medicine treatments for tumors that share genetic or proteomic
similarities [23].
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Figure 3. (A) Drug resistance of the ipNF05.5-MX cell line by ∆S for TOP2A inhibitors with
ipnNF95.11C as the reference cell line, compared to AC50 and ∆pAC50, which are frequently
used as potency indicators. Drug-resistant responses are positive ∆S values. Using the square
of Pearson’s product-moment correlation coefficient “r”, a strong correlation was found between
∆S and ∆pAC50 (0.9). (B) The graph illustrates the concentration–response curves for one of the
test compounds, doxorubicin, in all the test cell lines. The purple line is the reference, ipnNF95.11C.
(C) Concentration–response curves for the reference cell line ipnNF95.11C treated with different
TOP2A inhibitors; compared with curves on the right. (D) Concentration–response curves for the
plexiform neurofibroma cell line ipNF05.5-MX treated with different TOP2A inhibitors; compared
with curves on the left. Collectively, the table and graphs permit a comparison of different parameters
for one cell line and the effects of multiple drugs.

3.2. Drug Assessment by Signaling Pathway

In some cases, researchers may want to test whether a molecular signaling pathway as
a whole is a promising target for drug discovery. To evaluate drugs across PNF1 cell lines,
we used ∆S mean, a simple mean of the ∆S values for all four PNF1 cell lines. Table 2 shows
the ∆S mean for compounds known to affect the PI3K/AKT/MTOR signaling pathway.
The top hits in this pathway are GNE-490, triciribine phosphate, and WYE-354, which are
known inhibitors of PI3K, AKT, and MTOR, respectively.
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Table 2. ∆S drug sensitivity for compounds affecting the PI3K/AKT/mTOR pathway, sorted by the
∆S mean from all four PNF1 cell lines.

PI3KCA AKT1 MTOR

Compound ∆S Mean ∆S
Variance Compound ∆S Mean ∆S

Variance Compound ∆S Mean ∆S
Variance

GNE-490 −0.66 0.25 Triciribine-PO4 −1.51 0.81 WYE-354 −0.53 1.15

NIBR-17 −0.48 0.14 A-443654 −0.82 0.04 AZD-2014 −0.34 0.24

PIK-90 −0.45 0.01 AT-7867 −0.62 0.16 GDC-0980 −0.24 0.14

BKM-120 −0.33 0.47 AZD-5363 −0.36 0.10 KU-
0063794 −0.23 0.04

PF-
04691502 −0.31 0.20 GDC-0068 −0.34 0.12 AZD-8055 −0.22 0.38

GNE-493 −0.28 0.08 H-89 −0.26 0.12 WAY-600 −0.20 0.19

PIK-93 −0.28 0.23 MK-2206 −0.13 0.02 PP-242 −0.20 0.89

Additionally, PNF1 tumor cell lines as a group were largely resistant to compounds
that target non-RAS-binding partners of neurofibromin [24,25]. Concentration–response
curves for two compounds that impact such non-RAS binding partners are found in Figure 4.
These binding partners include tubulin [25], HTR6, the focal adhesion protein (FAK) [24,26],
and LIMK2 [27]. Here, NVP-TAE226, a FAK inhibitor, and BMS-3, a LIMK1/2 inhibitor,
each displayed drug-resistance in PNF1 cell lines.
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Figure 4. (A) ∆S scores for compounds targeting non-RAS proteins and reportedly binding or
associated with neurofibromin. PTK2 (focal adhesion protein, FAK), TUBB (tubulin), LIMK1 (LIM
Domain Kinase 1), and ALK (anaplastic lymphoma kinase). (B) Concentration–response curves for
NVP-TAE226, an inhibitor of FAK, and (C) demecolcine, an inhibitor of tubulin. Lines in purple
indicated data from the reference cell line ipnNF95.11C.
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Arranging the results by the ∆S mean score and signaling pathway target may be
useful in identifying promising drugs for follow-up (see Table 2). In this regard, AKT
inhibitors triciribine phosphate and A-443654 may be of downstream interest.

3.3. Discussion of Prioritized Compounds

In this section, we will discuss a subset of the drugs identified as ‘high-sensitivity’
or ‘resistance’. Analyses of other compounds are detailed in Figures 5 and 6 and can be
explored via the DREA web tool (see Supplemental Materials). Prioritized compounds
have an average R2 of at least 0.8 in all four test cell lines and display drug resistance
(∆S mean > 0.5) or drug sensitivity (∆S mean < −0.5), as described in the methods section.
For the current analysis, we compared the response of each cell line (NF1−/−) to that of
the ipnNF95.11C (NF1+/−) cell line, but responses can also be calculated using several
other control lines in DREA.
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Figure 5. PNF tumor cell lines displaying drug sensitivity to test compounds meeting the ∆S mean
threshold and variance criteria, where all cell lines had data. Red data bars indicate the ∆S for each
cell line with lower values (more sensitivity) to the left in each cell. ∆S mean values are arranged
from the most sensitive to the least sensitive. A red color indicates compound sensitivity, and blue
indicates compound resistance.
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Figure 6. PNF1 tumor cell lines displaying drug-resistance to test compounds meeting the ∆S mean
threshold and variance criteria, where all cell lines had data. Blue data bars indicate the ∆S for
each cell line with higher values (more resistance) to the right in each cell. Red bars indicate drug
sensitivity. ∆S mean values are arranged from the most resistant at the top to the least resistant at the
bottom. A red color indicates compound sensitivity, and blue indicates compound resistance.

3.3.1. MEK Inhibitors

Several MEK inhibitors have been used in clinical trials for NF1-related tumors, in-
cluding the FDA-approved drug selumetinib [7,8]. Our analysis identified trametinib as
a prioritized compound, to which PNF1 cell lines as a group were sensitive. Trametinib
shows promising results in clinical trials, significantly reducing the neurofibroma tumor
size [22,28]. While selumetinib was not prioritized by ∆S mean, some cell lines showed
sensitivity to it, suggesting it may be effective in specific tumors or cells therein. In vivo,
different neurofibromas, even in the same individual, can carry different somatic NF1
mutations [29]. This can affect both RAS and non-RAS cell responses. Alternatively, the
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differences could reflect a more robust compensatory increase in pMEK levels, indicating
the occurrence of reactivation of the MAPK pathway [25].

