The Role of t(11;14) in Tailoring Treatment Decisions in Multiple Myeloma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Genetic Complexity of Cytogenetic Aberrations and the Role of t(11;14) in MM
2.1. Cytogenetic Abnormalities and Their Classification in MM
2.2. t(11;14) in MM: Biology and Clinical Findings
2.3. Dynamic Role of t(11;14) in Shaping the MM Prognosis Landscape in the Era of Novel Agents
3. Involvement of the BCL2 Family in MM
4. Therapeutic Implications and Tailoring a Treatment Decision in Patients with MM with t(11;14)
4.1. BCL2 Inhibitors
4.1.1. Venetoclax
4.1.2. AT-101
4.1.3. APG-2575, BGB-11417 and AZD-0466
4.2. MCL1 Inhibitors
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kyle, R.A.; Rajkumar, S.V. Multiple myeloma. N. Engl. J. Med. 2004, 351, 1860–1873. [Google Scholar] [CrossRef]
- Fonseca, R.; Bergsagel, P.L.; Drach, J.; Shaughnessy, J.; Gutierrez, N.; Stewart, A.K.; Morgan, G.; Van Ness, B.; Chesi, M.; Minvielle, S.; et al. International Myeloma Working Group molecular classification of multiple myeloma: Spotlight review. Leukemia 2009, 23, 2210–2221. [Google Scholar] [CrossRef]
- Giannakoulas, N.; Ntanasis-Stathopoulos, I.; Terpos, E. The Role of Marrow Microenvironment in the Growth and Development of Malignant Plasma Cells in Multiple Myeloma. Int. J. Mol. Sci. 2021, 22, 4462. [Google Scholar] [CrossRef]
- Ntanasis-Stathopoulos, I.; Gavriatopoulou, M.; Terpos, E.; Dimopoulos, M.A. Real-World Treatment of Patients with Relapsed/Refractory Myeloma. Clin. Lymphoma Myeloma Leuk. 2021, 21, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Cowan, A.J.; Green, D.J.; Kwok, M.; Lee, S.; Coffey, D.G.; Holmberg, L.A.; Tuazon, S.; Gopal, A.K.; Libby, E.N. Diagnosis and Management of Multiple Myeloma: A Review. JAMA 2022, 327, 464–477. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Otero, P.; Paiva, B.; San-Miguel, J.F. Roadmap to cure multiple myeloma. Cancer Treat. Rev. 2021, 100, 102284. [Google Scholar] [CrossRef] [PubMed]
- Terpos, E.; Ntanasis-Stathopoulos, I.; Roussou, M.; Kanellias, N.; Fotiou, D.; Migkou, M.; Eleutherakis-Papaiakovou, E.; Gavriatopoulou, M.; Kastritis, E.; Dimopoulos, M.A. Long PFS of more than 7 years is achieved in 9% of myeloma patients in the era of conventional chemotherapy and of first-generation novel anti-myeloma agents: A single-center experience over 20-year period. Ann. Hematol. 2020, 99, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.K.; Rajkumar, S.V. The multiple myelomas—Current concepts in cytogenetic classification and therapy. Nat. Rev. Clin. Oncol. 2018, 15, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, S.V. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. Am. J. Hematol. 2020, 95, 548–567. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Richardson, P.; Caltagirone, S.; Lahuerta, J.J.; Facon, T.; et al. Revised International Staging System for Multiple Myeloma: A Report from International Myeloma Working Group. J. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef]
- D’Agostino, M.; Cairns, D.A.; Lahuerta, J.J.; Wester, R.; Bertsch, U.; Waage, A.; Zamagni, E.; Mateos, M.V.; Dall’Olio, D.; van de Donk, N.; et al. Second Revision of the International Staging System (R2-ISS) for Overall Survival in Multiple Myeloma: A European Myeloma Network (EMN) Report Within the HARMONY Project. J. Clin. Oncol. 2022, 40, 3406–3418. [Google Scholar] [CrossRef] [PubMed]
- Kastritis, E.; Migkou, M.; Dalampira, D.; Gavriatopoulou, M.; Fotiou, D.; Roussou, M.; Kanellias, N.; Ntanasis-Stathopoulos, I.; Malandrakis, P.; Theodorakakou, F.; et al. Chromosome 1q21 aberrations identify ultra high-risk myeloma with prognostic and clinical implications. Am. J. Hematol. 2022, 97, 1142–1149. [Google Scholar] [CrossRef]
