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Simple Summary: Pancreatic cancer is difficult to treat. Novel treatment strategies are urgently
needed to improve the survival rate, which is approximately 10% five years after diagnosis. The use
of nanomedicines, which are formulated within a characteristic size range that favors its specific
delivery to the diseased tissue, is being actively explored in cancer treatment. However, fibrosis (the
abnormal accumulation of a cell type called fibroblasts and the fibrous protein network that they
create) is characteristically seen in pancreatic cancer and hinders the delivery of nanomedicines into
cancerous tissue. The decreased efficiency of delivery limits the therapeutic effects of nanomedicine
in pancreatic cancer. We call this the “fibrotic barrier” to nanomedicine. To overcome the fibrotic
barrier, we could target the fibrotic process and/or optimize the nanomedicine design. In this review,
we give a detailed overview of strategies to overcome the fibrotic barriers in pancreatic cancer and
highlight key gaps in our understanding.

Abstract: Pancreatic cancer is notorious for its dismal prognosis. The enhanced permeability and
retention (EPR) effect theory posits that nanomedicines (therapeutics in the size range of approx-
imately 10–200 nm) selectively accumulate in tumors. Nanomedicine has thus been suggested to
be the “magic bullet”—both effective and safe—to treat pancreatic cancer. However, the densely
fibrotic tumor microenvironment of pancreatic cancer impedes nanomedicine delivery. The EPR
effect is thus insufficient to achieve a significant therapeutic effect. Intratumoral fibrosis is chiefly
driven by aberrantly activated fibroblasts and the extracellular matrix (ECM) components secreted.
Fibroblast and ECM abnormalities offer various potential targets for therapeutic intervention. In this
review, we detail the diverse strategies being tested to overcome the fibrotic barriers to nanomedicine
in pancreatic cancer. Strategies that target the fibrotic tissue/process are discussed first, which are
followed by strategies to optimize nanomedicine design. We provide an overview of how a deeper
understanding, increasingly at single-cell resolution, of fibroblast biology is revealing the complex
role of the fibrotic stroma in pancreatic cancer pathogenesis and consider the therapeutic implications.
Finally, we discuss critical gaps in our understanding and how we might better formulate strategies
to successfully overcome the fibrotic barriers in pancreatic cancer.

Keywords: pancreatic cancer; tumor microenvironment; nanomedicine; fibrosis; extracellular
matrix; fibroblast

1. Introduction

Pancreatic cancer accounted for 2.5% of new cancer diagnoses and 4.5% of cancer
deaths worldwide in 2018 [1]. There is some inter-regional variation in incidence rates:
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the highest age-standardized incidence rate is in Europe (7.7 per 100,000 people), which is
followed by North America (7.6), and Oceania (6.4) [2]. The incidence of PDAC increases
with age and is somewhat more common in men than women. Of concern, incidence and
mortality are projected to rise quite steadily [2].

Approximately 90% of pancreatic cancers are pancreatic ductal adenocarcinomas
(PDAC) [3,4], so the terms will be used interchangeably in this review. While surgery
remains central to treatment, less than 20% of PDAC patients have surgically resectable
disease largely due to a lack of specific symptoms, especially in the early stages of the
disease [3,5,6]. Chemotherapy thus plays an important role in PDAC treatment. Standard-
of-care chemotherapy is a regimen consisting of folinic acid (leucovorin), 5-fluorouracil,
irinotecan, and oxaliplatin (FOLFIRINOX) in patients with both metastatic [7] and re-
sected [8] PDAC. Albumin-bound paclitaxel (nab-paclitaxel) plus gemcitabine is also effec-
tive in metastatic PDAC, and nab-paclitaxel was the first nanomedicine to be approved in
PDAC therapy [9]. FOLFIRINOX is considered the more challenging regimen, and therapy
is usually selected by assessing the patient’s ability to adhere to the treatment schedule [6].
A head-to-head comparison between FOLFIRINOX vs. nab-paclitaxel + gemcitabine has
not been performed, but recent propensity score analyses suggest that either FOLFIRINOX
is more effective and cheaper [10,11] or that both regimens have similar effectiveness [12,13].
Second-line treatment options are also expanding. For example, nanoliposomal irinotecan
with 5-fluorouracil and folinic acid extends survival in patients with metastatic PDAC
who previously received gemcitabine-based therapy [14]. Nanoliposomal irinotecan was
approved by the United States Food and Drug Administration in 2015 and is the second
nanomedicine available for use in PDAC treatment. Various targeted approaches, driven
by an increased understanding of oncogenic drivers and dependencies in PDAC, are also
under investigation [15]. Despite these advances, however, 5-year survival remains at
approximately 9–11% [1,2,6]. PDAC thus remains one of the most lethal malignancies.

2. Fibrotic Barriers to Nanomedicine in the PDAC Tumor Microenvironment

The enhanced permeability and retention (EPR) effect was first reported in 1986 by Mat-
sumura and Maeda [16]. The EPR effect theory posits that the functional immaturity
of tumor neovessels allows the selective extravasation of macromolecules (enhanced per-
meability). The extravasated macromolecules then remain in tumor tissue due to the
underdevelopment of tumor lymphatics (enhanced retention). As such, the EPR effect has
served as the theoretical rationale for the development of cancer nanomedicine [17,18].
Although much is still left to learn about the EPR effect [19–22], it is increasingly clear that
the EPR effect may be insufficient, especially in clinical settings, to satisfactorily induce
a therapeutic response [23–27]. The shortfall of the EPR effect is often ascribed to hetero-
geneity: not all tumor vessels are leaky [27]. Leakiness seems to be temporally dynamic,
as nanoparticles administered at different times do not co-localize within the tumor tis-
sue [21,28]. The occlusion of blood vessels by thrombi may also cause heterogeneity in
the EPR effect [29]. A large body of literature exists on strategies for augmenting the EPR
effect to improve nanomedicine extravasation [29–31]. However, stromal barriers within
the tumor microenvironment (TME) further attrite the efficacy of nanomedicine even after
extravasation [32,33].

Analyzing the architecture of the tumor tissue in question is important to understand-
ing the stromal barriers to nanomedicine penetration present. Most cancer nanomedicines
are intravenously administered, so considering the path the nanomedicine inside blood
vessels must cover to reach tumor cells is especially instructive [32]. A simple but useful
classification of tumors focuses on the microenvironment in which tumor blood vessels are
situated: in tumors with a tumor vessel phenotype, blood vessels exist close to tumor cells
(Figure 1A), whereas in tumors with a stroma vessel phenotype, blood vessels are distanced
from tumor cells by stromal tissue (Figure 1B) [34]. Prominent fibrosis is a histopathological
hallmark of PDAC and often occupies 40–80% of the total tumor area [35]. Tumor cells and
blood vessels exist embedded within this densely fibrotic tissue. PDAC is thus characteristi-
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cally of a stroma vessel phenotype. Indeed, analyses of PDAC surgical specimens revealed
that the median “thickness” of fibrotic tissue, defined as the distance between blood vessels
to tumor cells, is around 10–30 µm regardless of tumor stage [36,37]. The thickness of the
fibrotic tissue is the distance an intravenously administered nanomedicine must travel at a
minimum to reach tumor cells. Therefore, fibrosis is a barrier to nanomedicine penetration
of PDAC tissue, and we refer to this as a fibrotic barrier to nanomedicine [38]. Although
increasingly clear that fibrosis is orchestrated via an interplay of various cell types, fibrotic
tissue consists chiefly of quantitatively and qualitatively abnormal fibroblasts and the
extracellular matrix (ECM) that fibroblasts abundantly secrete and deposit [39–43].
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viewed in [41,44,45]). Reflecting such a multifunctional nature, analyses increasingly at 
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Figure 1. Tumor vessel phenotype vs. stroma vessel phenotype. (A) In tumor tissues with a tumor
vessel phenotype, blood vessels are situated close to tumor cells with not much stromal tissue
in between. (B) In tumor tissues with a stroma vessel phenotype, blood vessels are distanced
from the tumor cells by stromal tissue. In the case of pancreatic ductal adenocarcinoma (PDAC),
the stroma consists of dense, fibrotic tissue comprising cancer-associated fibroblasts (CAFs) and
deposited extracellular matrix (ECM) proteins. Note the longer path (black arrows) an intravenous
nanomedicine must travel to reach tumor cells in tissues with a stroma vessel, as opposed to a tumor
vessel, phenotype.