3.3.2. PI3K and AKT1 Inhibitors

The most pronounced drug sensitivity across PNF1 cell lines was to the class I PI3KCB
inhibitor GSK-2636771. GSK-2636771 is effective in PTEN-deficient tumors [30,31], pre-
sumably compensating for the upregulation of the PI3K/AKT pathway engendered by the
loss of PTEN inhibition. PTEN pathway alterations have been implicated in early NF1-
associated tumorigenesis [32], with marked PTEN reductions found in MPNSTs compared
to both neurofibromas and normal nerve tissue [33,34]. Another PI3K-targeted compound
identified in our sensitivity analysis was GNE-490, an experimental, pan-PI3K inhibitor
that would be expected to inhibit PI3KCB and PI3KCA [35]. GNE-490 is effective against
mouse xenograft models of breast and prostate cancers [35].

In contrast, drug resistance was found for two PI3K inhibitors (see Figure 6): PIK-294,
an inhibitor that is somewhat selective for the PI3K catalytic subunit p110δ [36], and to a
lesser extent, BYL-719, which is selective for the p110α subunit [37]. The result for BYL-719
is unexpected, given the sensitivity of the cells to GNE-490, another p110α inhibitor. This
may suggest differing structure–activity relationships [38] between these compounds and
GNE-490 [35].

Acting downstream of PI3K, cell lines were sensitive to three AKT1 inhibitors (tri-
ciribine phosphate, A-443654, and AT-7867). Triciribine phosphate is the only one of these
compounds that has reached the investigational stage of drug development [39]. The iden-
tification of AKT-targeting compounds is particularly interesting, given that in MPNSTs
neither AKT nor mTORC2 are required for tumor remission [40]. This may reflect important
differences in pathway utilization between MPNSTs and PNF1. No AKT-targeting drugs
were resistant in our analysis.

3.3.3. TOP2A and CHEK1 Gene Product Inhibitors

TOP2A, one of the top 20 genes upregulated in MPNST [41], encodes the enzyme
DNA topoisomerase II alpha, which controls and alters the topologic states of DNA during
transcription. Matching this observation, PNF1 tumor cell lines displayed drug-resistance
to anthracycline topoisomerase inhibitors, e.g., idarubicin, epirubicin, mitoxantrone, and
doxorubicin. Finding anthracycline resistance in PNF1 cell lines suggests that this resistance
develops early in the tumorigenesis cascade and may later contribute to the poor therapeutic
response of doxorubicin in unresectable MPNSTs [42].

DNA topoisomerase II alpha activates cell cycle progression from the G2 to the M
phase by inhibiting CHK1 phosphorylation [43] (CHK1, checkpoint kinase 1, is the protein
product of the CHEK1 gene), promoting the epithelial-to-mesenchymal transition and
cancer cell invasion. CHK1 is required for checkpoint-mediated cell cycle arrest and is
upregulated in MPNST, compared to neurofibromas [44]. We found that cells were sensitive
to SCH-900776, which is a selective CHK1 inhibitor. However, these cells were resistant
to the CHK1 inhibitor rabusertib. This observation also indicates that there may be an
important role in the structure–activity relationships of these compounds and their target.
In addition to CHEK1, neurofibromas frequently harbor alterations in PRKDC [45], which
may contribute to resistance.

3.3.4. Heat Shock Proteins

We found sensitivity to three drugs targeting HSP90AB1 (geldanamycin, alvespimycin
HCl, and retaspimycin). Given that the loss of neurofibromin activates HSF1 to promote car-
cinogenesis [46], a finding that plexiform neurofibroma cell lines are sensitive to HSP90AB1
inhibitors is not entirely unexpected, and the potential for heat shock protein inhibitors
as NF1 treatments has been suggested [47]. Combined treatment with mTOR and HSP90
inhibitors in vitro led to a decrease in LD50 in human and murine MPNST cell lines com-
pared to a human fibroblast cell line (IMR90), and in vivo, to an increase in survival in
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tumor-bearing Nf1/p53 mutant mice [48]. While geldanamycin is too toxic to be used
clinically, geldanamycin analogs and other HSP90 inhibitors may be good targets for the
downstream combination drug evaluation.

3.3.5. Serotonin Modulators

A subset of four prioritized drugs act via serotonin signaling. This is notable in that
several antidepressants have carcinostatic effects [49]. Two serotonin reuptake inhibitors
(the tricyclic antidepressant clomipramine and the serotonin-noradrenaline reuptake in-
hibitor duloxetine) were prioritized based on ∆S mean. Clomipramine interferes with
autophagic flux in HeLa cells and inhibits growth and “stemness” in lung cancer via its
metabolite desmethylclomipramine [50]. Duloxetine is a dual serotonin/norepinephrine
reuptake inhibitor that enhances tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL) apoptosis in tumor cells [51].

Two serotonin receptor antagonists (piboserod and sibutramine) were also prioritized.
Piboserod is a selective antagonist of the G-protein-coupled HTR4 serotonin receptor [52].
Sibutramine, in vivo, is a norepinephrine, serotonin, and dopamine reuptake inhibitor;
it has an affinity for several monoaminergic receptors, including HTR1. Both HTR1 and
HTR4 can, in some tumor types, act through both the MAPK-ERK pathway and the PI3K-
AKT-MTOR pathway [53].