- Abdallah, N.; Rajkumar, S.V.; Greipp, P.; Kapoor, P.; Gertz, M.A.; Dispenzieri, A.; Baughn, L.B.; Lacy, M.Q.; Hayman, S.R.; Buadi, F.K.; et al. Cytogenetic abnormalities in multiple myeloma: Association with disease characteristics and treatment response. Blood Cancer J. 2020, 10, 82. [Google Scholar] [CrossRef]
- Kastritis, E.; Roussou, M.; Eleutherakis-Papaiakovou, E.; Gavriatopoulou, M.; Migkou, M.; Gika, D.; Fotiou, D.; Kanellias, N.; Ziogas, D.C.; Ntanasis-Stathopoulos, I.; et al. Early Relapse after Autologous Transplant Is Associated with Very Poor Survival and Identifies an Ultra-High-Risk Group of Patients with Myeloma. Clin. Lymphoma Myeloma Leuk. 2020, 20, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Lu, G.; Saliba, R.M.; Bashir, Q.; Hosing, C.; Popat, U.; Shah, N.; Parmar, S.; Dinh, Y.; Ahmed, S.; et al. Impact of t(11;14)(q13;q32) on the outcome of autologous hematopoietic cell transplantation in multiple myeloma. Biol. Blood Marrow Transpl. 2013, 19, 1227–1232. [Google Scholar] [CrossRef] [PubMed]
- Lakshman, A.; Alhaj Moustafa, M.; Rajkumar, S.V.; Dispenzieri, A.; Gertz, M.A.; Buadi, F.K.; Lacy, M.Q.; Dingli, D.; Fonder, A.L.; Hayman, S.R.; et al. Natural history of t(11;14) multiple myeloma. Leukemia 2018, 32, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Paner, A.; Patel, P.; Dhakal, B. The evolving role of translocation t(11;14) in the biology, prognosis, and management of multiple myeloma. Blood Rev. 2020, 41, 100643. [Google Scholar] [CrossRef]
- Touzeau, C.; Dousset, C.; Le Gouill, S.; Sampath, D.; Leverson, J.D.; Souers, A.J.; Maiga, S.; Bene, M.C.; Moreau, P.; Pellat-Deceunynck, C.; et al. The Bcl-2 specific BH3 mimetic ABT-199: A promising targeted therapy for t(11;14) multiple myeloma. Leukemia 2014, 28, 210–212. [Google Scholar] [CrossRef]
- Bergsagel, P.L.; Kuehl, W.M. Molecular pathogenesis and a consequent classification of multiple myeloma. J. Clin. Oncol. 2005, 23, 6333–6338. [Google Scholar] [CrossRef]
- Fonseca, R.; Blood, E.A.; Oken, M.M.; Kyle, R.A.; Dewald, G.W.; Bailey, R.J.; Van Wier, S.A.; Henderson, K.J.; Hoyer, J.D.; Harrington, D.; et al. Myeloma and the t(11;14)(q13;q32); evidence for a biologically defined unique subset of patients. Blood 2002, 99, 3735–3741. [Google Scholar] [CrossRef]
- Moreau, P.; Facon, T.; Leleu, X.; Morineau, N.; Huyghe, P.; Harousseau, J.L.; Bataille, R.; Avet-Loiseau, H. Recurrent 14q32 translocations determine the prognosis of multiple myeloma, especially in patients receiving intensive chemotherapy. Blood 2002, 100, 1579–1583. [Google Scholar] [CrossRef]
- Gertz, M.A.; Lacy, M.Q.; Dispenzieri, A.; Greipp, P.R.; Litzow, M.R.; Henderson, K.J.; Van Wier, S.A.; Ahmann, G.J.; Fonseca, R. Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32), and -17p13 in myeloma patients treated with high-dose therapy. Blood 2005, 106, 2837–2840. [Google Scholar] [CrossRef]
- Joseph, N.S.; Kaufman, J.L.; Dhodapkar, M.V.; Hofmeister, C.C.; Almaula, D.K.; Heffner, L.T.; Gupta, V.A.; Boise, L.H.; Lonial, S.; Nooka, A.K. Long-Term Follow-Up Results of Lenalidomide, Bortezomib, and Dexamethasone Induction Therapy and Risk-Adapted Maintenance Approach in Newly Diagnosed Multiple Myeloma. J. Clin. Oncol. 2020, 38, 1928–1937. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, R.; Lentzsch, S. Prognostic impact of t(11;14) in multiple myeloma: Black and white or shades of gray? Cancer 2021, 127, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Bal, S.; Giri, S.; Godby, K.N.; Costa, L.J. Impact of t(11;14) as a sole and concomitant abnormality on outcomes in multiple myeloma. Br. J. Haematol. 2021, 195, e113–e116. [Google Scholar] [CrossRef]
