Comparison of Multiparametric MRI, [68Ga]Ga-PSMA-11 PET-CT, and Clinical Nomograms for Primary T and N Staging of Intermediate-to-High-Risk Prostate Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Setting and Patients
2.2. Clinical Staging and Risk Classification
2.3. Multiparametric MRI Protocol
2.4. [68Ga]Ga-PSMA-11 PET-CT Protocol
2.5. Surgical Procedure
2.6. Pathologic Examination
2.7. Statistical Analysis
3. Results
3.1. Characteristics of Patients
3.2. ROC Curve Analyses
3.3. Decision Curve Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADC | Apparent diffusion coefficient maps |
AUC | area under the curve |
CT | computed tomography |
DCE | dynamic contrast-enhanced sequences |
DRE | digital rectal examination |
DWI | diffusion-weighted imaging |
EPE | extra-prostatic extension |
ISUP | International Society of Urological Pathology |
LNI | lymph node involvement |
mpMRI | multiparametric magnetic resonance imaging |
MRI | magnetic resonance imaging |
MSKCC | Memorial Sloan Kettering Cancer Center |
PET-CT | Positron emission tomography-computed tomography |
PIRADS | Prostate Imaging Reporting and Data System |
PSA | prostate-specific antigen |
PSMA | Prostate Specific Membrane Antigen |
ROC | Receiver operating characteristic |
SVI | seminal vesicle involvement |
References
- Mottet, N.; van den Bergh, R.C.N.; Briers, E.; van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer—2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2021, 79, 243–262. [Google Scholar] [CrossRef] [PubMed]
- Walz, J.; Epstein, J.I.; Ganzer, R.; Graefen, M.; Guazzoni, G.; Kaouk, J.; Menon, M.; Mottrie, A.; Myers, R.P.; Patel, V.; et al. A Critical Analysis of the Current Knowledge of Surgical Anatomy of the Prostate Related to Optimisation of Cancer Control and Preservation of Continence and Erection in Candidates for Radical Prostatectomy: An Update. Eur. Urol. 2016, 70, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Gandaglia, G.; Martini, A.; Ploussard, G.; Fossati, N.; Stabile, A.; De Visschere, P.; Borgmann, H.; Heidegger, I.; Steinkohl, F.; Kretschmer, A.; et al. External Validation of the 2019 Briganti Nomogram for the Identification of Prostate Cancer Patients Who Should Be Considered for an Extended Pelvic Lymph Node Dissection. Eur. Urol. 2020, 78, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Milonas, D.; Venclovas, Z.; Muilwijk, T.; Jievaltas, M.; Joniau, S. External validation of Memorial Sloan Kettering Cancer Center nomogram and prediction of optimal candidate for lymph node dissection in clinically localized prostate cancer. Cent. Eur. J. Urol. 2020, 73, 19–25. [Google Scholar] [CrossRef]
- Eifler, J.B.; Feng, Z.; Lin, B.M.; Partin, M.T.; Humphreys, E.B.; Han, M.; Epstein, J.I.; Walsh, P.C.; Trock, B.J.; Partin, A.W. An updated prostate cancer staging nomogram (Partin tables) based on cases from 2006 to 2011. BJU Int. 2013, 111, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Zhen, L.; Liu, X.; Yegang, C.; Yongjiao, Y.; Yawei, X.; Jiaqi, K.; Xianhao, W.; Yuxuan, S.; Rui, H.; Wei, Z.; et al. Accuracy of multiparametric magnetic resonance imaging for diagnosing prostate Cancer: A systematic review and meta-analysis. BMC Cancer 2019, 19, 1244. [Google Scholar] [CrossRef]
