Identifying Lymph Nodes and Their Statuses from Pretreatment Computer Tomography Images of Patients with Head and Neck Cancer Using a Clinical-Data-Driven Deep Learning Algorithm
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Image Prepare and Annotations
2.3. Model and Training Methodology
2.3.1. Model
2.3.2. Training Method
3. Results
3.1. Basic Image Features
Distribution of Lymph Node Size and Intensity
3.2. D Model Performance
3.2.1. Performance Evaluation
3.2.2. Inference Analysis
The Model Can Size Classify Lymph Nodes
False Negative/Positive Inferences
Misclassification of Positive and ENE Lymph Nodes
4. Discussion
4.1. Applying a Deep Learning Model in Classifying Lymph Mode Metastasis in Head and Neck Cancer
4.2. Model Inference
4.2.1. Detection Rate and Dice Score
4.2.2. Effects of Clinical Features on Inference
4.2.3. The Potential of a Model Trained on Images Generated Using Different Protocols at Different Timepoints
4.2.4. P and ENE Class Misclassification
4.3. Limitations
4.3.1. No Consistent Image Examination Protocol
4.3.2. Improved Classification Ability for P and ENE Classes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Health Promotion Administration, Ministry of Health and Welfare, and Taiwan. Cancer Registry Annul Report 2020 Taiwan; Taiwan Cancer Registry: Taiwan, 2022. [Google Scholar]
- Grégoire, V.; Levendag, P.; Ang, K.K.; Bernier, J.; Braaksma, M.; Budach, V.; Chao, C.; Coche, E.; Cooper, J.S.; Cosnard, G.; et al. CT-based delineation of lymph node levels and related CTVs in the node-negative neck: DAHANCA, EORTC, GORTEC, NCIC,RTOG consensus guidelines. Radiother. Oncol. 2003, 69, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Pisani, P.; Airoldi, M.; Allais, A.; Valletti, P.A.; Battista, M.; Benazzo, M.; Briatore, R.; Cacciola, S.; Cocuzza, S.; Colombo, A.; et al. 107th Congress of the Italian Society of Otorhinolaryngology Head and Neck Surgery Official report. Acta Otorhinolaryngol Ital. 2020, 40 (Supp. S1), S1–S2. [Google Scholar] [CrossRef] [PubMed]
- Khan, R. Lymph Node Disease and Advanced Head and Neck Imaging: A Review of the 2013 Literature. In Current Radiology Reports; Springer New York LLC: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Cognetti, D.M.; Weber, R.S.; Lai, S.Y. Head and Neck Cancer an Evolving Treatment Paradigm. Cancer 2008, 113, 1911–1932. [Google Scholar] [CrossRef] [PubMed]
- Bernier, J.; Cooper, J.S.; Pajak, T.F.; Van Glabbeke, M.; Bourhis, J.; Forastiere, A.; Ozsahin, E.M.; Jacobs, J.R.; Jassem, J.; Ang, K.-K.; et al. Defining Risk Levels in Locally Advanced Head and Neck Cancers: A Comparative Analysis of Concurrent Postoperative Radiation plus Chemotherapy Trials of the EORTC (#22931) and RTOG (# 9501). Head Neck 2005, 27, 843–850. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. NCCN Guidelines Version 1.2024; National Comprehensive Cancer Network: Fort Washington, PA, USA, 2023. [Google Scholar]
- Cerfolio, R.J.; Ojha, B.; Bryant, A.S.; Raghuveer, V.; Mountz, J.M.; Bartolucci, A.A. The Accuracy of Integrated Pet-CT Compared with Dedicated Pet Alone for the Staging of Patients with Nonsmall Cell Lung Cancer. Ann. Thorac. Surg. 2004, 78, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Li, B.; Li, C.J.; Li, Y.; Su, F.; Gao, Q.H.; Wu, F.L.; Yu, T.; Wu, L.; Li, L.J. Computed Tomography versus Magnetic Resonance Imaging for Diagnosing Cervical Lymph Node Metastasis of Head and Neck Cancer: A Systematic Review and Meta-Analysis. In OncoTargets and Therapy; Dove Medical Press Ltd.: Princeton, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Hoang, J.K.; Vanka, J.; Ludwig, B.J.; Glastonbury, C.M. Evaluation of Cervical Lymph Nodes in Head and Neck Cancer with CT and MRI: Tips, Traps, and a Systematic Approach. Am. J. Roentgenol. 2013, 200, W17–W25. [Google Scholar] [CrossRef] [PubMed]