- Gasparetto, C.; Jagannath, S.; Rifkin, R.M.; Durie, B.G.M.; Narang, M.; Terebelo, H.R.; Toomey, K.; Hardin, J.W.; Wagner, L.; Ailawadhi, S.; et al. Effect of t (11;14) Abnormality on Outcomes of Patients with Newly Diagnosed Multiple Myeloma in the Connect MM Registry. Clin. Lymphoma Myeloma Leuk. 2022, 22, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Leiba, M.; Duek, A.; Amariglio, N.; Avigdor, A.; Benyamini, N.; Hardan, I.; Zilbershats, I.; Ganzel, C.; Shevetz, O.; Novikov, I.; et al. Translocation t(11;14) in newly diagnosed patients with multiple myeloma: Is it always favorable? Genes Chromosomes Cancer 2016, 55, 710–718. [Google Scholar] [CrossRef] [PubMed]
- Bal, S.; Kumar, S.K.; Fonseca, R.; Gay, F.; Hungria, V.T.; Dogan, A.; Costa, L.J. Multiple myeloma with t(11;14): Unique biology and evolving landscape. Am. J. Cancer Res. 2022, 12, 2950–2965. [Google Scholar]
- Gonsalves, W.I.; Parmar, H. Ageism in the t(11;14) Subtype of Multiple Myeloma. Acta Haematol. 2021, 144, 6–7. [Google Scholar] [CrossRef]
- Avet-Loiseau, H.; Facon, T.; Grosbois, B.; Magrangeas, F.; Rapp, M.J.; Harousseau, J.L.; Minvielle, S.; Bataille, R. Oncogenesis of multiple myeloma: 14q32 and 13q chromosomal abnormalities are not randomly distributed, but correlate with natural history, immunological features, and clinical presentation. Blood 2002, 99, 2185–2191. [Google Scholar] [CrossRef]
- Hayman, S.R.; Bailey, R.J.; Jalal, S.M.; Ahmann, G.J.; Dispenzieri, A.; Gertz, M.A.; Greipp, P.R.; Kyle, R.A.; Lacy, M.Q.; Rajkumar, S.V.; et al. Translocations involving the immunoglobulin heavy-chain locus are possible early genetic events in patients with primary systemic amyloidosis. Blood 2001, 98, 2266–2268. [Google Scholar] [CrossRef] [PubMed]
- Bazarbachi, A.H.; Avet-Loiseau, H.; Szalat, R.; Samur, A.A.; Hunter, Z.; Shammas, M.; Corre, J.; Fulciniti, M.; Anderson, K.C.; Parmigiani, G.; et al. IgM-MM is predominantly a pre-germinal center disorder and has a distinct genomic and transcriptomic signature from WM. Blood 2021, 138, 1980–1985. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, R.; Hoyer, J.D.; Aguayo, P.; Jalal, S.M.; Ahmann, G.J.; Rajkumar, S.V.; Witzig, T.E.; Lacy, M.Q.; Dispenzieri, A.; Gertz, M.A.; et al. Clinical significance of the translocation (11;14)(q13;q32) in multiple myeloma. Leuk. Lymphoma 1999, 35, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Tricot, G.; Barlogie, B.; Jagannath, S.; Bracy, D.; Mattox, S.; Vesole, D.H.; Naucke, S.; Sawyer, J.R. Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities. Blood 1995, 86, 4250–4256. [Google Scholar] [CrossRef]
- Dispenzieri, A.; Rajkumar, S.V.; Gertz, M.A.; Fonseca, R.; Lacy, M.Q.; Bergsagel, P.L.; Kyle, R.A.; Greipp, P.R.; Witzig, T.E.; Reeder, C.B.; et al. Treatment of newly diagnosed multiple myeloma based on Mayo Stratification of Myeloma and Risk-adapted Therapy (mSMART): Consensus statement. Mayo Clin. Proc. 2007, 82, 323–341. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.K.; Mikhael, J.R.; Buadi, F.K.; Dingli, D.; Dispenzieri, A.; Fonseca, R.; Gertz, M.A.; Greipp, P.R.; Hayman, S.R.; Kyle, R.A.; et al. Management of newly diagnosed symptomatic multiple myeloma: Updated Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus guidelines. Mayo Clin. Proc. 2009, 84, 1095–1110. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.K.; Rajkumar, S.V.; Dispenzieri, A.; Lacy, M.Q.; Hayman, S.R.; Buadi, F.K.; Zeldenrust, S.R.; Dingli, D.; Russell, S.J.; Lust, J.A.; et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008, 111, 2516–2520. [Google Scholar] [CrossRef]
- Kumar, S.K.; Dispenzieri, A.; Lacy, M.Q.; Gertz, M.A.; Buadi, F.K.; Pandey, S.; Kapoor, P.; Dingli, D.; Hayman, S.R.; Leung, N.; et al. Continued improvement in survival in multiple myeloma: Changes in early mortality and outcomes in older patients. Leukemia 2014, 28, 1122–1128. [Google Scholar] [CrossRef]