3.3.6. Non-Prioritized Compounds of Interest

We prioritized drug responses that had an average R2 of at least 0.8 in all four
test cell lines and that displayed drug resistance (∆S mean > 0.5) or drug sensitivity
(∆S mean < −0.5). There were, however, drug responses in the original panel that repre-
sented missing values or responses in fewer than four cell lines. Some of the drugs with the
highest ∆S mean drug-sensitive scores were not included in the final lists due to a single
cell line with missing or inconsistent data. However, these compounds (secoisolariciresinol
and verteporfin, for example) may also be of interest in follow-up studies.

3.4. Comparing Ranking Methodologies

Figure 7 provides a relative ranking of test compounds anchored on ∆S means, with
comparisons to ∆pAC50 means and ∆pAUC means. While there were some similarities in
rankings, by and large, the rankings across compounds showed little concordance in paired
comparisons of ∆pAC50 means, ∆pAUC means, and ∆S means. This is similar to outcomes
found in Figure 2 for ∆pAC50, ∆pAUC, and ∆S. Since these endpoints are derived from
the same test system and concentration–response curves, the lack of concordance sug-
gests that ∆pAC50, ∆pAUC, and ∆S measure different aspects of concentration–response
curve information.

AC50 and ∆pAC50 are used to monitor changes in drug potency. They do not take into
account response effectiveness, which is a second dimension of a concentration–response
curve, and can be misleading when comparing drug responses that display full effectiveness
to those with partial effectiveness.

The AUC is based on segmenting the entire two-dimensional area underneath the
curve and then summing all the sub-values, thereby providing an aggregate measure
that considers potency and effectiveness. Differences in the AUC can imply changes in
drug sensitivity. Such aggregate values may not always be desirable and may complicate
the interpretation of ∆pAUC because, as pointed out by Guha et al. [13], the AUC for a
compound exhibiting a shift in potency but no shift in efficacy can be the same as (or similar
to) the AUC for a compound exhibiting a shift in efficacy but not a shift in potency.

The S indices (S and ∆S) incorporate effectiveness and potency and normalize activity
through the inclusion of EFF, which is the response effectiveness. This corrects for differ-
ences in full or partial drug sensitivity. ∆S can infer the sensitivity (or resistance) of a given
drug in a tumor cell line(s) (a proxy for tumors) relative to a reference cell line (a proxy
for normal tissue). Compounds with high sensitivity in plexiform neurofibroma cell lines
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based on the ∆S or ∆S mean would be good candidates for follow-on confirmatory and/or
in vivo studies. It is likely preferable to investigate treatments for non-malignant plexiform
neurofibromas, which have high tumor sensitivity relative to normal tissues, as a patient
may receive protracted drug treatment.
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4. Conclusions

In this study, AC50 and EFF were combined into a single value (S) to furnish system-
independent ratios (∆S and ∆S mean), used to assess the relative drug sensitivity and
drug resistance of a panel of compounds. The combination of EFF and AC50 into a single
value considers the heterogeneous effects of partial and full drug responses. Using our
algorithm, we recapitulate the identification of MEK inhibitors as potential therapeutics for
NF1-related tumors and identify other compounds to which PNF1 cell lines are particularly
sensitive or resistant. We suggest that the algorithms behind the Drug Response Evaluation
and Assessment (DREA) web tool (available at: https://nf.mocomakers.com) can also be
used in both primary cell cultures and other cell models, including induced pluripotent
stem cells (iPSCs) [54]. Given high-throughput data, the algorithm can be applied to any

https://nf.mocomakers.com
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cancer model as needed. For example, the used dataset [15] had other cell lines, such as
human foreskin fibroblasts (HFFs) that may be useful in other styles of analysis.

Compounds with partial or low efficacy can represent important modulators of bio-
logical activity and may be particularly difficult to recognize based on AC50 analysis only.
The use of ∆S may help to identify promising compounds that display partial effectiveness.
The use of ∆S mean outcomes from multiple cell lines, as used here, may help in addressing
drugs that generate partial responses in vitro and help address the known heterogeneity
found in tumor cells and tumor cell lines in general [55–57]. DREA can be used to assess
candidate compounds individually by the cell line, as in Figures 5 and 6. This allows an
analysis to reflect the molecular heterogeneity of different cell lines. In the development
of treatments, wide applicability of the treatment is vital. Therefore, we also assess the
∆S mean and variance values, reflecting responses of PNF1 cell lines as a group, with the
goal of assuring biological relevance and approaching response uniformity across PNF1
cell lines.

The current study focused on the use of single agent screens; however, it is possible
that the S indices could be useful to guide the examination of drug combinations using a
modification of the IDACombo method [58] and/or SynergyFinder 3.0 [59]. IDACombo is
based on independent drug action (IDA), where the therapeutic benefit is derived from
the single most effective drug in a drug combination. SynergyFinder 3.0 incorporates
a parametric synergy scoring model and multi-dimensional synergy of combinations
(MuSyC), which provides the users with the possibility to distinguish whether the identified
synergy is due to enhanced potency and/or efficacy of the single agents.

The use of S indices, particularly ∆S mean when data are available for multiple
cell lines with a common reference line, can be useful in the high-throughput screening
assessment of potentially therapeutical useful compounds for the treatment of NF1-related
tumors and other cancers. When prioritizing research for a rare disease such as NF1, a
cross-compound analysis such as this may be of utility for focusing on the promising
mechanisms of action, as well as investigational therapeutics. Our results provide both an
affirmation of already approved or developing therapeutics, but also serve as the basis for
further pre-clinical evaluations of high-scoring but sparsely explored compounds.

It is also essential to increase to robustness of our method to incorporate multiple
control cell lines within the analysis when possible. In this analysis, we used a limited
dataset of plexiform neurofibroma cell lines, precluding the use of multiple controls in the
current work. However, in fields like breast cancer, where there are more known control
lines, an ∆∆S analysis with multiple controls could likely be done.