2.1. Fibroblasts: The Key Cellular Mediator of Fibrosis

Ernst Ziegler first proposed the term fibroblasts to describe cells that produce connective
tissue during healing in 1895, but the description of these cells as “spindle-shaped cells of
the connective tissue” by Rudolf Virchow goes further back to 1858 [44]. In stark contrast
to this simple definition, the ontogeny of fibroblasts is quite complex [45]. Moreover,
it has only recently gained a wide appreciation that the fibroblast executes a myriad of
functions apart from producing ECM to generate and maintain connective tissue (reviewed
in [41,44,45]). Reflecting such a multifunctional nature, analyses increasingly at single-cell
resolution are revealing great fibroblast heterogeneity [44,45].

Fibroblasts play an important role in cancer, where they acquire phenotypic alterations
and are referred to as cancer-associated fibroblasts (CAFs) [46–48]. Studies initially reported
genomic alterations driving the CAF phenotype, but it is now generally accepted that they
were artifacts and that CAFs are non-mutant cells [48,49]. While tumor cells may undergo
epithelial-to-mesenchymal transition (EMT) and demonstrate myofibroblastic features,
expert consensus advises considering this a separate entity from CAFs [48]. Traditionally,
the transition from a normal (or quiescent) fibroblast to a CAF was determined mainly by
the acquisition of a contractile (expression of α-smooth muscle actin (αSMA)), synthetic
(synthesis of ECM proteins), and proliferative phenotype [46]. This process is usually
referred to as fibroblast activation, which is a concept drawn from parallels in wound
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healing [43,46,48]. This is consistent with the notion of tumors as wounds that do not
heal [50].

Fibroblast activation involves various signaling pathways such as transforming growth
factor-β (TGFβ), receptor tyrosine kinase (RTK) signals (e.g., platelet-derived growth factor
(PDGF), fibroblast growth factor (FGF), etc.), G-protein coupled receptor (GPCR) signals
(e.g., lysophosphatidic acid, sonic hedgehog (SHH), extracellular proteases, etc.), inflamma-
tory signals (e.g., interleukin (IL) 1, IL6, tumor necrosis factor-α (TNFα), etc.), cellular stress
signals (e.g., DNA damage, reactive oxygen species (ROS), disrupted metabolism, etc.),
ECM signals, and contact signals (e.g., Notch and Eph-Ephrins) (Figure 2) [43,47,48,51].
PDAC cancer cells also secrete extracellular vesicles (EVs) carrying various cargo, including
microRNAs such as miR-155 and miR-1290, which play a role in fibroblast activation into
CAFs [52–54]. Fibroblasts furthermore become activated in response to microenvironmen-
tal cues such as hypoxia, lactic acidosis, and mechanical stimuli [55–58]. As we further
explicate in Section 3.2, this notion of an activated, αSMA-positive and ECM-producing
CAF mainly captures CAFs with myofibroblastic features. However, not all CAFs are
myofibroblastic. Furthermore, αSMA might be an inconsistent marker of fibroblasts re-
sponsible for collagen production in fibrosis [59]. Indeed, CAFs are highly heterogeneous
and demonstrate great molecular and functional diversity [47,48,60–64].
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Figure 2. Signals involved in fibroblast activation. Quiescent fibroblasts become activated into CAFs,
which are traditionally characterized by α-smooth muscle actin (αSMA) positivity and abundant ECM
secretion/deposition. Fibroblast activation is driven via various signals such as transforming growth
factor-β (TGFβ), receptor tyrosine kinase (RTK) signals, ECM signals, G-protein coupled receptor
(GPCR) signals, contact signals, extracellular vesicle (EV)-mediated signals, microenvironmental cues,
cellular stress, and inflammatory signals.

The heterogeneity of CAFs partly stems from the diverse origins of CAFs in the
fibrotic PDAC TME. Pancreatic stellate cells (PSCs) are widely believed to be the major
contributors of CAFs in PDAC [65–68]. On the contrary, a recent report utilizing lineage-
tracing suggests that PSC-derived CAFs are numerically minor, albeit with non-redundant
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functions in shaping the PDAC TME [69]. Another recent lineage tracing study points
to the splanchnic mesenchyme as the tissue-of-origin of CAFs in PDAC [70]. Whatever
the relative contributions, various non-PSC cell-of-origins of CAFs have been reported
to date. These include mesenchymal stem cells [71], endothelial cells [72], mesothelial
cells [73], and macrophages [74]. The CAF phenotype, furthermore, is highly plastic and is
dynamically shaped by various intercellular and cell–ECM interactions [47,48,60–64,75]. As
a result, CAF subpopulations often cannot be clearly distinguished since a singly specific
marker does not exist. Even with a combination of markers, expression profiles generally
overlap [43,48,60,61,75]. Therefore, in this review, we use “fibroblasts” (or “CAFs” to
emphasize the contrast with normal fibroblasts) as an umbrella term for spindle-shaped
cells within the fibrotic PDAC stroma, regardless of cell-of-origin. When describing the
literature, however, we respect the terminology adopted in the original article (i.e., if the
original study refers to PSCs, we too refer to the cells as PSCs).

2.2. The ECM in PDAC

The ECM comprises a “core matrisome” of approximately 300 proteins, in addition
to ECM-modifying enzymes, ECM-binding growth factors, and other ECM-associated
proteins [76]. The core matrisome consists of collagens, proteoglycans (e.g., heparan
sulfate, hyaluronan, and versican), and glycoproteins (e.g., fibronectin, laminin, elastin,
and tenascins) which demonstrate characteristic domain architectures [76]. The structure
and function of these matrisome proteins undergo extensive modification [76,77]. Not only
is ECM content increased in the fibrotic PDAC TME, but matrisome composition is also
altered in the fibrotic PDAC TME compared to healthy pancreata. Progressive changes in
matrisome composition are seen throughout PDAC tumorigenesis, some of which emerge
early on in the pancreatic intraepithelial neoplasm (PanIN) stage [78]. CAFs are generally
considered the major ECM producers in PDAC, but other cell types including tumor cells
also produce ECM and in certain cases may even be better therapeutic targets [78,79].

The ECM is not a static structure. Various ECM remodeling processes are dynamically
orchestrated to maintain tissue homeostasis and integrity [80,81]. For example, collagens
are first produced as procollagens with propeptides at both N- and C-termini. Three pro-
collagen chains are then aligned (registered) via the C-terminal propeptides after which the
characteristic triple helix is formed with the help of molecular chaperones. The propeptides
are proteolytically cleaved during or following the secretion of the triple helix [77,82].
Secreted collagens are subjected to further post-translational modifications such as cross-
linking, hydroxylation, citrullination, carbamylation, and glycation [77,83]. Furthermore,
collagens are engaged by cellular receptors which transduce cellular forces that can deform
individual collagen molecules as well as align ECM fibers [81,83]. Finally, collagens undergo
turnover, and intracellular and extracellular pathways of degradation exist [82]. Extra-
cellularly, collagens are degraded by collagenolytic enzymes such as the various matrix
metalloproteinases (MMPs) as well as cathepsins. Alternatively, collagens are internalized
via phagocytosis, receptor-mediated endocytosis, and/or macropinocytosis after which
they are lysosomally degraded [82]. Details will vary between different ECM molecules,
but as just illustrated with collagen, ECM remodeling can conceptually be divided into
three phases: ECM deposition/post-translational modification, force-mediated ECM modi-
fication, and ECM degradation (Figure 3) [83]. All of these processes are characteristically
deregulated in cancer [83,84].
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Figure 3. The ECM remodeling process. The three stages of ECM remodeling: (1) ECM deposition and
post-translational modification (left), (2) force-mediated ECM modification (middle), and (3) ECM
degradation (right) are illustrated with collagen I as an example. In the ECM deposition and post-
translational modification step, individual collagen chains are first transcribed/translated. The
collagen chains then form a triple helix, after which they are secreted, and the propeptides necessary
for triple helix formation are removed. Secreted collagen fibers undergo various modifications
such as enzymatic cross-linking. In the force-mediated ECM modification step, cellular forces are
transduced via ECM receptors such as integrins to deform and align collagen fibers. Finally, in the
ECM degradation step, collagen fibers are degraded extracellularly via various proteolytic enzymes
or intracellularly in lysosomes following internalization.