- Alessi, S.; Pricolo, P.; Summers, P.; Femia, M.; Tagliabue, E.; Renne, G.; Bianchi, R.; Musi, G.; De Cobelli, O.; Jereczek-Fossa, B.A.; et al. Low PI-RADS assessment category excludes extraprostatic extension (≥pT3a) of prostate cancer: A histology-validated study including 301 operated patients. Eur. Radiol. 2019, 29, 5478–5487. [Google Scholar] [CrossRef]
- Bloch, B.N.; Genega, E.M.; Costa, D.N.; Pedrosa, I.; Smith, M.P.; Kressel, H.Y.; Ngo, L.; Sanda, M.G.; DeWolf, W.C.; Rofsky, N.M. Prediction of prostate cancer extracapsular extension with high spatial resolution dynamic contrast-enhanced 3-T MRI. Eur. Radiol. 2012, 22, 2201–2210. [Google Scholar] [CrossRef]
- Boesen, L.; Chabanova, E.; Løgager, V.; Balslev, I.; Mikines, K.; Thomsen, H.S. Prostate cancer staging with extracapsular extension risk scoring using multiparametric MRI: A correlation with histopathology. Eur. Radiol. 2015, 25, 1776–1785. [Google Scholar] [CrossRef]
- Caglic, I.; Brzan, P.P.; Warren, A.Y.; Bratt, O.; Shah, N.; Barrett, T. Defining the incremental value of 3D T2-weighted imaging in the assessment of prostate cancer extracapsular extension. Eur. Radiol. 2019, 29, 5488–5497. [Google Scholar] [CrossRef]
- Gupta, R.T.; Faridi, K.F.; Singh, A.A.; Passoni, N.M.; Garcia-Reyes, K.; Madden, J.F.; Polascik, T.J. Comparing 3-T multiparametric MRI and the Partin tables to predict organ-confined prostate cancer after radical prostatectomy. Urol. Oncol. Semin. Orig. Investig. 2014, 32, 1292–1299. [Google Scholar] [CrossRef] [PubMed]
- Grivas, N.; Hinnen, K.; de Jong, J.; Heemsbergen, W.; Moonen, L.; Witteveen, T.; van der Poel, H.; Heijmink, S. Seminal vesicle invasion on multi-parametric magnetic resonance imaging: Correlation with histopathology. Eur. J. Radiol. 2018, 98, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Nepple, K.G.; Rosevear, H.M.; Stolpen, A.H.; Brown, J.A.; Williams, R.D. Concordance of preoperative prostate endorectal MRI with subsequent prostatectomy specimen in high-risk prostate cancer patients. Urol. Oncol. Semin. Orig. Investig. 2013, 31, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Roethke, M.; Kaufmann, S.; Kniess, M.; Ketelsen, D.; Claussen, C.; Schlemmer, H.; Stenzl, A.; Schilling, D. Seminal Vesicle Invasion: Accuracy and Analysis of Infiltration Patterns with High-Spatial Resolution T2-Weighted Sequences on Endorectal Magnetic Resonance Imaging. Urol. Int. 2014, 92, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Zarzour, J.G.; Galgano, S.; McConathy, J.; Thomas, J.V.; Rais-Bahrami, S. Lymph node imaging in initial staging of prostate cancer: An overview and update. World J. Radiol. 2017, 9, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Hofman, M.S.; Hicks, R.J.; Maurer, T.; Eiber, M. Prostate-specific Membrane Antigen PET: Clinical Utility in Prostate Cancer, Normal Patterns, Pearls, and Pitfalls. RadioGraphics 2018, 38, 200–217. [Google Scholar] [CrossRef]