It is envisioned that ∆S could be used as part of an overall orthogonal approach to drug
evaluation and selection. Orthogonal approaches combined with ∆S could help increase
the predictive value of in vitro concentration–response studies and, thereby, reduce the
cost and time constraints of follow-on in vivo studies and pre-clinical drug development.
With an orthogonal approach, ∆S may also be able to provide a different perspective, if not
clarity, on known issues related to the individual use of AC50, effectiveness, or AUC.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15245811/s1, Table S1: Simulated effect of changing EFF
and AC50 for a number of model compounds; Figure S1: ∆∆S outcomes from a series of compounds
targeting MEK, and targeting JAK2; Figure S2: Histogram of maximum (upper) asymptotes for
all tested compounds by target plexiform neurofibroma cell line. An exploratory Drug Response
Evaluation and Assessment (DREA) Web Tool was developed in the Python programming language
for our methods. This tool can be accessed at https://nf.mocomakers.com and it includes data
visualizations, our derived fields, as well as additional filters and cell lines for expanded investigation
potential. For more tips on using this tool, please see: https://github.com/MoCoMakers/nf_
streamlit/wiki.

https://www.mdpi.com/article/10.3390/cancers15245811/s1
https://www.mdpi.com/article/10.3390/cancers15245811/s1
https://nf.mocomakers.com
https://github.com/MoCoMakers/nf_streamlit/wiki
https://github.com/MoCoMakers/nf_streamlit/wiki


Cancers 2023, 15, 5811 16 of 19

Author Contributions: Conceptualization, P.O.Z., M.Z. and G.A.; methodology, P.O.Z. and G.A.;
software, M.Z. and G.A.; validation, P.O.Z., M.Z. and G.A.; formal analysis, G.A.; investigation,
P.O.Z., M.Z., G.A., N.D., H.D. and C.I.M.; resources, U.S.; data curation, G.A.; writing—original draft
preparation, P.O.Z. and D.B.; writing—review and editing, D.B.; visualization, D.B.; supervision, U.S.;
project administration, M.Z.; funding acquisition, M.Z. and U.S. All authors have read and agreed to
the published version of the manuscript.

Funding: The authors acknowledge the Children’s Tumor Foundation for financial support as part of
the incubation prize for the 2022 Hack4NF community challenge series. The CTF group is empower-
ing the growth of the NF research community and driving the industry toward finding a cure.

Informed Consent Statement: Not applicable.

Data Availability Statement: In the provided Supplementary Material. This tool and our algorithm
are available on https://github.com/MoCoMakers/nf_streamlit/ (accessed on 8 September 2023).
Quantitative High-Throughput Screening data are available for the MIPE4.0 library of small molecules
from https://www.synapse.org/#!Synapse:syn5522627 (accessed on 1 May 2023).

Acknowledgments: The authors acknowledge the MoCo Maker technology and scientific education
community, whose many members contributed to this project. DMV Petri Dish contributed their
membership and knowledge in bioinformatics and broader biological science topics. The HacDC
group contributed their technical expertise, which would amaze most scientists. All contributors to
Team MCH—winners of the 2022 Hack4NF competition—are strongly acknowledged. While there
are too many to list, we particularly thank Aastha Naik, Antony Haider, Varun Srinivasan, Chuba
Oraka, and Brikena Kay. Additionally, we strongly appreciate Richard Conroy and the Capital Area
Biospace community for helping us spearhead this project and for helping our group attend CTF’s
NF Conference in Phoenix 2023 to present early versions of our work.

Conflicts of Interest: Authors Paul O. Zamora, Nathan Dwarshuis, Hari Donthi and Matthew
Zamora were employed by the company MoCo Makers. Author Gabriel Altay was employed by
the company HacDC. Author Ulisses Santamaria was employed by the company DMV Petri Dish.
The remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

References
1. Ballester, R.; Marchuk, D.; Boguski, M.; Saulino, A.; Letcher, R.; Wigler, M.; Collins, F. The NF1 locus encodes a protein functionally

related to mammalian GAP and yeast IRA proteins. Cell 1990, 63, 851–859. [CrossRef] [PubMed]
2. Martin, G.A.; Viskochil, D.; Bollag, G.; McCabe, P.C.; Crosier, W.J.; Haubruck, H.; Conroy, L.; Clark, R.; O’Connell, P.; Cawthon,

R.M.; et al. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 1990, 63, 843–849.
[CrossRef] [PubMed]

3. Evans, D.G.; Baser, M.E.; McGaughran, J.; Sharif, S.; Howard, E.; Moran, A. Malignant peripheral nerve sheath tumours in
neurofibromatosis 1. J. Med. Genet. 2002, 39, 311–314. [CrossRef] [PubMed]

4. Uusitalo, E.; Leppavirta, J.; Koffert, A.; Suominen, S.; Vahtera, J.; Vahlberg, T.; Poyhonen, M.; Peltonen, J.; Peltonen, S. Incidence
and mortality of neurofibromatosis: A total population study in Finland. J. Investig. Dermatol. 2015, 135, 904–906. [CrossRef]
[PubMed]

5. Somatilaka, B.N.; Sadek, A.; McKay, R.M.; Le, L.Q. Malignant peripheral nerve sheath tumor: Models, biology, and translation.
Oncogene 2022, 41, 2405–2421. [CrossRef]

6. Dombi, E.; Baldwin, A.; Marcus, L.J.; Fisher, M.J.; Weiss, B.; Kim, A.; Whitcomb, P.; Martin, S.; Aschbacher-Smith, L.E.; Rizvi,
T.A.; et al. Activity of Selumetinib in Neurofibromatosis Type 1-Related Plexiform Neurofibromas. N. Engl. J. Med. 2016, 375,
2550–2560. [CrossRef] [PubMed]

7. Gross, A.M.; Dombi, E.; Wolters, P.L.; Baldwin, A.; Dufek, A.; Herrera, K.; Martin, S.; Derdak, J.; Heisey, K.S.; Whitcomb, P.M.; et al.
Long-Term Safety and Efficacy of Selumetinib in Children with Neurofibromatosis Type 1 on a Phase 1/2 Trial for Inoperable
Plexiform Neurofibromas. Neuro Oncol. 2023, 25, 1883–1894. [CrossRef] [PubMed]