Matrisome proteins engage various intracellular signaling networks and regulate
diverse biological processes such as cellular function and fate in both health and dis-
ease [76,85–89]. Cells possess receptors through which ECM proteins and their bioactive
fragments signal [85,90,91]. Arguably the most important class of ECM receptors is the
integrins. Integrins act as heterodimers consisting of an α-subunit (18 types) and β-subunit
(8 types) of which at least 24 unique combinations are known [92,93]. Distinct subunit
combinations confer substrate specificity to the integrin heterodimers. For example, inte-
grins α1β1, α2β1, α10β1, and α11β1 recognize fibrillar collagens; α4β1, α5β1, α8β1, αVβ1,
αVβ3, and αVβ6 recognize fibronectin; while α1β1, α2β1, α3β1, α6β1, α6β4, α7β1, and
α10β1 recognize laminins [94]. Integrins, through the recognition of diverse ECM proteins
and subsequent engagement of various intracellular signaling pathways, play a critical role
in practically every step of tumorigenesis and progression [92–97]. ECM signaling through
various receptors such as integrins shapes CAF phenotype and function, thus forming a
signaling loop critical in the progression of fibrosis in the PDAC TME [98]. Abnormalities
at practically all levels of the multi-layered regulation of the ECM in the PDAC TME offer
various opportunities for therapeutic targeting (detailed in Section 3.4) [99,100].

3. Therapeutic Strategies Targeting the Fibrotic Barriers to Nanomedicine

In this section and the next, we discuss therapeutic strategies to target and overcome
the fibrotic barriers in PDAC. In theory, one can either therapeutically target and modify
the fibrotic PDAC stroma to render it more amenable to effective nanomedicine deliv-
ery (strategies #1–#4, discussed in this section) or tune various design parameters of the
nanomedicine formulation to achieve optimal delivery and efficacy (strategies #5–#8, dis-
cussed in Section 4). In reality, a combination of both to varying extents is likely necessary
to achieve clinical benefit (Figure 4).
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Figure 4. Therapeutic strategies to overcome fibrotic barriers to nanomedicine. To overcome the
fibrotic barriers to nanomedicine in the PDAC tumor microenvironment (TME), the fibrotic stroma
could be modulated (left) and/or the nanomedicine design could be optimized (right). Strategies
to modulate the fibrotic PDAC stroma include stromal ablation, stromal reprogramming, targeting
aberrant CAF metabolism, and targeting ECM abnormalities. Strategies to optimize nanomedicine
design include tuning of physicochemical properties, installation of moieties for active targeting
and/or microenvironmental responsivity, as well as the use of nanomedicine as nanosensitizers for
locoregional stromal modulation.

To target and modify the fibrotic PDAC stroma, one can quantitatively reduce fibrotic
stromal content (strategy #1), target fibroblast abnormalities to qualitatively alter fibroblast
phenotype (strategy #2), target metabolic processes in fibroblasts involved in the fibrotic
process (strategy #3), and/or target ECM abnormalities prevalent in the PDAC TME
(strategy #4). These strategies are not mutually exclusive, and a therapeutic strategy
intended to target a particular aspect of the fibrotic barrier may inadvertently affect other
aspects [101]—in some cases favorably and in others detrimentally.

3.1. Strategy #1: Stromal Ablation—Reducing Fibrotic Stromal Content

The simplest strategy to target fibrotic barriers to nanomedicine in PDAC is to reduce
fibrotic stromal content altogether (Figure 5). This is known as stromal ablation (or stromal
depletion). A well-known attempt at stromal ablation targeted SHH signaling. The SHH
signaling pathway is activated throughout and plays multifaceted roles in PDAC progres-
sion [102]. SHH signaling hyperactivation is driven by activating mutations in KRAS, which
is observed in the large majority of PDAC patients [103,104]. Tumor cell-secreted SHH
activates paracrine signaling in stromal cells, notably fibroblasts, and promotes fibrotic
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changes such as myofibroblastic differentiation and increased ECM deposition [105–107].
SHH signaling inhibition with IPI-926 decreased fibrotic stromal content in a genetically
engineered mouse model (GEMM) of PDAC, the KPC (LSL-KrasG12D/+; LSL-Trp53R172H/+;
Pdx1-Cre) mouse model [108], thereby increasing intratumoral delivery of gemcitabine and
achieving a transient stabilization of disease [37]. More recently, the co-delivery of SHH
inhibitors (cyclopamine or GDC-0449) with paclitaxel as micelles [109] or with SN38 (the
active metabolite of irinotecan) as polymeric nanoparticles [110] was shown to improve sur-
vival in mice compared to the respective cytotoxic agents delivered as nano-formulations
alone. The above results suggest that stromal ablation indeed improves nanomedicine
delivery and, as a consequence, efficacy in experimental models of PDAC.
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reduce stromal content by decreasing fibroblast numbers and ECM content. In contrast, stromal
reprogramming (blue arrow) aims to shift the balance from CAFs with tumor-promoting functions
(pCAFs) to CAFs with tumor-restraining functions (rCAFs). The insets schematically depict the
objectives of each strategy.

Other signaling pathways have also been targeted. TGFβ is considered the “master
regulator” of, and thus an important therapeutic target in, fibrosis [111,112]. In an ex-
perimental model of breast carcinoma, TGFβ ligand neutralization reduced intratumoral
collagen I content and improved the delivery of conventional chemotherapeutics as well
as nanomedicine [113]. TGFβ also promotes fibrosis in PDAC [114]. The coordinated
activation of SMAD2/3 downstream of TGFβ together with Yes-associated protein (YAP)
drives fibroblast activation in response to interactions with PDAC cancer cells [35]. TGFβ
signaling through Rho-associated kinase (ROCK) in PSCs drives collagen deposition [36].
The TGFβ receptor inhibitor galunisertib/LY2157299 reduced collagen I content in the
fibrotic stroma of PDAC in KPC mice [115]. Moreover, treatment with the TGFβ receptor
inhibitor LY2109761 together with gemcitabine prolonged survival in orthotopic PDAC
(L3.6pl inoculated) mice compared to gemcitabine alone [116]. However, given the cyto-
static effect of TGFβ on epithelial cells, the therapeutic benefit of directly targeting TGFβ
might depend on the mutational status of TGFβ receptors [117].