- Gavriatopoulou, M.; Malandrakis, P.; Ntanasis-Stathopoulos, I.; Dimopoulos, M.A. Nonselective proteasome inhibitors in multiple myeloma and future perspectives. Expert. Opin. Pharmacother. 2022, 23, 335–347. [Google Scholar] [CrossRef]
- Kaufman, G.P.; Gertz, M.A.; Dispenzieri, A.; Lacy, M.Q.; Buadi, F.K.; Dingli, D.; Hayman, S.R.; Kapoor, P.; Lust, J.A.; Russell, S.; et al. Impact of cytogenetic classification on outcomes following early high-dose therapy in multiple myeloma. Leukemia 2016, 30, 633–639. [Google Scholar] [CrossRef]
- Bochtler, T.; Hegenbart, U.; Kunz, C.; Granzow, M.; Benner, A.; Seckinger, A.; Kimmich, C.; Goldschmidt, H.; Ho, A.D.; Hose, D.; et al. Translocation t(11;14) is associated with adverse outcome in patients with newly diagnosed AL amyloidosis when treated with bortezomib-based regimens. J. Clin. Oncol. 2015, 33, 1371–1378. [Google Scholar] [CrossRef]
- Fotiou, D.; Theodorakakou, F.; Gavriatopoulou, M.; Migkou, M.; Malandrakis, P.; Ntanasis-Stathopoulos, I.; Kanellias, N.; Eleutherakis Papaiakovou, E.; Terpos, E.; Papanikolaou, A.; et al. Prognostic impact of translocation t(11;14) and of other cytogenetic abnormalities in patients with AL amyloidosis in the era of contemporary therapies. Eur. J. Haematol. 2023, 111, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Sonneveld, P.; Avet-Loiseau, H.; Lonial, S.; Usmani, S.; Siegel, D.; Anderson, K.C.; Chng, W.J.; Moreau, P.; Attal, M.; Kyle, R.A.; et al. Treatment of multiple myeloma with high-risk cytogenetics: A consensus of the International Myeloma Working Group. Blood 2016, 127, 2955–2962. [Google Scholar] [CrossRef] [PubMed]
- Boyd, K.D.; Ross, F.M.; Chiecchio, L.; Dagrada, G.P.; Konn, Z.J.; Tapper, W.J.; Walker, B.A.; Wardell, C.P.; Gregory, W.M.; Szubert, A.J.; et al. A novel prognostic model in myeloma based on co-segregating adverse FISH lesions and the ISS: Analysis of patients treated in the MRC Myeloma IX trial. Leukemia 2012, 26, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Diamantidis, M.D.; Papadaki, S.; Hatjiharissi, E. Exploring the current molecular landscape and management of multiple myeloma patients with the t(11;14) translocation. Front. Oncol. 2022, 12, 934008. [Google Scholar] [CrossRef] [PubMed]
- Touzeau, C.; Maciag, P.; Amiot, M.; Moreau, P. Targeting Bcl-2 for the treatment of multiple myeloma. Leukemia 2018, 32, 1899–1907. [Google Scholar] [CrossRef] [PubMed]
- Brunelle, J.K.; Letai, A. Control of mitochondrial apoptosis by the Bcl-2 family. J. Cell Sci. 2009, 122, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Letai, A.; Bassik, M.C.; Walensky, L.D.; Sorcinelli, M.D.; Weiler, S.; Korsmeyer, S.J. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002, 2, 183–192. [Google Scholar] [CrossRef]
- Bodet, L.; Gomez-Bougie, P.; Touzeau, C.; Dousset, C.; Descamps, G.; Maiga, S.; Avet-Loiseau, H.; Bataille, R.; Moreau, P.; Le Gouill, S.; et al. ABT-737 is highly effective against molecular subgroups of multiple myeloma. Blood 2011, 118, 3901–3910. [Google Scholar] [CrossRef]
- Chakraborty, R.; Bhutani, D.; Lentzsch, S. How do we manage t(11;14) plasma cell disorders with venetoclax? Br. J. Haematol. 2022, 199, 31–39. [Google Scholar] [CrossRef]