- Wang, X.; Wen, Q.; Zhang, H.; Ji, B. Head-to-Head Comparison of 68Ga-PSMA-11 PET/CT and Multiparametric MRI for Pelvic Lymph Node Staging Prior to Radical Prostatectomy in Patients with Intermediate to High-Risk Prostate Cancer: A Meta-Analysis. Front. Oncol. 2021, 11, 737989. [Google Scholar] [CrossRef]
- Maurer, T.; Gschwend, J.E.; Rauscher, I.; Souvatzoglou, M.; Haller, B.; Weirich, G.; Wester, H.-J.; Heck, M.; Kübler, H.; Beer, A.J.; et al. Diagnostic Efficacy of 68 Gallium-PSMA Positron Emission Tomography Compared to Conventional Imaging for Lymph Node Staging of 130 Consecutive Patients with Intermediate to High Risk Prostate Cancer. J. Urol. 2016, 195, 1436–1443. [Google Scholar] [CrossRef]
- Hofman, M.S.; Lawrentschuk, N.; Francis, R.J.; Tang, C.; Vela, I.; Thomas, P.; Rutherford, N.; Martin, J.M.; Frydenberg, M.; Shakher, R.; et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): A prospective, randomised, multicentre study. Lancet 2020, 395, 1208–1216. [Google Scholar] [CrossRef]
- van Leeuwen, P.J.; Emmett, L.; Ho, B.; Delprado, W.; Ting, F.; Nguyen, Q.; Stricker, P.D. Prospective evaluation of 68Gallium-prostate-specific membrane antigen positron emission tomography/computed tomography for preoperative lymph node staging in prostate cancer. BJU Int. 2017, 119, 209–215. [Google Scholar] [CrossRef]
- Kyriakopoulos, C.E.; Chen, Y.-H.; Carducci, M.A.; Liu, G.; Jarrard, D.F.; Hahn, N.M.; Shevrin, D.H.; Dreicer, R.; Hussain, M.; Eisenberger, M.; et al. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer: Long-Term Survival Analysis of the Randomized Phase III E3805 CHAARTED Trial. J. Clin. Oncol. 2018, 36, 1080–1087. [Google Scholar] [CrossRef] [PubMed]
- van Leenders, G.J.; van der Kwast, T.H.; Grignon, D.J.; Evans, A.J.; Kristiansen, G.; Kweldam, C.F.; Litjens, G.; McKenney, J.K.; Melamed, J.; Mottet, N.; et al. The 2019 International Society of Urological Pathology (ISUP) Consensus Conference on Grading of Prostatic Carcinoma. Am. J. Surg. Pathol. 2020, 44, e87–e99. [Google Scholar] [CrossRef] [PubMed]
- Gandaglia, G.; Ploussard, G.; Valerio, M.; Mattei, A.; Fiori, C.; Fossati, N.; Stabile, A.; Beauval, J.-B.; Malavaud, B.; Roumiguié, M.; et al. A Novel Nomogram to Identify Candidates for Extended Pelvic Lymph Node Dissection Among Patients with Clinically Localized Prostate Cancer Diagnosed with Magnetic Resonance Imaging-targeted and Systematic Biopsies. Eur. Urol. 2019, 75, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Sankineni, S.; Brown, A.M.; Fascelli, M.; Law, Y.M.; Pinto, P.A.; Choyke, P.L.; Turkbey, B. Lymph Node Staging in Prostate Cancer. Curr. Urol. Rep. 2015, 16, 30. [Google Scholar] [CrossRef] [PubMed]