- Merritt, R.M.; Williams, M.F.; James, T.H.; Porubsky, E.S. Detection of Cervical Metastasis: A Meta-Analysis Comparing Computed Tomography with Physical Examination. JAMA Otolaryngol. Neck Surg. 1997, 123, 149–152. [Google Scholar] [CrossRef]
- Schwartz, D.L.; Ford, E.; Rajendran, J.; Yueh, B.; Coltrera, M.D.; Virgin, J.; Anzai, Y.; Haynor, D.; Lewellyn, B.; Mattes, D.; et al. FDG-PET/CT Imaging for Preradiotherapy Staging of Head-and-Neck Squamous Cell Carcinoma. Int. J. Radiat. Oncol. 2005, 61, 129–136. [Google Scholar] [CrossRef]
- de Bondt, R.; Nelemans, P.; Hofman, P.; Casselman, J.; Kremer, B.; van Engelshoven, J.; Beets-Tan, R. Detection of Lymph Node Metastases in Head and Neck Cancer: A Meta-Analysis Comparing US, USgFNAC, CT and MR Imaging. Eur. J. Radiol. 2007, 64, 266–272. [Google Scholar] [CrossRef]
- Van den Brekel, M.W.M.; Castelijns, J.A.; Stel, H.V.; Golding, R.P.; Meyer, C.J.L.; Snow, G.B. Originals Oto-Rhino-Laryngology Modern Imaging Techniques and Ultrasound-Guided Aspiration Cytology for the Assessment of Neck Node Metastases: A Prospective Comparative Study. Eur. Arch. Otorhinolaryngol. 1993, 250, 11–17. [Google Scholar] [CrossRef]
- Esteva, A.; Chou, K.; Yeung, S.; Naik, N.; Madani, A.; Mottaghi, A.; Liu, Y.; Topol, E.; Dean, J.; Socher, R. Deep Learning-Enabled Medical Computer Vision. Npj Digit. Med. 2021, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-Y.; Hsu, W.-L.; Hsu, R.-J.; Liu, D.-W. Fully Convolutional Network for the Semantic Segmentation of Medical Images: A Survey. Diagnostics 2022, 12, 2765. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. Lect. Notes Comput. Sci. Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform. 2016, 9908 LNCS, 630–645. [Google Scholar]
- Simonyan, K.; Zisserman, A. A Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. Lect. Notes Comput. Sci. (Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform. 2015, 9351, 234–241. [Google Scholar] [CrossRef]
- Kann, B.H.; Aneja, S.; Loganadane, G.V.; Kelly, J.R.; Smith, S.M.; Decker, R.H.; Yu, J.B.; Park, H.S.; Yarbrough, W.G.; Malhotra, A.; et al. Pretreatment Identification of Head and Neck Cancer Nodal Metastasis and Extranodal Extension Using Deep Learning Neural Networks. Sci. Rep. 2018, 8, 14306. [Google Scholar] [CrossRef] [PubMed]
- Men, K.; Chen, X.; Zhang, Y.; Zhang, T.; Dai, J.; Yi, J.; Li, Y. Deep Deconvolutional Neural Network for Target Segmentation of Nasopharyngeal Cancer in Planning Computed Tomography Images. Front. Oncol. 2017, 7, 315. [Google Scholar] [CrossRef]
- Beede, E.; Baylor, E.; Hersch, F.; Iurchenko, A.; Wilcox, L.; Ruamviboonsuk, P.; Vardoulakis, L.M. A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy. In Conference on Human Factors in Computing Systems—Proceedings; Association for Computing Machinery: Melbourne, Australia, 2020. [Google Scholar] [CrossRef]
- Isensee, F.; Jaeger, P.F.; Kohl, S.A.A.; Petersen, J.; Maier-Hein, K.H. NnU-Net: A Self-Configuring Method for Deep Learning-Based Biomedical Image Segmentation. Nat. Methods 2021, 18, 203–211. [Google Scholar] [CrossRef]
- Iuga, A.-I.; Carolus, H.; Höink, A.J.; Brosch, T.; Klinder, T.; Maintz, D.; Persigehl, T.; Baeßler, B.; Püsken, M. Automated Detection and Segmentation of Thoracic Lymph Nodes from CT Using 3D Foveal Fully Convolutional Neural Networks. BMC Med Imaging 2021, 21, 1–12. [Google Scholar] [CrossRef]
- Oda, H.; Bhatia, K.K.; Roth, H.R.; Oda, M.; Kitasaka, T.; Iwano, S.; Homma, H.; Takabatake, H.; Mori, M.; Natori, H.; et al. Dense Volumetric Detection and Segmentation of Mediastinal Lymph Nodes in Chest CT Images. In Medical Imaging 2018: Computer-Aided Diagnosis; Mori, K., Petrick, N., Eds.; SPIE: Bellingham, WA, USA, 2018. [Google Scholar] [CrossRef]
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA J. Am. Med. Assoc. 2016, 316, 2402–2410. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Gabriela Csurka. Domain Adaptation for Visual Applications: A Comprehensive Survey. 2017. Available online: http://arxiv.org/abs/1702.05374 (accessed on 20 September 2023).