8. Gross, A.M.; Wolters, P.L.; Dombi, E.; Baldwin, A.; Whitcomb, P.; Fisher, M.J.; Weiss, B.; Kim, A.; Bornhorst, M.; Shah, A.C.; et al.
Selumetinib in Children with Inoperable Plexiform Neurofibromas. N. Engl. J. Med. 2020, 382, 1430–1442. [CrossRef]

9. Inglese, J.; Auld, D.S.; Jadhav, A.; Johnson, R.L.; Simeonov, A.; Yasgar, A.; Zheng, W.; Austin, C.P. Quantitative high-throughput
screening: A titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc. Natl. Acad.
Sci. USA 2006, 103, 11473–11478. [CrossRef]

10. Kenakin, T. A Scale of Agonism and Allosteric Modulation for Assessment of Selectivity, Bias, and Receptor Mutation. Mol.
Pharmacol. 2017, 92, 414–424. [CrossRef]

https://github.com/MoCoMakers/nf_streamlit/
https://www.synapse.org/#!Synapse:syn5522627
https://doi.org/10.1016/0092-8674(90)90151-4
https://www.ncbi.nlm.nih.gov/pubmed/2121371
https://doi.org/10.1016/0092-8674(90)90150-D
https://www.ncbi.nlm.nih.gov/pubmed/2121370
https://doi.org/10.1136/jmg.39.5.311
https://www.ncbi.nlm.nih.gov/pubmed/12011145
https://doi.org/10.1038/jid.2014.465
https://www.ncbi.nlm.nih.gov/pubmed/25354145
https://doi.org/10.1038/s41388-022-02290-1
https://doi.org/10.1056/NEJMoa1605943
https://www.ncbi.nlm.nih.gov/pubmed/28029918
https://doi.org/10.1093/neuonc/noad086
https://www.ncbi.nlm.nih.gov/pubmed/37115514
https://doi.org/10.1056/NEJMoa1912735
https://doi.org/10.1073/pnas.0604348103
https://doi.org/10.1124/mol.117.108787


Cancers 2023, 15, 5811 17 of 19

11. Fallahi-Sichani, M.; Honarnejad, S.; Heiser, L.M.; Gray, J.W.; Sorger, P.K. Metrics other than potency reveal systematic variation in
responses to cancer drugs. Nat. Chem. Biol. 2013, 9, 708–714. [CrossRef] [PubMed]

12. Shockley, K.R.; Gupta, S.; Harris, S.F.; Lahiri, S.N.; Peddada, S.D. Quality Control of Quantitative High Throughput Screening
Data. Front. Genet. 2019, 10, 387. [CrossRef]

13. Guha, R.; Mathews Griner, L.A.; Keller, J.M.; Zhang, X.; Fitzgerald, D.; Antignani, A.; Pastan, I.; Thomas, C.J.; Ferrer, M. Ranking
Differential Drug Activities from Dose-Response Synthetic Lethality Screens. J. Biomol. Screen. 2016, 21, 942–955. [CrossRef]
[PubMed]

14. Winpenny, D.; Clark, M.; Cawkill, D. Biased ligand quantification in drug discovery: From theory to high throughput screening
to identify new biased mu opioid receptor agonists. Br. J. Pharmacol. 2016, 173, 1393–1403. [CrossRef] [PubMed]

15. Ferrer, M.; Gosline, S.J.C.; Stathis, M.; Zhang, X.; Guo, X.; Guha, R.; Ryman, D.A.; Wallace, M.R.; Kasch-Semenza, L.; Hao, H.; et al.
Pharmacological and genomic profiling of neurofibromatosis type 1 plexiform neurofibroma-derived schwann cells. Sci. Data
2018, 5, 180106. [CrossRef]

16. Li, H.; Chang, L.J.; Neubauer, D.R.; Muir, D.F.; Wallace, M.R. Immortalization of human normal and NF1 neurofibroma Schwann
cells. Lab. Investig. 2016, 96, 1105–1115. [CrossRef]

17. Mathews Griner, L.A.; Guha, R.; Shinn, P.; Young, R.M.; Keller, J.M.; Liu, D.; Goldlust, I.S.; Yasgar, A.; McKnight, C.; Boxer, M.B.;
et al. High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse
large B-cell lymphoma cells. Proc. Natl. Acad. Sci. USA 2014, 111, 2349–2354. [CrossRef]

18. Ehlert, F.J.; Griffin, M.T.; Sawyer, G.W.; Bailon, R. A simple method for estimation of agonist activity at receptor subtypes:
Comparison of native and cloned M3 muscarinic receptors in guinea pig ileum and transfected cells. J. Pharmacol. Exp. Ther. 1999,
289, 981–992.

19. Weiss, B.; Plotkin, S.; Widemann, B.; Tonsgard, J.; Blakeley, J.; Allen, J.; Schorry, E.; Korf, B.; Rosser, T.; Goldman, S.; et al. NFM-06.
NF106: Phase 2 Trial of The mek inhibitor PD-0325901 in adolescents and adults with NF1-related plexiform neurofibromas: An
nf clinical trials consortium study. Neuro Oncol. 2018, 20, i143. [CrossRef]

20. Weiss, B.D.; Wolters, P.L.; Plotkin, S.R.; Widemann, B.C.; Tonsgard, J.H.; Blakeley, J.; Allen, J.C.; Schorry, E.; Korf, B.; Robison, N.J.;
et al. NF106: A Neurofibromatosis Clinical Trials Consortium Phase II Trial of the MEK Inhibitor Mirdametinib (PD-0325901) in
Adolescents and Adults with NF1-Related Plexiform Neurofibromas. J. Clin. Oncol. 2021, 39, 797–806. [CrossRef]