The direct targeting of TGFβ is generally considered to be clinically challenging
and/or infeasible due to its myriad functions across multiple organ systems [111,112]. On
the other hand, the diverse molecular mechanisms regulating TGFβ signaling offer addi-
tional opportunities for therapeutic targeting [118]. Indeed, various attempts have been
made in this regard [119]. The angiotensin receptor blocker losartan negatively regulates
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TGFβ at various levels of the signaling pathway [120]. Losartan treatment reduced stromal
collagen and hyaluronan production in orthotopic PDAC (AK4.4 or L3.6pl inoculated)
mice and alleviated the solid stress within these tumors (AK4.4) [121,122]. Consequently,
losartan-treated tumors demonstrated an enhanced distribution and efficacy of oncolytic
herpes simplex viruses as well as PEGylated liposomal doxorubicin (Doxil) [121]. In a
phase II trial, losartan with FOLFIRINOX followed by radiotherapy resulted in a median
overall survival of 33 months in patients with locally advanced PDAC [123]. Based on
these promising results, a multi-institutional randomized phase II trial is currently un-
derway (NCT03563248). Adenosine monophosphate-activated protein kinase (AMPK)
also negatively regulates TGFβ signaling [124]. The pretreatment of subcutaneous PDAC
(PANC-1 + PSC co-inoculated) mice with the AMPK activator metformin resulted in the de-
creased deposition of collagen I as well as fibroblast αSMA expression [125]. Furthermore,
subcutaneous and orthotopic PDAC (PANC-1 + PSC co-inoculated) mice were treated
with liposomes to deliver a nitric oxide donor (S-nitroso-N-acetylpenicillamine) to PSCs.
This resulted in down-regulated TGFβ ligand expression and its downstream targets (col-
lagen, fibronectin, and αSMA) [126]. In another example, halofuginone, which inhibits
TGFβ signaling at the level of SMAD2/3 phosphorylation [127], attenuated PSC activation,
decreased ECM deposition, and increased doxorubicin distribution in KPC mice [128].

The repurposing of therapeutic agents with indications in fibrotic conditions has
also been tested. Pirfenidone is an oral anti-fibrotic used to treat idiopathic pulmonary
fibrosis [129]. Pirfenidone treatment of subcutaneous and orthotopic PDAC (SUIT-2 + PSC
co-inoculated) mice inhibited PSC proliferation and collagen deposition. Treatment with
pirfenidone and gemcitabine together showed superior efficacy to either agent alone [130].
Another example is tranilast, which is a drug originally developed as an anti-allergic but
currently also used in Eastern Asian countries to treat fibrotic conditions such as keloids
and hypertrophic scars [131]. While direct evidence of efficacy in PDAC is scarce, the
anti-fibrotic effects of tranilast in experimental models of breast cancer have been reported.
Specifically, pre-treatment with tranilast decreased stromal collagen I and hyaluronan
deposition as well as αSMA expression in fibroblasts, thus alleviating mechanical stress
within the tumor of breast carcinoma-bearing mice [132,133]. Consequently, tranilast
enhanced the delivery and efficacy of subsequently administered nanomedicines (e.g., nab-
paclitaxel, Doxil, and docetaxel-loaded micelles). Notably, both pirfenidone and tranilast
are known to modulate TGFβ signaling [131,134].

The stromal ablation strategies described above mainly targeted fibroblasts. Given the
complex interplay of fibroblasts with various cell types including tumor cells and immune
cells [40], stromal ablation strategies need not necessarily target fibroblasts per se. For
example, mast cells generally promote fibrosis through the release of pro-fibrotic factors
such as TGFβ, renin, chymase, and histamine [135] and also induce PSC proliferation
in PDAC [136]. Ibrutinib/PCI-32765, an inhibitor of Bruton’s tyrosine kinase (BTK), is a
potent systemic mast cell blocker. Ibrutinib dramatically reduced stromal collagen content
in KPC mice and patient-derived xenografts, and the addition of ibrutinib improved
survival compared to gemcitabine alone [137]. Based on these results, a phase III clinical
trial assessed the benefit of adding ibrutinib to gemcitabine and nab-paclitaxel, but no
improvement was seen in either overall survival or progression-free survival [138].

Importantly, caution is warranted when adopting stromal ablation as a therapeu-
tic strategy. Numerous studies following the landmark study by Olive et al. [37] have
revealed that stromal ablation ultimately results in disease progression and therapeutic re-
sistance [139–141]. Notably, SHH inhibition in PDAC failed to improve patient outcomes in
clinical trials [142]. As discussed in the following section(s), these studies have highlighted
the complex role of fibrotic stroma in PDAC pathogenesis, progression, and therapeutic
response. Stromal ablation also greatly affects tumor mechanics [101], which is increasingly
appreciated to be a critical determinant of various aspects of PDAC biology and therapeutic
outcomes [143,144].
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3.2. Strategy #2: Stromal Reprogramming—Targeting Fibroblast Abnormalities

The failure of stromal ablation is generally understood to have revealed tumor-
suppressive, in addition to the more well-studied tumor-promoting, roles of the fibrotic
stroma in PDAC. This led to the stromal reprogramming strategy, which aims not to eradicate
stromal components per se but to phenotypically alter the stroma to a more favorable state
while retaining its tumor-suppressive functions (Figure 5). A well-known demonstration of
this strategy targeted vitamin D receptor (VDR) to revert activated PSCs into a quiescent
state [145]. The synthetic VDR agonist calcipotriol reduced stromal inflammation and fibro-
sis, increased intratumoral gemcitabine concentrations, and improved survival compared
to gemcitabine alone in mice [145]. Nanoparticles co-delivering calcipotriol and SN38
decreased markers of fibrosis and improved therapeutic efficacy compared to SN38 alone or
a mixture of calcipotriol and SN38 [146]. However, these encouraging pre-clinical studies
are in contrast to the mixed results seen epidemiologically and clinically [147]. A recent
in vitro study suggests that while calcipotriol favors the induction of tumor-suppressive
fibroblasts, it may reduce T cell-mediated immunity [148]. Of note, a phase II pilot trial
adding a VDR agonist (paricalcitol) and an immune checkpoint inhibitor (the anti-PD-1
monoclonal antibody nivolumab) to nab-paclitaxel, cisplatin, and gemcitabine has been
conducted. While the effect of adding paricalcitol remains unclear due to the small sample
size (10 patients) and lack of control groups, the promising overall response rate of 80% has
led to an expansion of the trial to include 25 patients [149].

Another example of stromal reprogramming utilized all-trans retinoic acid (ATRA),
which is an active metabolite of vitamin A. Quiescent PSCs are characterized by cytoplasmic
lipid droplets storing vitamin A which become lost in activated PSCs [150,151]. Treatment
with ATRA restored PSC quiescence, suppressed ECM remodeling, and slowed tumor
progression in vitro and in KPC mice [152–154]. In humans, a phase I clinical trial assessing
ATRA in PDAC revealed an increase in the apparent diffusion coefficient via diffusion-
weighted magnetic resonance imaging [155], which is ascribed to the increased extracellular
mobility of water molecules due to decreased collagen content [156].

The promising preclinical results of stromal reprogramming have motivated efforts
to identify additional means of achieving stromal quiescence. A common strategy has
been to identify genes up-regulated in fibrotic tissues of PDAC and/or chronic pancre-
atitis compared to healthy pancreata under the assumption that such genes are causally
involved in fibrogenesis [157,158]. An example is OB-Cadherin/Cadherin-11, the genetic
and/or pharmacological targeting (via SD133 treatment) of which attenuated markers of
fibrosis and improved the therapeutic efficacy of gemcitabine in KPC mice [159]. Recent
efforts to identify stromal reprogramming agents are increasingly fueled by a better un-
derstanding of CAF heterogeneity. The idea of CAFs as a heterogeneous population is
not entirely new: early studies revealed differential marker protein (e.g., αSMA, vimentin,
fibroblast specific protein 1, and NG2) expression across fibroblasts even within the same tu-
mor [160]. Recent progress in culture techniques and single-cell analytics is accelerating the
molecular characterization of the biologically and clinically relevant CAF subpopulations
(Figure 6) [35,39,61,161,162].