(a) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Train (%) | Valid (%) | Test (%) | |||||||
<1 cm | >1 cm | Total | <1 cm | >1 cm | Total | <1 cm | >1 cm | Total | |
N | 1470 (96) | 61 (4) | 1531 | 270 (96) | 11 (4) | 281 | 221 (96) | 10 (4) | 231 |
P | 125 (45) | 153 (55) | 278 | 14 (45) | 16 (55) | 30 | 18 (60) | 12 (40) | 30 |
ENE | 19 (13) | 126 (87) | 145 | 2 (13) | 14 (87) | 16 | 0 | 10 | 10 |
(b) | |||||||||
Num (%) | <1 cm | >1 cm | Total | ||||||
N | 167 (96) | 9 (4) | 176 | ||||||
P | 17 (60) | 11 (40) | 28 | ||||||
ENE | 0 | 9 | 9 |
3D Metric(%) | (a) | (b) | ||
---|---|---|---|---|
ENE+P | N | ENE+P | N | |
Detection rate (>0) | 87.50 | 76.58 | 92.50 | 75.68 |
Detection rate (>50) | 80.00 | 59.46 | 87.50 | 61.71 |
FP/image | 1.29 | 4.64 | 1.11 | 5.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.-Y.; Hsu, W.-L.; Liu, D.-W.; Wu, E.L.; Peng, Y.-S.; Liao, Z.-T.; Hsu, R.-J. Identifying Lymph Nodes and Their Statuses from Pretreatment Computer Tomography Images of Patients with Head and Neck Cancer Using a Clinical-Data-Driven Deep Learning Algorithm. Cancers 2023, 15, 5890. https://doi.org/10.3390/cancers15245890
Huang S-Y, Hsu W-L, Liu D-W, Wu EL, Peng Y-S, Liao Z-T, Hsu R-J. Identifying Lymph Nodes and Their Statuses from Pretreatment Computer Tomography Images of Patients with Head and Neck Cancer Using a Clinical-Data-Driven Deep Learning Algorithm. Cancers. 2023; 15(24):5890. https://doi.org/10.3390/cancers15245890
Chicago/Turabian StyleHuang, Sheng-Yao, Wen-Lin Hsu, Dai-Wei Liu, Edzer L. Wu, Yu-Shao Peng, Zhe-Ting Liao, and Ren-Jun Hsu. 2023. "Identifying Lymph Nodes and Their Statuses from Pretreatment Computer Tomography Images of Patients with Head and Neck Cancer Using a Clinical-Data-Driven Deep Learning Algorithm" Cancers 15, no. 24: 5890. https://doi.org/10.3390/cancers15245890
APA StyleHuang, S. -Y., Hsu, W. -L., Liu, D. -W., Wu, E. L., Peng, Y. -S., Liao, Z. -T., & Hsu, R. -J. (2023). Identifying Lymph Nodes and Their Statuses from Pretreatment Computer Tomography Images of Patients with Head and Neck Cancer Using a Clinical-Data-Driven Deep Learning Algorithm. Cancers, 15(24), 5890. https://doi.org/10.3390/cancers15245890