- Punnoose, E.A.; Leverson, J.D.; Peale, F.; Boghaert, E.R.; Belmont, L.D.; Tan, N.; Young, A.; Mitten, M.; Ingalla, E.; Darbonne, W.C.; et al. Expression Profile of BCL-2, BCL-XL, and MCL-1 Predicts Pharmacological Response to the BCL-2 Selective Antagonist Venetoclax in Multiple Myeloma Models. Mol. Cancer Ther. 2016, 15, 1132–1144. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.N.; Khong, T.; Segal, D.; Yao, Y.; Riffkin, C.D.; Garnier, J.M.; Khaw, S.L.; Lessene, G.; Spencer, A.; Herold, M.J.; et al. Hierarchy for targeting prosurvival BCL2 family proteins in multiple myeloma: Pivotal role of MCL1. Blood 2016, 128, 1834–1844. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kaufman, J.L.; Gasparetto, C.; Mikhael, J.; Vij, R.; Pegourie, B.; Benboubker, L.; Facon, T.; Amiot, M.; Moreau, P.; et al. Efficacy of venetoclax as targeted therapy for relapsed/refractory t(11;14) multiple myeloma. Blood 2017, 130, 2401–2409. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, J.L.; Quach, H.; Baz, R.C.; Vangsted, A.J.; Ho, S.-J.; Harrison, S.J.; Plesner, T.; Moreau, P.; Gibbs, S.D.; Medvedova, E.; et al. An Updated Safety and Efficacy Analysis of Venetoclax Plus Daratumumab and Dexamethasone in an Expansion Cohort of a Phase 1/2 Study of Patients with t(11;14) Relapsed/Refractory Multiple Myeloma. Blood 2022, 140, 7261–7263. [Google Scholar] [CrossRef]
- Costa, L.J.; Davies, F.E.; Monohan, G.P.; Kovacsovics, T.; Burwick, N.; Jakubowiak, A.; Kaufman, J.L.; Hong, W.J.; Dail, M.; Salem, A.H.; et al. Phase 2 study of venetoclax plus carfilzomib and dexamethasone in patients with relapsed/refractory multiple myeloma. Blood Adv. 2021, 5, 3748–3759. [Google Scholar] [CrossRef] [PubMed]
- Gasparetto, C.; Bowles, K.M.; Abdallah, A.O.; Morris, L.; Mander, G.; Coppola, S.; Wang, J.; Ross, J.A.; Bueno, O.F.; Arriola, E.; et al. A Phase II Study of Venetoclax in Combination with Pomalidomide and Dexamethasone in Relapsed/Refractory Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2021, 21, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Mateos, M.-V.; Moreau, P.; Dimopoulos, M.A.; Hong, W.-J.; Cooper, S.; Yu, Y.; Jalaluddin, M.; Ross, J.A.; Karve, S.; Coppola, S.; et al. A phase III, randomized, multicenter, open-label study of venetoclax or pomalidomide in combination with dexamethasone in patients with t(11;14)-positive relapsed/refractory multiple myeloma. J. Clin. Oncol. 2020, 38, TPS8554. [Google Scholar] [CrossRef]
- Mateos, M.V. Results From the Randomized, Open-Label Phase 3 CANOVA Study of Venetoclax-Dexamethasone Versus Pomalidomide-Dexamethasone in Patients with t(11;14)-Positive Relapsed/Refractory Multiple Myeloma. In Proceedings of the 20th International Myeloma Workshop 2023, Abstract OA-52, Athens, Greece, 27 September–31December 2023. [Google Scholar]
- Moreau, P.; Chanan-Khan, A.; Roberts, A.W.; Agarwal, A.B.; Facon, T.; Kumar, S.; Touzeau, C.; Punnoose, E.A.; Cordero, J.; Munasinghe, W.; et al. Promising efficacy and acceptable safety of venetoclax plus bortezomib and dexamethasone in relapsed/refractory MM. Blood 2017, 130, 2392–2400. [Google Scholar] [CrossRef]
- Kumar, S.K.; Harrison, S.J.; Cavo, M.; de la Rubia, J.; Popat, R.; Gasparetto, C.; Hungria, V.; Salwender, H.; Suzuki, K.; Kim, I.; et al. Venetoclax or placebo in combination with bortezomib and dexamethasone in patients with relapsed or refractory multiple myeloma (BELLINI): A randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2020, 21, 1630–1642. [Google Scholar] [CrossRef]
- Kumar, S.; Harrison, S.J.; Cavo, M.; de la Rubia, J.; Popat, R.; Gasparetto, C.J.; Hungria, V.; Salwender, H.; Suzuki, K.; Kim, I.; et al. Final Overall Survival Results from BELLINI, a Phase 3 Study of Venetoclax or Placebo in Combination with Bortezomib and Dexamethasone in Relapsed/Refractory Multiple Myeloma. Blood 2021, 138, 84. [Google Scholar] [CrossRef]
- Qin, J.Z.; Ziffra, J.; Stennett, L.; Bodner, B.; Bonish, B.K.; Chaturvedi, V.; Bennett, F.; Pollock, P.M.; Trent, J.M.; Hendrix, M.J.; et al. Proteasome inhibitors trigger NOXA-mediated apoptosis in melanoma and myeloma cells. Cancer Res. 2005, 65, 6282–6293. [Google Scholar] [CrossRef]