By utilizing organoid co-culture models of PDAC tumor cells and PSCs, Öhlund et al.
identified CAFs characterized by αSMA-positivity (named myofibroblastic CAFs: myCAFs)
as well as another subpopulation characterized by the secretion of inflammatory mediators
such as IL6 and a lack of αSMA expression (named inflammatory CAFs: iCAFs) [162]. my-
CAFs and iCAFs demonstrate differential localization within PDAC tissue: myCAFs exist
adjacent to tumor cells, while iCAFs are located more distantly [162]. The existence of these
subpopulations in PDAC has been replicated in multiple studies, although nomenclature
varies [163–167]. A pan-cancer single-cell RNA sequencing study further suggests that
these CAF subpopulations may be ubiquitous across cancer types [168]. The molecular
mechanisms governing myCAF vs. iCAF differentiation are antagonistic, whereby the for-
mer is driven by TGFβ signaling which antagonizes IL1-induced JAK/STAT signaling that
is important in the latter [115,165,169]. Moreover, hypoxia, which is characteristically ob-
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served in PDAC, strongly induced IL1 in tumor cells and favored iCAF differentiation [170].
The genetic ablation of STAT3 in PDAC CAFs in KPC mice slowed tumor progression,
reduced collagen content, and alleviated immunosuppression [171]. The disruption of a
myCAF phenotype via targeting Rho signaling promoted an iCAF phenotype [172]. SHH
inhibition reportedly induced a myCAF-to-iCAF conversion, which could have also con-
tributed to the clinical failure of SHH inhibition in PDAC [173]. A comprehensive single-cell
RNA sequencing analysis has revealed another CAF subpopulation characterized by the
expression of MHC class II and CD74 that activate CD4+ T cells in an antigen-specific
manner (named antigen-presenting CAFs: apCAFs) [169]. Interestingly, apCAFs seem to be
of mesothelial origin [73], again highlighting the heterogeneity of CAFs in PDAC.
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Figure 6. CAF subpopulations in PDAC and representative molecular markers. Myofibroblastic CAFs
(myCAFs, also referred to as the FB3 or C2 subpopulation) are characterized by the high expression of
αSMA. Inflammatory CAFs (iCAFs, also referred to as FB1 or C8 subpopulation) are characterized by
the low expression of αSMA as well as the expression of inflammatory cytokines such as interleukin
(IL) 6. rCAFs are characterized by the expression of Meflin/ISLR. Antigen-presenting CAFs (apCAFs)
express MHC class II and CD74. TGFβ signaling as well as hypoxia and substrate stiffness has been
shown to induce a myCAF phenotype. IL1 signaling through JAK-STAT as well as sonic hedgehog
(SHH) signaling inhibition induces a myCAF-to-iCAF conversion. Vitamin A/D, the synthetic
retinoid Am80, and all-trans retinoic acid (ATRA) promote the induction of the rCAF subpopulation.
Note that the figure illustrates some of the more well-characterized CAF subpopulations to date and
is not meant to be an exhaustive depiction.

A recent, notable step forward in our understanding of CAF heterogeneity is the iden-
tification of molecularly defined CAF subpopulations with tumor-suppressive functions
(named tumor-restraining CAFs (rCAFs) in contrast to tumor-promoting CAFs (pCAFs)) [64].
The net balance of rCAFs vs. pCAFs has been suggested to determine the clinical
outcome. Thus, the ultimate goal of stromal reprogramming is to efficiently shift the
balance from “bad” stroma with an abundance of pCAFs in favor of “good” stroma
characterized by rCAFs [75]. Mizutani et al. discovered that fibroblasts expressing
the glycosylphosphatidylinositol-anchored membrane protein Meflin (also known as im-
munoglobulin superfamily containing leucine-rich repeat: ISLR) are tumor-suppressive in
PDAC. Interestingly, they also showed that calcipotriol up-regulates Meflin expression, sug-
gesting that stromal reprogramming via VDR agonism works in part through the induction
of Meflin-positive rCAFs [174]. In a recent follow-up study, the synthetic retinoid Am80
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was identified via chemical library screening to induce Meflin expression in CAFs. Am80
treatment attenuated tumor stiffening by impairing collagen cross-linking and alignment,
and the addition of Am80 improved intratumoral drug delivery and therapeutic efficacy
compared to gemcitabine alone in subcutaneous and orthotopic PDAC (mT5 inoculated)
mice [175]. Based on these results, a phase I/II trial has been initiated to test the efficacy of
Am80 in combination with nab-paclitaxel + gemcitabine [176].

3.3. Strategy #3: Targeting Fibroblast Metabolism

Cellular metabolism is increasingly understood as a key regulator of cell fate and
function [177]. Deregulated cellular metabolism is a hallmark of cancer and a target
for therapy [178–180]. The metabolic landscape of the TME is, in large part, shaped
by disorganized tumor growth: consumption by proliferating tumor cells is believed to
deprive the TME of nutrients. A comparison of human PDAC and adjacent benign tissue
revealed that tumor tissues were low in glucose, upper glycolytic intermediates, as well as
glutamine, serine, and creatine phosphate [181]. Another study compared nutrient levels
in the TME (i.e., tumor interstitial fluid) vs. that in the circulation (i.e., serum) of KPC
mice. The availability of nutrients such as glucose, tryptophan, arginine, and cystine was
lower in PDAC TME compared to that in circulation [182]. Somewhat surprisingly, both
studies revealed that levels of certain nutrients were elevated in tumor tissue, suggesting
that nutrient availability is not entirely poor but complexly altered in the TME [181,182].
The altered nutrient availability in the TME poses unique demands on and forces the
adaptation of the metabolism of constituent cells including fibroblasts [183,184]. The
TME is also characteristically hypoxic and acidified, both of which also drive metabolic
reprogramming [185,186].

Early studies on metabolic alterations in CAFs focused on increased aerobic glycolysis
(dubbed the reverse Warburg effect) [187] and autophagy [188]. More recently, the nutrient-
scarce PDAC TME was shown to drive macropinocytosis in CAFs via a calmodulin-kinase
kinase 2 (CaMKK2)/AMPK-dependent pathway to support the survival of CAFs as well
as tumor cells [189]. Cancer cells actively exploit and rely on the metabolism of CAFs to
survive [188–194]. For a detailed discussion of metabolic alterations/reprogramming in the
TME and how they pertain to PDAC pathogenesis and progression, the reader is referred to
recent, dedicated reviews [180,183,184,195–197]. Our focus below will be to highlight some
key findings on metabolic alterations in fibroblasts as it relates to fibrotic processes and the
therapeutic implications of such alterations. Compared to our understanding of how the
metabolism of CAFs is reprogrammed and exploited by tumor cells, the cell-autonomous
consequences of metabolic alterations in CAFs are much less clear.

The metabolic/bioenergetic demands inherent to increased ECM synthesis and secre-
tion in fibrosis may offer exploitable targets (Figure 7) [198]. ECM proteins are usually large,
undergo various post-translational processing and modifications, and must be secreted.
Energy is consumed throughout the whole process. At least partly due to such energetic
(ATP) demands, heightened glycolytic activity is necessary for increased ECM production,
myofibroblastic differentiation, and fibrosis progression [187,199,200]. A recent single-cell
RNA sequencing study identified a CAF subpopulation (named meCAFs, for CAFs with an
active metabolic state) characterized by heightened glycolytic activity and associated with
a higher risk of metastasis, poor prognosis, but a better response to immunotherapy [167].
The up-regulation of various glycolytic enzymes is often observed in cancer, and these en-
zymes have garnered interest as potential therapeutic targets [201,202]. Autophagy is also
important in PSC activation and the secretion of ECM molecules as well as inflammatory
cytokines such as IL6 [190]. Similar to glycolysis, autophagy too can also be targeted at
various points of its regulatory pathways [203].
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the metabolic/bioenergetic demands inherent to ECM production are illustrated. Its large size,
abundance, unique amino acid composition, and tertiary structure pose a unique challenge for
cells. Not only is transcription/translation metabolically costly, but chaperones to prevent misfold-
ing/aggregation are also required. Moreover, collagens are secreted via specialized pathways due to
their large size [204]. Various post-translation modifications and constant remodeling further increase
metabolic/bioenergetic costs.