- Saokar, A.; Islam, T.; Jantsch, M.; Saksena, M.A.; Hahn, P.F.; Harisinghani, M.G. Detection of lymph nodes in pelvic malignancies with computed tomography and magnetic resonance imaging. Clin. Imaging 2010, 34, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Mattei, A.; Danuser, H. Contemporary imaging analyses of pelvic lymph nodes in the prostate cancer patient. Curr. Opin. Urol. 2011, 21, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Kunikowska, J.; Kuliński, R.; Muylle, K.; Koziara, H.; Królicki, L. 68Ga–Prostate-Specific Membrane Antigen-11 PET/CT. Clin. Nucl. Med. 2020, 45, 11–18. [Google Scholar] [CrossRef]
- Brierley, J.D.; Gospodarowicz, M.K.; Wittekind, C. TNM Classification of Malignant Tumours, 8th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2016. [Google Scholar]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- Janssen, J.-C.; Meißner, S.; Woythal, N.; Prasad, V.; Brenner, W.; Diederichs, G.; Hamm, B.; Makowski, M.R. Comparison of hybrid 68Ga-PSMA-PET/CT and 99mTc-DPD-SPECT/CT for the detection of bone metastases in prostate cancer patients: Additional value of morphologic information from low dose CT. Eur. Radiol. 2018, 28, 610–619. [Google Scholar] [CrossRef]
- Abrams-Pompe, R.S.; Fanti, S.; Schoots, I.G.; Moore, C.M.; Turkbey, B.; Vickers, A.J.; Walz, J.; Steuber, T.; Eastham, J.A. The Role of Magnetic Resonance Imaging and Positron Emission Tomography/Computed Tomography in the Primary Staging of Newly Diagnosed Prostate Cancer: A Systematic Review of the Literature. Eur. Urol. Oncol. 2021, 4, 370–395. [Google Scholar] [CrossRef]
- Dekalo, S.; Kuten, J.; Mabjeesh, N.J.; Beri, A.; Even-Sapir, E.; Yossepowitch, O. 68Ga-PSMA PET/CT: Does it predict adverse pathology findings at radical prostatectomy? Urol. Oncol. Semin. Orig. Investig. 2019, 37, 574.e19–574.e24. [Google Scholar] [CrossRef]
- Jochumsen, M.R.; Bouchelouche, K. PSMA PET/CT for Primary Staging of Prostate Cancer—An Updated Overview. Semin. Nucl. Med. 2023, 54, 39–45. [Google Scholar] [CrossRef]
- Bahler, C.D.; Green, M.A.; Tann, M.A.; Swensson, J.K.; Collins, K.; Alexoff, D.; Kung, H.; Brocken, E.; Mathias, C.J.; Cheng, L.; et al. Assessing extra-prostatic extension for surgical guidance in prostate cancer: Comparing two PSMA-PET tracers with the standard-of-care. Urol. Oncol. Semin. Orig. Investig. 2023, 41, 48.e1–48.e9. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, D.A.; Muehlematter, U.J.; Schüler, H.I.G.; Rupp, N.J.; Huellner, M.; Messerli, M.; Rüschoff, J.H.; ter Voert, E.E.G.W.; Hermanns, T.; Burger, I.A. 68Ga-PSMA-11 PET has the potential to improve patient selection for extended pelvic lymph node dissection in intermediate to high-risk prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Choudhury, P.S.; Rawal, S.; Goel, H.C.; Talwar, V.; Singh, A.; Sahoo, S.K. Initial risk stratification and staging in prostate cancer with prostatic-specific membrane antigen positron emission tomography/computed tomography: A first-stop-shop. World J. Nucl. Med. 2018, 17, 261–269. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, P.J.; Donswijk, M.; Nandurkar, R.; Stricker, P.; Ho, B.; Heijmink, S.; Wit, E.M.; Tillier, C.; van Muilenkom, E.; Nguyen, Q.; et al. Gallium-68-prostate-specific membrane antigen (68Ga-PSMA) positron emission tomography (PET)/computed tomography (CT) predicts complete biochemical response from radical prostatectomy and lymph node dissection in intermediate- and high-risk prostate cance. BJU Int. 2019, 124, 62–68. [Google Scholar] [CrossRef]