- Kaufman, J.; Gasparetto, C.; Kovacsovics, T.; Mikala, G.; Masszi, T.; Rosinol, L.; Janowski, W.; Oriol, A.; Onishi, M.; Liu, Z.; et al. OA-29 First results from the randomized portion of a phase 2 study of venetoclax plus carfilzomib-dexamethasone vs carfilzomib-dexamethasone in patients with t(11;14) relapsed/refractory multiple myeloma. Clin. Lymphoma Myeloma Leuk. 2023, 23, S18. [Google Scholar] [CrossRef]
- Ntanasis-Stathopoulos, I.; Gavriatopoulou, M.; Terpos, E. Antibody therapies for multiple myeloma. Expert. Opin. Biol. Ther. 2020, 20, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Bahlis, N.J.; Baz, R.; Harrison, S.J.; Quach, H.; Ho, S.J.; Vangsted, A.J.; Plesner, T.; Moreau, P.; Gibbs, S.D.; Coppola, S.; et al. Phase I Study of Venetoclax Plus Daratumumab and Dexamethasone, with or without Bortezomib, in Patients with Relapsed or Refractory Multiple Myeloma with and without t(11;14). J. Clin. Oncol. 2021, 39, 3602–3612. [Google Scholar] [CrossRef]
- Maples, K.T.; Nooka, A.K.; Gupta, V.; Joseph, N.S.; Heffner, L.T.; Hofmeister, C.; Dhodapkar, M.; Matulis, S.M.; Lonial, S.; Boise, L.H.; et al. Natural history of multiple myeloma patients refractory to venetoclax: A single center experience. Am. J. Hematol. 2021, 96, E68–E71. [Google Scholar] [CrossRef]
- Gupta, V.A.; Barwick, B.G.; Matulis, S.M.; Shirasaki, R.; Jaye, D.L.; Keats, J.J.; Oberlton, B.; Joseph, N.S.; Hofmeister, C.C.; Heffner, L.T.; et al. Venetoclax sensitivity in multiple myeloma is associated with B-cell gene expression. Blood 2021, 137, 3604–3615. [Google Scholar] [CrossRef] [PubMed]
- Kitadate, A.; Terao, T.; Narita, K.; Ikeda, S.; Takahashi, Y.; Tsushima, T.; Miura, D.; Takeuchi, M.; Takahashi, N.; Matsue, K. Multiple myeloma with t(11;14)-associated immature phenotype has lower CD38 expression and higher BCL2 dependence. Cancer Sci. 2021, 112, 3645–3654. [Google Scholar] [CrossRef]
- Dai, Y.; Li, X.-P.; Hu, F.; Li, J.; Liang, Y.; Wang, D.-W.; Xia, Z.; Chen, X. Identification of a Novel Drug Sensitivity Biomarker Neuregulin-2 for Venetoclax in Non-t(11;14) Multiple Myeloma. Blood 2021, 138, 459. [Google Scholar] [CrossRef]
- Neri, P.; Maity, R.; Alberge, J.-B.; Sinha, S.; Donovan, J.; Kong, M.; Hasan, F.; Jaffer, A.; Boise, L.H.; Bahlis, N. Mutations and Copy Number Gains of the BCL2 Family Members Mediate Resistance to Venetoclax in Multiple Myeloma (MM) Patients. Blood 2019, 134, 572. [Google Scholar] [CrossRef]
- Matulis, S.M.; Gupta, V.A.; Neri, P.; Bahlis, N.J.; Maciag, P.; Leverson, J.D.; Heffner, L.T., Jr.; Lonial, S.; Nooka, A.K.; Kaufman, J.L.; et al. Functional profiling of venetoclax sensitivity can predict clinical response in multiple myeloma. Leukemia 2019, 33, 1291–1296. [Google Scholar] [CrossRef]
- Kline, M.P.; Rajkumar, S.V.; Timm, M.M.; Kimlinger, T.K.; Haug, J.L.; Lust, J.A.; Greipp, P.R.; Kumar, S. R-(-)-gossypol (AT-101) activates programmed cell death in multiple myeloma cells. Exp. Hematol. 2008, 36, 568–576. [Google Scholar] [CrossRef]
- Paulus, A.; Chitta, K.; Akhtar, S.; Personett, D.; Miller, K.C.; Thompson, K.J.; Carr, J.; Kumar, S.; Roy, V.; Ansell, S.M.; et al. AT-101 downregulates BCL2 and MCL1 and potentiates the cytotoxic effects of lenalidomide and dexamethasone in preclinical models of multiple myeloma and Waldenstrom macroglobulinaemia. Br. J. Haematol. 2014, 164, 352–365. [Google Scholar] [CrossRef]
- Ailawadhi, S.; Chanan-Khan, A.A.A.; Chen, Z.; Huang, B.; Konopleva, M.; Brander, D.M.; Rizzieri, D.; Lasica, M.; Tam, C.S.L.; Yannakou, C.K.; et al. First-in-human study of lisaftoclax (APG-2575), a novel BCL-2 inhibitor (BCL-2i), in patients (pts) with relapsed/refractory (R/R) CLL and other hematologic malignancies (HMs). J. Clin. Oncol. 2021, 39, 7502. [Google Scholar] [CrossRef]