Collagen is a collective term encompassing a large family of glycoproteins character-
ized by (1) a repetition of the amino acid sequence [Gly-X-Y]n, (2) the occupation of X and
Y positions by proline and hydroxyproline, and (3) the formation of a right-handed triple
helix from three left-handed polyproline α-chains of identical length (for a comprehensive
review of collagens, the reader is referred to [77,205]). Collagens consist of over 90% of the
total ECM mass throughout PDAC progression, even while the total ECM mass increases
over 2-fold in PDAC compared to normal pancreata [78]. The demanding biosynthetic
requirements for fibroblasts are further compounded by the unique amino acid composition
(approximately 30% glycine and 15–20% proline or hydroxyproline) of collagens [198]. The
idea of targeting this process to ameliorate fibrosis is not entirely new [206]. In particular,
the requirement of proline in collagen synthesis seems to be a viable therapeutic target.
Autophagy deficiency led to decreased collagen synthesis, which is in part due to the role of
autophagy in promoting proline biosynthesis [207]. More recently, pyrroline-5-carboxylate
reductase 1 (PYCR1), a key enzyme in proline biosynthesis, in CAFs was shown to be
necessary for collagen production in breast cancer [208]. This vulnerability seems to be
because fibroblasts tend to synthesize their own proline unless precursor metabolites (such
as glutamine) are limiting [198]. To date, the effect of targeting proline biosynthesis on
nanomedicine delivery in PDAC is unknown but should be assessed in future studies.

Another aspect of CAF metabolism that warrants attention is its altered redox status.
Oxidative stress is a common feature of various fibrotic conditions, and it seems to play
an important role in fibrogenesis. The pro-fibrotic TGFβ induces ROS production via
various mechanisms such as the induction of ROS-producing NADPH oxidases as well
as suppression of antioxidant enzymes such as superoxide dismutase. Indeed, NADPH
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oxidase is important for PSC activation [209]. Increased ROS levels, in turn, play a role
in TGFβ activation from its latent form, forming a vicious loop [210,211]. Interestingly,
TGFβ promotes proline biosynthesis in a SMAD4-dependent fashion in fibroblasts con-
currently with increased glucose and glutamine uptake to meet the bioenergetic demands
of ECM production. The induction of proline biosynthesis acts as a redox vent to utilize
excessive mitochondrial redox potential, thereby protecting fibroblasts from oxidative
damage [212]. Increased ROS inactivates Kelch-like ECH-associated protein 1 (KEAP1),
which is responsible for the degradation of the transcription factor NF-E2-related factor 2
(NRF2) under unstressed conditions. ROS-induced activation of NRF2 up-regulates various
detoxifying enzymes to counteract oxidative stress [213]. The deletion of Nrf2 in KPC mice
and PDAC organoids revealed a pro-tumorigenic role of NRF2 in PDAC [214,215]. Further
study demonstrated that Nrf2 expression in PSCs was sufficient to promote tumorigene-
sis [216]. Of note, Nrf2 deletion reduced the stromal reaction in KPC mice [215]. The above
results suggest that the redox metabolism is a potential reservoir of therapeutic targets to
counter fibrosis.

With an increasing understanding of metabolic alterations in cancer and therapeutic
agents to target them [217], it is also important to note that enzymes and associated
regulatory proteins of a particular metabolic process usually also possess functions outside
of this process [218]. The pleiotropic function of metabolic enzymes/regulatory proteins
must be kept in mind during the interpretation of experimental results and therapeutic
implementation.

3.4. Strategy #4: Targeting ECM Abnormalities

ECM deregulation in the fibrotic TME leads to tumor stiffening (i.e., heightened
Young’s modulus), high mechanical stress, and high interstitial fluid pressure (IFP), all of
which limit the intratumoral delivery of nanomedicine [100,219–223]. Therefore, an impor-
tant goal of targeting ECM abnormalities is to normalize tumor mechanics [143,144]. As we
discuss in detail below, strategies targeting ECM abnormalities can aim to therapeutically
degrade ECM components aberrantly deposited (strategy #4–1), target the aberrant ECM
remodeling (strategy #4–2), and/or target the signaling induced by the aberrant ECM (strat-
egy #4–3). Although much remains to be studied, we highlight some key findings/concepts
and discuss future directions below.

3.4.1. Strategy #4–1: Therapeutic Enzymatic Degradation of ECM Components

ECM components in the fibrotic PDAC TME hinder the passage of nanomedicine via
various mechanisms (Figure 8) [221,222]. Fibrillar collagens sterically block the passage of
nanomedicine [224]. ECM components are compressed into a dense and tortuous network
due to the solid stress posed chiefly by increased cellularity, and tortuosity affects the
effective distance nanomedicines must travel [225]. ECM cross-linking induces stiffening,
also contributing to elevated solid stress [226]. Some ECM components, especially the
glycosaminoglycans, trap water and decrease hydraulic conductivity (i.e., the ease with
which water can percolate through the extracellular milieu) [227]. Increased ECM depo-
sition results in heightened IFP, which also reduces the penetration of nanoparticles into
the tissue [220]. Enzymatic degradation of ECM components has been attempted as a
therapeutic strategy to overcome these issues.
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Hyaluronan is a glycosaminoglycan consisting of disaccharide repeats of
N-acetylglucosamine and glucuronic acid. Its molecular weight varies between 100 and
10,000 kDa, which seems to have functional consequences [228,229]. Hyaluronan is ubiq-
uitously present throughout the human body but overproduced in many types of human
cancers, including PDAC [229,230]. Hyaluronan participates in cellular signaling via recep-
tors such as CD44 and RHAMM [228,229]. Hyaluronan is also a nutrient fueling cancer cell
proliferation in PDAC [231]. Apart from these biological functions, hyaluronan binds/traps
large amounts of water due to its negative charge [227]. This ensures tissue hydration
under physiological conditions but decreases hydraulic conductivity and increases IFP
in pathological conditions such as cancer [227,228]. In KC (LSL-KrasG12D/+; Pdx1-Cre) and
KPC mice, hyaluronan accumulation was observed early in PDAC tumorigenesis [232].
Overproduced hyaluronan increased IFP and impaired vascular function, resulting in poor
drug delivery [232–234]. This was reversed by treatment with pegvorhyaluronidase alfa
(PEGPH20), which is a PEGylated recombinant human hyaluronidase [232–234]. Based on
these pre-clinical results, PEGPH20 was tested clinically. However, a phase IB/II random-
ized study of PEGPH20 with FOLFIRINOX in patients with metastatic PDAC demonstrated
that the addition of PEGPH20 is detrimental in patients unselected for tumor hyaluronan
status [235]. Even after selecting for patients with high hyaluronan levels, a randomized
phase III trial of PEGPH20 with nab-paclitaxel plus gemcitabine in metastatic PDAC re-
vealed that PEGPH20 significantly increased overall response rate but failed to improve
progression-free survival or overall survival [236]. The clinical development of PEGPH20
in PDAC has thus been discontinued. As with the clinical failure of stromal ablation, it
has been suggested that the hyaluronan-rich stroma may also possess tumor-suppressive
roles [237].