- Kulkarni, S.C.; Sundaram, P.S.; Padma, S. In primary lymph nodal staging of patients with high-risk and intermediate-risk prostate cancer, how critical is the role of Gallium-68 prostate-specific membrane antigen positron emission tomography-computed tomography? Nucl. Med. Commun. 2020, 41, 139–146. [Google Scholar] [CrossRef]
- Petersen, L.J.; Nielsen, J.B.; Langkilde, N.C.; Petersen, A.; Afshar-Oromieh, A.; De Souza, N.M.; De Paepe, K.; Fisker, R.V.; Arp, D.T.; Carl, J.; et al. 68Ga-PSMA PET/CT compared with MRI/CT and diffusion-weighted MRI for primary lymph node staging prior to definitive radiotherapy in prostate cancer: A prospective diagnostic test accuracy study. World J. Urol. 2020, 38, 939–948. [Google Scholar] [CrossRef]
- Yilmaz, B.; Turkay, R.; Colakoglu, Y.; Baytekin, H.F.; Ergul, N.; Sahin, S.; Tugcu, V.; Inci, E.; Tasci, A.I.; Cermik, T.F. Comparison of preoperative locoregional Ga-68 PSMA-11 PET-CT and mp-MRI results with postoperative histopathology of prostate cancer. Prostate 2019, 79, 1007–1017. [Google Scholar] [CrossRef]
- Zhang, Q.; Zang, S.; Zhang, C.; Fu, Y.; Lv, X.; Zhang, Q.; Deng, Y.; Zhang, C.; Luo, R.; Zhao, X.; et al. Comparison of 68Ga-PSMA-11 PET-CT with mpMRI for preoperative lymph node staging in patients with intermediate to high-risk prostate cancer. J. Transl. Med. 2017, 15, 230. [Google Scholar] [CrossRef]
- Cytawa, W.; Seitz, A.K.; Kircher, S.; Fukushima, K.; Tran-Gia, J.; Schirbel, A.; Bandurski, T.; Lass, P.; Krebs, M.; Połom, W.; et al. 68Ga-PSMA I&T PET/CT for primary staging of prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 168–177. [Google Scholar] [CrossRef]
- Thalgott, M.; Düwel, C.; Rauscher, I.; Heck, M.M.; Haller, B.; Gafita, A.; Gschwend, J.E.; Schwaiger, M.; Maurer, T.; Eiber, M. One-Stop-Shop Whole-Body 68 Ga-PSMA-11 PET/MRI Compared with Clinical Nomograms for Preoperative T and N Staging of High-Risk Prostate Cancer. J. Nucl. Med. 2018, 59, 1850–1856. [Google Scholar] [CrossRef]
- Bandini, M.; Marchioni, M.; Pompe, R.S.; Tian, Z.; Gandaglia, G.; Fossati, N.; Abdollah, F.; Graefen, M.; Montorsi, F.; Saad, F.; et al. First North American validation and head-to-head comparison of four preoperative nomograms for prediction of lymph node invasion before radical prostatectomy. BJU Int. 2018, 121, 592–599. [Google Scholar] [CrossRef]
- Hötker, A.M.; Mühlematter, U.; Beintner-Skawran, S.; Ghafoor, S.; Burger, I.; Huellner, M.; Eberli, D.; Donati, O.F. Prediction of pelvic lymph node metastases and PSMA PET positive pelvic lymph nodes with multiparametric MRI and clinical information in primary staging of prostate cancer. Eur. J. Radiol. Open 2023, 10, 100487. [Google Scholar] [CrossRef] [PubMed]