21. Perreault, S.; Larouche, V.; Tabori, U.; Hawkin, C.; Lippe, S.; Ellezam, B.; Decarie, J.C.; Theoret, Y.; Metras, M.E.; Sultan, S.; et al. A
phase 2 study of trametinib for patients with pediatric glioma or plexiform neurofibroma with refractory tumor and activation of
the MAPK/ERK pathway: TRAM-01. BMC Cancer 2019, 19, 1250. [CrossRef] [PubMed]

22. McCowage, G.B.; Mueller, S.; Pratilas, C.A.; Hargrave, D.R.; Moertel, C.L.; Whitlock, J.; Fox, E.; Hingorani, P.; Russo, M.W.;
Dasgupta, K.; et al. Trametinib in pediatric patients with neurofibromatosis type 1 (NF-1)–associated plexiform neurofibroma: A
phase I/IIa study. J. Clin. Oncol. 2018, 36, 10504. [CrossRef]

23. Krzyszczyk, P.; Acevedo, A.; Davidoff, E.J.; Timmins, L.M.; Marrero-Berrios, I.; Patel, M.; White, C.; Lowe, C.; Sherba, J.J.;
Hartmanshenn, C.; et al. The growing role of precision and personalized medicine for cancer treatment. Technol. Singap. World Sci.
2018, 6, 79–100. [CrossRef] [PubMed]

24. Bergoug, M.; Doudeau, M.; Godin, F.; Mosrin, C.; Vallee, B.; Benedetti, H. Neurofibromin Structure, Functions and Regulation.
Cells 2020, 9, 2365. [CrossRef] [PubMed]

25. Baez-Flores, J.; Rodriguez-Martin, M.; Lacal, J. The therapeutic potential of neurofibromin signaling pathways and binding
partners. Commun. Biol. 2023, 6, 436. [CrossRef]

26. Kweh, F.; Zheng, M.; Kurenova, E.; Wallace, M.; Golubovskaya, V.; Cance, W.G. Neurofibromin physically interacts with the
N-terminal domain of focal adhesion kinase. Mol. Carcinog. 2009, 48, 1005–1017. [CrossRef]

27. Vallee, B.; Doudeau, M.; Godin, F.; Gombault, A.; Tchalikian, A.; de Tauzia, M.L.; Benedetti, H. Nf1 RasGAP inhibition of LIMK2
mediates a new cross-talk between Ras and Rho pathways. PLoS ONE 2012, 7, e47283. [CrossRef]

28. Wang, D.; Ge, L.; Guo, Z.; Li, Y.; Zhu, B.; Wang, W.; Wei, C.; Li, Q.; Wang, Z. Efficacy and Safety of Trametinib in Neurofibromatosis
Type 1-Associated Plexiform Neurofibroma and Low-Grade Glioma: A Systematic Review and Meta-Analysis. Pharmaceuticals
2022, 15, 956. [CrossRef]

29. Thomas, L.; Spurlock, G.; Eudall, C.; Thomas, N.S.; Mort, M.; Hamby, S.E.; Chuzhanova, N.; Brems, H.; Legius, E.; Cooper, D.N.;
et al. Exploring the somatic NF1 mutational spectrum associated with NF1 cutaneous neurofibromas. Eur. J. Hum. Genet. 2012, 20,
411–419. [CrossRef]

30. Sarker, D.; Dawson, N.A.; Aparicio, A.M.; Dorff, T.B.; Pantuck, A.J.; Vaishampayan, U.N.; Henson, L.; Vasist, L.; Roy-Ghanta,
S.; Gorczyca, M.; et al. A Phase I, Open-Label, Dose-Finding Study of GSK2636771, a PI3Kbeta Inhibitor, Administered with
Enzalutamide in Patients with Metastatic Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2021, 27, 5248–5257. [CrossRef]

31. Mateo, J.; Ganji, G.; Lemech, C.; Burris, H.A.; Han, S.W.; Swales, K.; Decordova, S.; DeYoung, M.P.; Smith, D.A.; Kalyana-
Sundaram, S.; et al. A First-Time-in-Human Study of GSK2636771, a Phosphoinositide 3 Kinase Beta-Selective Inhibitor, in
Patients with Advanced Solid Tumors. Clin. Cancer Res. 2017, 23, 5981–5992. [CrossRef]

32. Gregorian, C.; Nakashima, J.; Dry, S.M.; Nghiemphu, P.L.; Smith, K.B.; Ao, Y.; Dang, J.; Lawson, G.; Mellinghoff, I.K.; Mischel, P.S.;
et al. PTEN dosage is essential for neurofibroma development and malignant transformation. Proc. Natl. Acad. Sci. USA 2009,
106, 19479–19484. [CrossRef] [PubMed]

https://doi.org/10.1038/nchembio.1337
https://www.ncbi.nlm.nih.gov/pubmed/24013279
https://doi.org/10.3389/fgene.2019.00387
https://doi.org/10.1177/1087057116644890
https://www.ncbi.nlm.nih.gov/pubmed/27112173
https://doi.org/10.1111/bph.13441
https://www.ncbi.nlm.nih.gov/pubmed/26791140
https://doi.org/10.1038/sdata.2018.106
https://doi.org/10.1038/labinvest.2016.88
https://doi.org/10.1073/pnas.1311846111
https://doi.org/10.1093/neuonc/noy059.514
https://doi.org/10.1200/JCO.20.02220
https://doi.org/10.1186/s12885-019-6442-2
https://www.ncbi.nlm.nih.gov/pubmed/31881853
https://doi.org/10.1200/JCO.2018.36.15_suppl.10504
https://doi.org/10.1142/S2339547818300020
https://www.ncbi.nlm.nih.gov/pubmed/30713991
https://doi.org/10.3390/cells9112365
https://www.ncbi.nlm.nih.gov/pubmed/33121128
https://doi.org/10.1038/s42003-023-04815-0
https://doi.org/10.1002/mc.20552
https://doi.org/10.1371/journal.pone.0047283
https://doi.org/10.3390/ph15080956
https://doi.org/10.1038/ejhg.2011.207
https://doi.org/10.1158/1078-0432.CCR-21-1115
https://doi.org/10.1158/1078-0432.CCR-17-0725
https://doi.org/10.1073/pnas.0910398106
https://www.ncbi.nlm.nih.gov/pubmed/19846776