Another ECM component targeted for enzymatic degradation is collagen. Collagens
are major constituents of the ECM, and its abnormal deposition is a hallmark feature of
fibrosis as well as in PDAC [42,78]. Fibroblasts up-regulate collagen expression in re-
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sponse to interacting with cancer cells, which ultimately results in decreased nanomedicine
passage [238]. Especially, the fibrillar collagens types I and III are overproduced [239].
Collagens, and their proteolytic fragments, elicit intracellular signaling via cellular recep-
tors [240,241]. Moreover, collagens, due to their abundance, also serve as a nutrient source
for cancer cells in PDAC [242]. Overproduced collagens become increasingly linearized
during PDAC tumorigenesis/progression in KC and KPC mice and are also clinically as-
sociated with worse prognosis [101,243]. The deposition and linearization of collagens
result in tumor stiffening, which impedes drug penetration and further promotes pro-
fibrotic signaling pathways [243,244]. The enzymatic degradation of collagen improved the
nanomedicine delivery of paclitaxel micelles in an orthotopic PDAC (KPC cell-inoculated)
mice model of PDAC [245]. Of note, genetically deleting collagen I expression in αSMA-
positive myofibroblasts accelerated PDAC in KPC mice, indicating tumor-suppressive roles
of collagen I [246]. “Good” and “bad” collagens thus exist, but the role of collagens in
pathogenesis seems highly context-dependent [205]. Further studies are warranted, but
caution is necessary when therapeutically implementing collagen degradation.

3.4.2. Strategy #4–2: Targeting ECM Remodeling

Abnormalities in ECM remodeling—ECM deposition/post-translational modification,
force-mediated ECM modification, and ECM degradation—are characteristically observed
in cancer [81,83,84,86,87] and offer various opportunities for therapeutic exploitation.

ECM deposition/post-translational modification. An obvious target during this step would
be to decrease ECM synthesis. This is, in large part, a goal pursued by stromal reprogram-
ming. In the case of collagen, the inhibition of fibril formation might be a therapeutic target
in fibrosis. Antibodies directed against the telopeptide region of collagens [247] as well as
peptides blocking key interactions between procollagen chains [248] interfere with collagen
fibril formation. Interestingly, the composition of the collagen triple helix is altered in
PDAC: the collagen I triple helix normally consists of two α1 chains and one α2 chain, but
in PDAC, it consists of three α1 chains due to the epigenetic suppression of Col1a2 (the
α2 chain-encoding gene). The altered composition enhances cancer cell proliferation via
integrin α3β1 signaling and suppresses anti-tumor immunity [249]. Altered composition
offers an opportunity for tumor-specific therapeutic intervention and warrants further
study. Whether other collagens also demonstrate altered composition is unknown. Chap-
erones dedicated to collagens such as heat-shock protein 47 (HSP47)/Serpin H1 are also
potential targets [250]. HSP47 is up-regulated in PDAC stroma [158,251]. Targeting HSP47
with siRNAs in PSCs decreased the collagen content and ameliorated pancreatic fibrosis in
mice [252,253]. Small molecules targeting HSP47 have also been identified [254,255], but
whether it is efficacious against fibrotic barriers in PDAC remains to be studied. Cross-
linking is an ECM post-translational modification that has been extensively studied as
it drives tumor stiffness and induces mechanosignaling [256]. Collagen cross-linking is
driven by enzymes such as lysyl oxidase (LOX) and transglutaminase [83]. LOX expression
is elevated in KPC mice and is clinically associated with a worse prognosis in PDAC [257].
Tumor tissues of KPC mice are stiffer (Young’s modulus of 11.3 ± 1.7 kPa) than normal
pancreata (4.2 ± 1.3 kPa). Human PDAC tissues (44.8 ± 5 kPa) also are stiffer than neigh-
boring non-neoplastic pancreata (3.5 ± 0.5 kPa) [258]. Targeting LOX with an antibody
or with the small molecule inhibitor beta-aminopropionitrile decreased fibrillar collagen
and softened tumor tissue [243,257]. Importantly, the addition of an anti-LOX antibody to
gemcitabine demonstrated therapeutic efficacy superior to either treatment alone in KPC
mice [257]. Another collagen cross-linker, transglutaminase-2, is secreted by PDAC cells
and is enzymatically active in PDAC stroma. Orthotopic PDAC (AsPC1 or PANC-1 inocu-
lated) mice in which transglutaminase-2 was knocked down in tumor cells demonstrated
significantly thinner collagen fibers as well as decreased collagen content and reduced CAF
activation [259]. Especially with the development of transglutaminase-2 inhibitors [260],
future studies assessing whether targeting transglutaminase-2 in a therapeutic setting
improves drug delivery are warranted.
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Force-mediated ECM modification. This step involves the engagement of ECM molecules
by cellular receptors [83]. ECM receptors such as integrins transduce forces generated by
cells to the ECM, which drive ECM organization at the tissue scale [97,261]. While collagen
fibers are randomly oriented in healthy tissue, anisotropy (high degree of alignment) is
often observed in PDAC and has been reported as a negative prognostic factor following
surgical resection [262,263]. PSCs from PDAC demonstrated an increased ability to align
ECM fibers compared to normal fibroblasts in part via a TGFβ/ROCK signaling-dependent
mechanism [36]. ECM alignment allows the coordination of cellular forces over large
areas. Compounded with the acquisition of myofibroblastic contractility by CAFs, this
could result in a further contraction/stiffening of tumor tissue [264]. Force-mediated ECM
modification seems to work in parallel with ECM post-translational modifications, as
the inhibition of cross-linking enzymes such as LOX disrupted ECM alignment [243,265].
Indeed, pre-treatment of orthotopic PDAC (KPC + PSC co-inoculated) mice with a lysyl
oxidase-like 2 (LOXL2) inhibitor disrupted collagen alignment without altering content,
softened tumor tissue, and improved the therapeutic efficacy of nab-paclitaxel [265]. The
force applied by cells onto ECM molecules can also cause intramolecular deformations that
reveal cryptic binding sites, which could affect ECM signaling [266,267]. One of the best-
studied examples is fibronectin, in which individual domains within the molecule change
conformational status (i.e., folded vs. unfolded) in response to applied force [268–270].
Peptide probes have been generated that discriminate force-induced conformational states
of fibronectin, and probes specific to relaxed fibronectin showed preferential accumulation
and retention in tumor tissue compared to other organs [271,272].

ECM degradation. This step is driven by target-specific proteases such as the var-
ious MMPs, disintegrin and metalloproteinases (ADAMs), disintegrin and metallopro-
teinases with thrombospondin motifs (ADAMTSs), as well as serine, cysteine, aspartate,
and threonine proteases [273]. ECM degradation must be tightly coordinated with ECM
synthesis, modification, and organization to achieve homeostasis, but it is deregulated
in cancer [80,83,273,274]. One might expect ECM degradation to be decreased in fibro-
sis, but this is not the case [275]. ECM degradation drives ECM turnover in which the
normal ECM is replaced by tumor-derived ECM during tumorigenesis and fibrogene-
sis [83]. Indeed, the broad inhibition of MMPs with GM6001 attenuated the aberrant
ECM remodeling by PSCs from PDAC [36]. Importantly, ECM degradation is not a solely
structural phenomenon. ECM degradation provides nutrients for cancer cells and initiates
cellular signaling via bioactive fragments generated during degradation [241,242]. For
example, collagen I, which while intact demonstrates tumor-suppressive functions, signals
through the discoidin domain receptor (DDR) 1–NFκB–p62–NRF2 axis to promote PDAC
growth following MMP-dependent collagenolysis [276]. ECM-bound growth factors are
also released upon ECM degradation [277]. Post-translational modifications can alter ECM
degradation dynamics. Indeed, cross-linked and bundled collagen fibers found in fibrosis
are resistant to degradation [278]. A recent systematic review, however, found that the
available evidence regarding the role of MMPs in PDAC progression is quite inconsis-
tent [279]. This perhaps reflects the highly divergent and context-dependent roles of the
various MMPs [275,280]. MMPs and other enzymes implicated in ECM degradation also
have non-ECM substrates and at times even work in a nonproteolytic manner [82,275,281].
While ECM-degrading enzymes in the fibrotic stroma have been exploited as a TME-specific
on-switch for nanomedicine delivery (detailed in Section 4.3), the effect of targeting ECM-
degrading enzymes on fibrotic barriers in PDAC remains largely unstudied. Caution is
warranted, however, as initial experience with MMP inhibitors in the clinic was poor with
unexpected, severe side effects [280].