- Aldoj, N.; Biavati, F.; Michallek, F.; Stober, S.; Dewey, M. Automatic prostate and prostate zones segmentation of magnetic resonance images using DenseNet-like U-net. Sci. Rep. 2020, 10, 14315. [Google Scholar] [CrossRef]
- Atia, N.; Benzaoui, A.; Jacques, S.; Hamiane, M.; El Kourd, K.; Bouakaz, A.; Ouahabi, A. Particle Swarm Optimization and Two-Way Fixed-Effects Analysis of Variance for Efficient Brain Tumor Segmentation. Cancers 2022, 14, 4399. [Google Scholar] [CrossRef] [PubMed]
- Klyuzhin, I.S.; Chaussé, G.; Bloise, I.; Harsini, S.; Ferres, J.L.; Uribe, C.; Rahmim, A. PSMA-Hornet: Fully-automated, multi-target segmentation of healthy organs in PSMA PET/CT images. Med. Phys. 2023, in press. [Google Scholar] [CrossRef] [PubMed]
- Cysouw, M.C.F.; Jansen, B.H.E.; van de Brug, T.; Oprea-Lager, D.E.; Pfaehler, E.; de Vries, B.M.; van Moorselaar, R.J.A.; Hoekstra, O.S.; Vis, A.N.; Boellaard, R. Machine learning-based analysis of [18F]DCFPyL PET radiomics for risk stratification in primary prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 340–349. [Google Scholar] [CrossRef]
- Daryanani, A.; Turkbey, B. Recent Advancements in CT and MR Imaging of Prostate Cancer. Semin. Nucl. Med. 2022, 52, 365–373. [Google Scholar] [CrossRef]
Characteristic | Total | Lymph Node Involvement on Pathology | p-Value | |
---|---|---|---|---|
n = 74 1 | No, n = 54 1 | Yes, n = 20 1 | ||
Age, years | 66 (62, 71) | 66 (62, 71) | 67 (63, 69) | 0.970 2 |
PSA, before surgery (ng/mL) | 13 (7, 28) | 12 (7, 21) | 24 (13, 40) | 0.004 2 |
DRE stage | 0.074 3 | |||
cT1c | 25 (34%) | 22 (41%) | 3 (15%) | |
cT2a | 7 (9.5%) | 4 (7.4%) | 3 (15%) | |
cT2b | 16 (22%) | 11 (20%) | 5 (25%) | |
cT2c | 3 (4.1%) | 3 (5.6%) | 0 (0%) | |
cT3a (EPE) | 17 (23%) | 12 (22%) | 5 (25%) | |
cT3b (SVI) | 6 (8.1%) | 2 (3.7%) | 4 (20%) | |
Risk group | 0.015 3 | |||
High | 52 (70%) | 36 (76%) | 16 (100%) | |
Intermediate | 13 (18%) | 13 (24%) | 0 (0%) | |
Metastatic | 9 (12%) | 5 (55%) | 4 (45%) | |
Prostate volume (mL) | 42 (33, 54) | 38 (30, 47) | 50 (43, 56) | 0.010 2 |
PIRADS grade | 0.010 3 | |||
3 | 1 (1.4%) | 1 (1.9%) | 0 (0%) | |
4 | 20 (27%) | 19 (35%) | 1 (5.0%) | |
5 | 53 (72%) | 34 (63%) | 19 (95%) | |
ISUP grade | <0.001 3 | |||
2 | 6 (8.1%) | 5 (9.3%) | 1 (5.0%) | |
3 | 24 (32%) | 22 (41%) | 2 (10%) | |
4 | 32 (43%) | 24 (44%) | 8 (40%) | |
5 | 12 (16%) | 3 (5.6%) | 9 (45%) | |
Pathological T stage | <0.001 3 | |||
pT2b | 1 (1.4%) | 1 (1.9%) | 0 (0%) | |
pT2c | 21 (28%) | 21 (39%) | 0 (0%) | |
pT3a | 26 (35%) | 21 (39%) | 5 (25%) | |
pT3b | 26 (35%) | 11 (20%) | 15 (75%) | |
LNI on pathology | 20 (27%) | |||
T3a (EPE) on MRI | 19 (26%) | 15 (28%) | 4 (20%) | 0.496 4 |
T3b (SVI) on MRI | 22 (30%) | 8 (15%) | 14 (70%) | <0.001 4 |
LNI on MRI | 24 (32%) | 13 (24%) | 11 (55%) | 0.012 4 |
T3b (SVI) on PET-CT | 13 (18%) | 7 (13%) | 6 (30%) | 0.165 3 |
LNI on PET | 18 (24%) | 5 (9.3%) | 13 (65%) | <0.001 3 |
Distant metastases on PET | 9 (12%) | 5 (9.3%) | 4 (20%) | 0.241 3 |