- Tam, C.S.; Verner, E.; Lasica, M.; Arbelaez, A.; Browett, P.J.; Soumerai, J.D.; Hilger, J.; Fang, Y.; Huang, J.; Simpson, D.; et al. Preliminary Safety and Efficacy Data from Patients (Pts) with Relapsed/Refractory (R/R) B-Cell Malignancies Treated with the Novel B-Cell Lymphoma 2 (BCL2) Inhibitor BGB-11417 in Monotherapy or in Combination with Zanubrutinib. Blood 2021, 138, 1419. [Google Scholar] [CrossRef]
- Quach, H.; Rajagopal, R.; Spencer, A.; Low, M.; Kazandjian, D.; Crescenzo, R.; Du, C.; Patel, S.; Mundra, V.; Cheng, H.; et al. Preliminary Safety of a Bcl-2 Inhibitor, Bgb-11417, in Patients with Relapsed/Refractory Multiple Myeloma Harboring t(11,14): A Non-Randomized, Open-Label, Phase 1b/2 Study. Blood 2022, 140, 7269–7271. [Google Scholar] [CrossRef]
- Oltersdorf, T.; Elmore, S.W.; Shoemaker, A.R.; Armstrong, R.C.; Augeri, D.J.; Belli, B.A.; Bruncko, M.; Deckwerth, T.L.; Dinges, J.; Hajduk, P.J.; et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005, 435, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.W.; Seymour, J.F.; Brown, J.R.; Wierda, W.G.; Kipps, T.J.; Khaw, S.L.; Carney, D.A.; He, S.Z.; Huang, D.C.; Xiong, H.; et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: Results of a phase I study of navitoclax in patients with relapsed or refractory disease. J. Clin. Oncol. 2012, 30, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Patterson, C.M.; Balachander, S.B.; Grant, I.; Pop-Damkov, P.; Kelly, B.; McCoull, W.; Parker, J.; Giannis, M.; Hill, K.J.; Gibbons, F.D.; et al. Design and optimisation of dendrimer-conjugated Bcl-2/x(L) inhibitor, AZD0466, with improved therapeutic index for cancer therapy. Commun. Biol. 2021, 4, 112. [Google Scholar] [CrossRef] [PubMed]
- Wuilleme-Toumi, S.; Robillard, N.; Gomez, P.; Moreau, P.; Le Gouill, S.; Avet-Loiseau, H.; Harousseau, J.L.; Amiot, M.; Bataille, R. Mcl-1 is overexpressed in multiple myeloma and associated with relapse and shorter survival. Leukemia 2005, 19, 1248–1252. [Google Scholar] [CrossRef]
- Dousset, C.; Maiga, S.; Gomez-Bougie, P.; Le Coq, J.; Touzeau, C.; Moreau, P.; Le Gouill, S.; Chiron, D.; Pellat-Deceunynck, C.; Moreau-Aubry, A.; et al. BH3 profiling as a tool to identify acquired resistance to venetoclax in multiple myeloma. Br. J. Haematol. 2017, 179, 684–688. [Google Scholar] [CrossRef]
- Caenepeel, S.; Brown, S.P.; Belmontes, B.; Moody, G.; Keegan, K.S.; Chui, D.; Whittington, D.A.; Huang, X.; Poppe, L.; Cheng, A.C.; et al. AMG 176, a Selective MCL1 Inhibitor, Is Effective in Hematologic Cancer Models Alone and in Combination with Established Therapies. Cancer Discov. 2018, 8, 1582–1597. [Google Scholar] [CrossRef] [PubMed]
- Spencer, A.; Rosenberg, A.S.; Jakubowiak, A.; Raje, N.; Chatterjee, M.; Trudel, S.; Bahlis, N.J.; Siegel, D.S.; Wilop, S.; Harrison, S.J.; et al. A Phase 1, First-in-Human Study of AMG 176, a Selective MCL-1 Inhibitor, in Patients with Relapsed or Refractory Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2019, 19, e53–e54. [Google Scholar] [CrossRef]
- Wong, K.Y.; Chim, C.S. Venetoclax, bortezomib and S63845, an MCL1 inhibitor, in multiple myeloma. J. Pharm. Pharmacol. 2020, 72, 728–737. [Google Scholar] [CrossRef] [PubMed]
Reference | Study Details | Regimens | Cytogenetics | Outcomes |
---|---|---|---|---|
Saskia et al. [15] 2013 | Retrospective, n = 993 | ASCT Induction with 66–78% novel agents | t(11;14): 27 pts HR: 97 pts Standard risk: 869 pts | t(11;14) vs. HR vs. standard risk Three-year PFS: 27% vs. 13% vs. 47% |
Lashman et al. [16] 2018 | Retrospective, n = 1095 | ASCT in 58–61% with a novel agent-based induction of 90% | t(11;14): 365 pts Non-t(11;14): 132 pts No translocation: 598 pts | t(11;14) vs. non-t(11;14) vs. standard PFS 23 vs. 19 vs. 28 months OS 74 vs. 50 vs. 104 months ORR 71% vs. 82% vs. 85% |