Cancers 2023, 15, 5811 18 of 19

33. Bradtmoller, M.; Hartmann, C.; Zietsch, J.; Jaschke, S.; Mautner, V.F.; Kurtz, A.; Park, S.J.; Baier, M.; Harder, A.; Reuss, D.; et al.
Impaired Pten expression in human malignant peripheral nerve sheath tumours. PLoS ONE 2012, 7, e47595. [CrossRef] [PubMed]

34. Pemov, A.; Li, H.; Presley, W.; Wallace, M.R.; Miller, D.T. Genetics of human malignant peripheral nerve sheath tumors. Neurooncol.
Adv. 2020, 2, i50–i61. [CrossRef]

35. Sutherlin, D.P.; Sampath, D.; Berry, M.; Castanedo, G.; Chang, Z.; Chuckowree, I.; Dotson, J.; Folkes, A.; Friedman, L.; Goldsmith,
R.; et al. Discovery of (thienopyrimidin-2-yl)aminopyrimidines as potent, selective, and orally available pan-PI3-kinase and dual
pan-PI3-kinase/mTOR inhibitors for the treatment of cancer. J. Med. Chem. 2010, 53, 1086–1097. [CrossRef] [PubMed]

36. Setti, A.; Kumar, M.J.; Babu, K.R.; Rasagna, A.; Prasanna, M.G.; Devi, T.A.; Pawar, S.C. Potency and pharmacokinetics of broad
spectrum and isoform-specific p110gamma and delta inhibitors in cancers. J. Recept. Signal Transduct. Res. 2016, 36, 26–36.
[CrossRef]

37. Wong, C.H.; Ma, B.B.; Cheong, H.T.; Hui, C.W.; Hui, E.P.; Chan, A.T. Preclinical evaluation of PI3K inhibitor BYL719 as a single
agent and its synergism in combination with cisplatin or MEK inhibitor in nasopharyngeal carcinoma (NPC). Am. J. Cancer Res.
2015, 5, 1496–1506.

38. Guha, R. On exploring structure-activity relationships. Methods Mol. Biol. 2013, 993, 81–94. [CrossRef]
39. Garrett, C.R.; Coppola, D.; Wenham, R.M.; Cubitt, C.L.; Neuger, A.M.; Frost, T.J.; Lush, R.M.; Sullivan, D.M.; Cheng, J.Q.; Sebti,

S.M. Phase I pharmacokinetic and pharmacodynamic study of triciribine phosphate monohydrate, a small-molecule inhibitor of
AKT phosphorylation, in adult subjects with solid tumors containing activated AKT. Investig. New Drugs 2011, 29, 1381–1389.
[CrossRef]

40. Malone, C.F.; Fromm, J.A.; Maertens, O.; DeRaedt, T.; Ingraham, R.; Cichowski, K. Defining key signaling nodes and therapeutic
biomarkers in NF1-mutant cancers. Cancer Discov. 2014, 4, 1062–1073. [CrossRef]

41. Martinez, M.; Sorzano, C.O.S.; Pascual-Montano, A.; Carazo, J.M. Gene signature associated with benign neurofibroma transfor-
mation to malignant peripheral nerve sheath tumors. PLoS ONE 2017, 12, e0178316. [CrossRef] [PubMed]

42. Prudner, B.C.; Ball, T.; Rathore, R.; Hirbe, A.C. Diagnosis and management of malignant peripheral nerve sheath tumors: Current
practice and future perspectives. Neurooncol. Adv. 2020, 2, i40–i49. [CrossRef]

43. Wang, T.; Lu, J.; Wang, R.; Cao, W.; Xu, J. TOP2A promotes proliferation and metastasis of hepatocellular carcinoma regulated by
miR-144-3p. J. Cancer 2022, 13, 589–601. [CrossRef] [PubMed]

44. Stricker, T.P.; Henriksen, K.J.; Tonsgard, J.H.; Montag, A.G.; Krausz, T.N.; Pytel, P. Expression profiling of 519 kinase genes in
matched malignant peripheral nerve sheath tumor/plexiform neurofibroma samples is discriminatory and identifies mitotic
regulators BUB1B, PBK and NEK2 as overexpressed with transformation. Mod. Pathol. 2013, 26, 930–943. [CrossRef] [PubMed]

45. Consortium, A.P.G. AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov.
2017, 7, 818–831. [CrossRef]

46. Dai, C.; Santagata, S.; Tang, Z.; Shi, J.; Cao, J.; Kwon, H.; Bronson, R.T.; Whitesell, L.; Lindquist, S. Loss of tumor suppressor NF1
activates HSF1 to promote carcinogenesis. J. Clin. Investig. 2012, 122, 3742–3754. [CrossRef]

47. Vitte, J.; Giovannini, M. Potential of HSP90 Inhibitors to Treat Neurofibromatosis-Related Tumors. In Heat Shock Protein-Based
Therapies; Asea, A.A.A., Almasoud, N.N., Krishnan, S., Kaur, P., Eds.; Springer: Cham, Switzerland, 2015. [CrossRef]

48. De Raedt, T.; Walton, Z.; Yecies, J.L.; Li, D.; Chen, Y.; Malone, C.F.; Maertens, O.; Jeong, S.M.; Bronson, R.T.; Lebleu, V.; et al.
Exploiting cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors. Cancer Cell 2011, 20, 400–413.
[CrossRef]

49. Zheng, Y.; Chang, X.; Huang, Y.; He, D. The application of antidepressant drugs in cancer treatment. Biomed. Pharmacother. 2023,
157, 113985. [CrossRef]