Outcome | Method | Cut-Off | AUC | Sensitivity | Specificity | PPV | NPV |
---|---|---|---|---|---|---|---|
LNI | MSKCC nomogram | 47.5 | 0.799 (0.680–0.918) | 75.0 (55.0–90.0) | 75.9 (64.8–87.0) | 53.8 (41.4–68.2) | 89.4 (81.8–95.8) |
Partin tables | 22 | 0.761 (0.638–0.883) | 70.0 (50.0–90.0) | 66.7 (53.7–77.8) | 43.8 (32.4–56.7) | 85.7 (77.3–94.9) | |
mpMRI | 0.5 | 0.655 (0.529–0.780) | 55.0 (35.0–75.0) | 75.9 (64.8–87.0) | 45.8 (31.8–63.2) | 82.1 (75.0–90.0) | |
[68Ga]Ga-PSMA-11 PET-CT | 0.5 | 0.779 (0.665–0.893) | 65.0 (40.0–85.0) | 90.7 (81.5–98.1) | 73.3 (56.0–92.3) | 87.7 (81.0–94.3) | |
Briganti nomogram | 21 | 0.744 (0.624–0.864) | 94.7 (84.2–100.0) | 48.1 (35.2–61.1) | 39.1 (33.3–47.4) | 96.4 (88.5–100.0) | |
SVI | MSKCC nomogram | 35.5 | 0.772 (0.659–0.885) | 69.2 (50.0–88.5) | 75.0 (62.5–85.4) | 60.0 (46.7–73.9) | 82.0 (72.5–91.7) |
Partin tables | 21 | 0.654 (0.523–0.785) | 61.5 (42.3–80.8) | 66.7 (52.1–79.2) | 50.0 (37.5–62.5) | 76.2 (66.7–85.7) | |
mpMRI | 0.5 | 0.775 (0.672–0.878) | 65.4 (46.2–84.6) | 89.6 (79.2–97.9) | 77.3 (61.9–93.8) | 82.7 (75.0–90.9) | |
[68Ga]Ga-PSMA-11 PET-CT | 0.5 | 0.585 (0.473–0.698) | 30.0 (10.0–50.0) | 87.0 (77.8–94.4) | 46.2 (21.0–72.7) | 77.0 (71.9–82.8) | |
EPE | MSKCC nomogram | 93.5 | 0.613 (0.486–0.740) | 84.6 (69.2–96.2) | 47.9 (33.3–62.5) | 46.9 (39.1–55.6) | 85.7 (72.4–96.6) |
Partin tables | 38.5 | 0.566 (0.433–0.698) | 61.5 (42.3–80.8) | 54.2 (39.6–68.8) | 42.4 (31.8–53.1) | 72.4 (61.1–83.3) | |
mpMRI | 0.5 | 0.599 (0.488–0.709) | 38.5 (19.2–57.7) | 81.2 (70.8–91.7) | 52.6 (35.0–72.7) | 70.8 (64.8–78.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tayara, O.M.; Pełka, K.; Kunikowska, J.; Malewski, W.; Sklinda, K.; Kamecki, H.; Poletajew, S.; Kryst, P.; Nyk, Ł. Comparison of Multiparametric MRI, [68Ga]Ga-PSMA-11 PET-CT, and Clinical Nomograms for Primary T and N Staging of Intermediate-to-High-Risk Prostate Cancer. Cancers 2023, 15, 5838. https://doi.org/10.3390/cancers15245838
Tayara OM, Pełka K, Kunikowska J, Malewski W, Sklinda K, Kamecki H, Poletajew S, Kryst P, Nyk Ł. Comparison of Multiparametric MRI, [68Ga]Ga-PSMA-11 PET-CT, and Clinical Nomograms for Primary T and N Staging of Intermediate-to-High-Risk Prostate Cancer. Cancers. 2023; 15(24):5838. https://doi.org/10.3390/cancers15245838
Chicago/Turabian StyleTayara, Omar Marek, Kacper Pełka, Jolanta Kunikowska, Wojciech Malewski, Katarzyna Sklinda, Hubert Kamecki, Sławomir Poletajew, Piotr Kryst, and Łukasz Nyk. 2023. "Comparison of Multiparametric MRI, [68Ga]Ga-PSMA-11 PET-CT, and Clinical Nomograms for Primary T and N Staging of Intermediate-to-High-Risk Prostate Cancer" Cancers 15, no. 24: 5838. https://doi.org/10.3390/cancers15245838
APA StyleTayara, O. M., Pełka, K., Kunikowska, J., Malewski, W., Sklinda, K., Kamecki, H., Poletajew, S., Kryst, P., & Nyk, Ł. (2023). Comparison of Multiparametric MRI, [68Ga]Ga-PSMA-11 PET-CT, and Clinical Nomograms for Primary T and N Staging of Intermediate-to-High-Risk Prostate Cancer. Cancers, 15(24), 5838. https://doi.org/10.3390/cancers15245838