Joseph et al. [23,24] 2020 | Retrospective, n = 1000 NDMM | Induction with RVD followed by ASCT | t(11;14): 14% | t(11;14) vs. standard-risk non-t(11;14) 50% vs. 76% PFS 51 vs. 75 months (p < 0.001) |
Bal et al. [25] 2021 | Retrospective, n = 5581 | IMiDs plus PI IMiDs only PI only ASCT | t(11;14) with no HR abnormalities: 589 pts Non-t(11;14) with no HR abnormalities: 2909 pts | t(11;14) vs. non-t(11;14) OS 72 vs. 77 months (p = 0.19) PFS 36 months vs. 40 months (p = 0.028) |
Gasparetto et al. [26] 2022 | Prospective observational cohort study, n = 1574 | Induction therapy with 80% novel agents followed by ASCT | t(11;14): 378 pts Non-t(11;14): 1196 pts | t(11;14) vs. non-t(11;14) OS 74 months vs. 77 months (p = 0.942) PFS 35 months vs. 36 months (p = 0.768) |
Reference | Phase | Regimens | Study Cohort | Median Prior Therapy Lines/Refractoriness | Cytogenetics | ORR | Common Grade 3–4 Toxicity |
---|---|---|---|---|---|---|---|
Kumar et al. [53] 2017 | Phase I, non-randomized | Venetoclax (300, 600, 900, 1200 mg/d), MTD nr. | 66 pts RRMM | 5 lines Len: 77% Borte: 70% Pom: 53% ASCT: 76% | t(11;14): 46% High risk: 27% | 21%, 40% in t(11;14) | Thrombocytopenia: 26% Neutropenia: 21% Anemia: 14% Pneumonia: 8% |
Kaufman et al. [54] 2020 | Phase I/II, non-randomized | Venetoclax 800 mg/d Dexa 40 mg/wk | RRMM 20 pts phase I, 31 pts phase II | 3 lines phase I 5 lines phase II | t(11;14) | 60% phase I 48% phase II | Phase I: Thrombocytopenia: 10% Neutropenia: 10% Anemia: 10% |
Costa et al. [55] 2021 | Phase II non-randomized | Venetoclax MTD nr Carfilzomib 70 mg/m2 Dexa | RRMM 49 pts | 1–3 lines | t(11;14) | 92% | No novel safety concerns |
Gasparetto et al. [56] 2021 | Phase II, non-randomized | Venetoclax 400 mg/d Pomalidomide 4 mg/d Dexa 40 mg/wk | RRMM 8 pts | Len: 75% Borte: not reported | t(11;14): 38% High risk: 63% | 63%, 67% in t(11;14) | Neutropenia: 75% Leukopenia: 12% |
Mateos et al. [57,58] 2020, 2023 | Phase II, randomized, CANOVA trial | Venetoclax400 mg/d Dexa: 40 mg/wk vs. Pomalidomide Dexa 40 mg/wk | RRMM 254 pts | ≥2 lines Len-refractory 100% | t(11;14): 100% High risk: 8% | 62% VenDex vs. 35% PomDex (p < 0.001) | VenDex: any grade infection (61%), diarrhea (41%), lymphopenia (24%), nausea (22%) |
Moreau et al. [59] 2017 | Phase Ib, non-randomized | Venetoclax: 100–1200 mg/d Borte: 1.3 mg/m2 Dexa: 20 mg | RRMM 66 pts | 3 lines Borte: 39% Len: 53% ASCT: 59% | t(11;14): 14% | 67% | Thrombocytopenia: 29% Neutropenia: 14% Anemia: 15% Pneumonia: 8% |
Kumar et al. [60,61] 2020, 2021 | Phase III, randomized BELLINI trial | Venetoclax 800 mg/d Borte: 1.3 mg/m2 Dexa: 20 mg vs. Borte: 1.3 mg/m2 Dexa: 20 mg | RRMM Venetoclax: 194 pts Placebo: 97 pts | 1–3 lines | t(11;14): 15% | Venetoclax: 82% Placebo: 68% | Suspended due to safety Death: Venetoclax: 35% Placebo 29% Fatal infection: Venetoclax: 9 pts Placebo: 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kleber, M.; Ntanasis-Stathopoulos, I.; Terpos, E. The Role of t(11;14) in Tailoring Treatment Decisions in Multiple Myeloma. Cancers 2023, 15, 5829. https://doi.org/10.3390/cancers15245829
Kleber M, Ntanasis-Stathopoulos I, Terpos E. The Role of t(11;14) in Tailoring Treatment Decisions in Multiple Myeloma. Cancers. 2023; 15(24):5829. https://doi.org/10.3390/cancers15245829
Chicago/Turabian StyleKleber, Martina, Ioannis Ntanasis-Stathopoulos, and Evangelos Terpos. 2023. "The Role of t(11;14) in Tailoring Treatment Decisions in Multiple Myeloma" Cancers 15, no. 24: 5829. https://doi.org/10.3390/cancers15245829
APA StyleKleber, M., Ntanasis-Stathopoulos, I., & Terpos, E. (2023). The Role of t(11;14) in Tailoring Treatment Decisions in Multiple Myeloma. Cancers, 15(24), 5829. https://doi.org/10.3390/cancers15245829