50. Rossi, M.; Munarriz, E.R.; Bartesaghi, S.; Milanese, M.; Dinsdale, D.; Guerra-Martin, M.A.; Bampton, E.T.; Glynn, P.; Bonanno, G.;
Knight, R.A.; et al. Desmethylclomipramine induces the accumulation of autophagy markers by blocking autophagic flux. J. Cell
Sci. 2009, 122, 3330–3339. [CrossRef]

51. Zinnah, K.M.A.; Park, S.Y. Duloxetine Enhances TRAIL-mediated Apoptosis via AMPK-mediated Inhibition of Autophagy Flux
in Lung Cancer Cells. Anticancer. Res. 2019, 39, 6621–6633. [CrossRef]

52. Sangkuhl, K.; Klein, T.E.; Altman, R.B. Selective serotonin reuptake inhibitors pathway. Pharmacogenet. Genom. 2009, 19, 907–909.
[CrossRef] [PubMed]

53. Karmakar, S.; Lal, G. Role of serotonin receptor signaling in cancer cells and anti-tumor immunity. Theranostics 2021, 11, 5296–5312.
[CrossRef] [PubMed]

54. Mazuelas, H.; Magallon-Lorenz, M.; Fernandez-Rodriguez, J.; Uriarte-Arrazola, I.; Richaud-Patin, Y.; Terribas, E.; Villanueva,
A.; Castellanos, E.; Blanco, I.; Raya, A.; et al. Modeling iPSC-derived human neurofibroma-like tumors in mice uncovers the
heterogeneity of Schwann cells within plexiform neurofibromas. Cell Rep. 2022, 38, 110385. [CrossRef] [PubMed]

55. Watson, M.A.; Perry, A.; Tihan, T.; Prayson, R.A.; Guha, A.; Bridge, J.; Ferner, R.; Gutmann, D.H. Gene expression profiling reveals
unique molecular subtypes of Neurofibromatosis Type I-associated and sporadic malignant peripheral nerve sheath tumors.
Brain Pathol. 2004, 14, 297–303. [CrossRef]

56. Thomas, L.; Mautner, V.F.; Cooper, D.N.; Upadhyaya, M. Molecular heterogeneity in malignant peripheral nerve sheath tumors
associated with neurofibromatosis type 1. Hum. Genom. 2012, 6, 18. [CrossRef]

57. Tyner, J.W.; Haderk, F.; Kumaraswamy, A.; Baughn, L.B.; Van Ness, B.; Liu, S.; Marathe, H.; Alumkal, J.J.; Bivona, T.G.; Chan, K.S.;
et al. Understanding Drug Sensitivity and Tackling Resistance in Cancer. Cancer Res. 2022, 82, 1448–1460. [CrossRef]

https://doi.org/10.1371/journal.pone.0047595
https://www.ncbi.nlm.nih.gov/pubmed/23139750
https://doi.org/10.1093/noajnl/vdz049
https://doi.org/10.1021/jm901284w
https://www.ncbi.nlm.nih.gov/pubmed/20050669
https://doi.org/10.3109/10799893.2014.1003658
https://doi.org/10.1007/978-1-62703-342-8_6
https://doi.org/10.1007/s10637-010-9479-2
https://doi.org/10.1158/2159-8290.CD-14-0159
https://doi.org/10.1371/journal.pone.0178316
https://www.ncbi.nlm.nih.gov/pubmed/28542306
https://doi.org/10.1093/noajnl/vdz047
https://doi.org/10.7150/jca.64017
https://www.ncbi.nlm.nih.gov/pubmed/35069905
https://doi.org/10.1038/modpathol.2012.242
https://www.ncbi.nlm.nih.gov/pubmed/23370767
https://doi.org/10.1158/2159-8290.CD-17-0151
https://doi.org/10.1172/JCI62727
https://doi.org/10.1007/978-3-319-17211-8
https://doi.org/10.1016/j.ccr.2011.08.014
https://doi.org/10.1016/j.biopha.2022.113985
https://doi.org/10.1242/jcs.048181
https://doi.org/10.21873/anticanres.13877
https://doi.org/10.1097/FPC.0b013e32833132cb
https://www.ncbi.nlm.nih.gov/pubmed/19741567
https://doi.org/10.7150/thno.55986
https://www.ncbi.nlm.nih.gov/pubmed/33859748
https://doi.org/10.1016/j.celrep.2022.110385
https://www.ncbi.nlm.nih.gov/pubmed/35172160
https://doi.org/10.1111/j.1750-3639.2004.tb00067.x
https://doi.org/10.1186/1479-7364-6-18
https://doi.org/10.1158/0008-5472.CAN-21-3695


Cancers 2023, 15, 5811 19 of 19

58. Ling, A.; Huang, R.S. Computationally predicting clinical drug combination efficacy with cancer cell line screens and independent
drug action. Nat. Commun. 2020, 11, 5848. [CrossRef]

59. Ianevski, A.; Giri, A.K.; Aittokallio, T. SynergyFinder 3.0: An interactive analysis and consensus interpretation of multi-drug
synergies across multiple samples. Nucleic Acids Res. 2022, 50, W739–W743. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/s41467-020-19563-6
https://doi.org/10.1093/nar/gkac382

	Introduction 
	Materials and Methods 
	Cell Lines, Data Access, and Extraction 
	Data Analysis 
	AC50 (Potency) and Relative Potency 
	The S and S Indices 
	Prioritization 
	Reference Cell Line and Use of Alternate and Multiple Controls 


	Results 
	Drug Resistance and Sensitivity Focusing Primarily on a Single PNF1 Cell Line 
	Drug Assessment by Signaling Pathway 
	Discussion of Prioritized Compounds 
	MEK Inhibitors 
	PI3K and AKT1 Inhibitors 
	TOP2A and CHEK1 Gene Product Inhibitors 
	Heat Shock Proteins 
	Serotonin Modulators 
	Non-Prioritized Compounds of Interest 

	Comparing Ranking Methodologies 

	Conclusions 
	References