3.4.3. Strategy #4–3: Targeting ECM Signaling

ECM signaling is deregulated in fibrosis as well as in cancer and offers various thera-
peutic opportunities [282]. The importance of integrins in CAF differentiation and function
was recently reviewed elsewhere [98]. In PDAC in particular, integrins β1 [283], α3 [284],
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α5 [285,286], αV [287,288], and α11 [289] in PSCs/CAFs have been hitherto targeted and
studied. The most promiscuously interacting subunit, integrin β1, signals through focal
adhesion kinase (FAK) in PSCs to radioprotect PDAC cancer cells [283]. PDAC CAFs
express integrin α3 more abundantly than normal fibroblasts in vitro, and α3 knockout
impaired CAF differentiation [284]. Integrin α5 is up-regulated in the fibrotic stroma of
PDAC compared to healthy pancreatic tissue and is clinically associated with decreased
survival. Knockdown of ITGA5 (encoding integrin α5) inhibited myCAF differentiation
in vitro via its effect on TGFβ/SMAD as well as FAK signaling [285]. Interestingly, not
only expression but intracellular localization seem to be important: the redistribution of
active integrin α5β1 from the cell surface to assorted endosomes was found to drive PDAC
CAF differentiation, and patients with integrin α5β1 localized mainly at the cell surface
had better prognosis [286]. Integrin αV/CD51 is highly expressed in PDAC PSCs, and
stromal expression of integrin αV was associated with advanced disease and decreased
survival. Knockdown of ITGAV reduced PSC proliferation and migration [288]. Integrin
αVβ5 was also necessary for the endosomal redistribution of integrin α5β1, pointing to
the importance of crosstalk between the various integrins [286]. Integrin α11 expression in
PDAC stroma is higher than in adjacent non-tumoral tissues, and ITGA11 knockdown im-
paired PSC activation [289]. Treatment with a peptidomimetic inhibitor of integrin α5 (AV3)
or a designed protein inhibitor of integrin αVβ3 (ProAgio) in PSCs ameliorated fibrosis,
decreased tumor growth, and enhanced sensitivity to gemcitabine in mice (PANC-1 + PSC
co-inoculated mice in [285] and KPC mice in [287]). Integrin inhibitors have long been
pursued in various clinical applications including fibrotic conditions [290,291]. Despite
setbacks, increased biological and structural insights into integrin biology are fueling the
development of novel inhibitors [291,292].

An important aspect of integrin-mediated ECM signaling is its role in mechanotrans-
duction [92,261]. The general role of mechanotransduction in fibrosis has recently been
reviewed [293–295]. Mechanical forces regulate ECM-integrin binding kinetics as well
as the activation/conformation, clustering, and trafficking of integrins [92]. The compo-
sitional dynamics of the integrin adhesome are also mechanically regulated [296]. The
combined biochemical and mechanical properties of integrins enable the integration of
various microenvironmental signals which then signal through various downstream effec-
tors [92,266]. These effectors could also offer various therapeutic opportunities. Signaling
downstream of integrins is centered around four core pathways: ILK–PINCH–kindlin,
FAK–paxillin, talin–vinculin, and α–actinin–zyxin–VASP pathways [297]. Of these path-
ways/components, ILK [298], kindlin-2 [299], and FAK [300] have been reported to be
important for PSC/PDAC CAF activation. Moreover, VASP is important for the activation
of the closely related hepatic stellate cell in hepatic fibrosis via the promotion of TGFβ
signaling [301]. Additionally, the stromal expression and/or activation of PINCH [302],
kindlin-2 [299], and/or FAK [300] have been associated with poor clinical outcomes in
PDAC. Indeed, pharmacological inhibition of FAK (e.g., VS-4718 and PF-562271) reduced
ECM expression and fibrosis in KPC mice [300,303]. FAK inhibition rendered KPC mice
more sensitive to gemcitabine and nab-paclitaxel treatment in part through tumor soften-
ing [304]. VS-4718 treatment in KTC mice (LSL-KrasG12D/+; Tgfbr2flox/+; Ptf1a-Cre) decreased
stromal content and augmented the efficacy of a combination treatment consisting of
G47∆ (a third-generation oncolytic herpes simplex virus type 1) and immune checkpoint
inhibition [305].

A common cellular process downstream of integrin signaling is the remodeling of
the actin cytoskeleton [306]. Actin remodeling is crucial for the acquisition of a myCAF
phenotype, as can be observed by the acquisition of the expression of specific actin isoforms
upon activation (i.e., αSMA) [307,308]. For example, ROCK is a critical regulator of the actin
cytoskeleton, and its inhibition attenuated PSC activation in vitro [309]. The expression
of both ROCK1 and ROCK2 isoforms increases with tumor progression in murine and
human PDAC, and elevated ROCK expression portends a poor prognosis [310]. ROCK
promotes collagen remodeling, and treatment with various ROCK inhibitors (e.g., Fasudil,
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dimethylfasudil/H1152, Y27632, and AT13148) prolonged survival in KPC mice [310,311].
Interestingly, ROCK inhibition need not be chronic, and transient treatment seems to suffice.
In a strategy dubbed tissue priming, transient ROCK inhibition with Fasudil attenuated
fibrotic remodeling and improved sensitivity to treatment with gemcitabine and nab-
paclitaxel [312]. In addition to ROCK, the actin-organizing protein palladin was recently
reported to be important in fibroblast activation in response to TGFβ as well as for the
generation of tumor-supporting ECM [313]. Indeed, stromal palladin expression is a
negative prognostic factor in PDAC [314].

Non-integrin ECM receptors such as DDRs also play important roles in fibrosis [315,
316]. The two DDRs, DDR1 and DDR2, are RTKs that bind collagens [240,316,317]. DDR1
and DDR2 do not seem to be functionally redundant and might even have opposing roles:
DDR1 is pro-fibrotic while DDR2 is anti-fibrotic [315]. The inhibition of DDRs with imatinib
reduced PSC activation and ECM deposition in cerulein-induced pancreatitis [318]; the
caveat is that imatinib is not selective to either DDR1 or DDR2 and also inhibits a variety
of other RTKs. Moreover, DDR1 knockout in KPC mice resulted in pancreatic atrophy
accompanied by increased fibrillary collagen deposition [319], which might be problematic
when targeting DDR1 in PDAC.

4. Therapeutic Strategies Optimizing Nanomedicine Design to Overcome Fibrotic
Barriers to Nanomedicine

The focus so far has been on therapeutically modulating the fibrotic TME (strate-
gies #1–#4). As mentioned above, the optimization of nanomedicine design will likely
also be important in overcoming the fibrotic barriers in PDAC. Various avenues of opti-
mization exist, but we envisage the following four categories (Figure 4): physicochemical
optimization of nanomedicines (strategy #5), installation of active targeting properties
(strategy #6) and/or microenvironmental responsivity (strategy #7) in nanomedicines,
as well as the design of nanomedicine as nanosensitizers to physically manipulate the
fibrotic stroma (strategy #8). In the following sections, we discuss general considerations
in nanomedicine design by focusing on the fibrotic stroma without necessarily delving
into the technical details of various nanomedicine formulations. Although we specifically
focus on fibrotic barriers in this review, other biological barriers must also be kept in
mind during nanomedicine design. Optimization must be executed comprehensively to
achieve maximal delivery and efficacy throughout the biodistribution of the administered
nanomedicine. It is also of note that many issues must be addressed for the successful
clinical translation of nanomedicine [320–323]. We emphasize the need for formulations
to be suited for mass production: their synthesis must be controllable, reproducible, and
scalable [321]. Generally speaking, the more complex/sophisticated a formulation becomes,
the more difficult it is to mass produce; this tradeoff must be kept in mind during the
optimization of nanomedicine design.

4.1. Strategy #5: Optimizing the Physicochemical Properties of Nanomedicine

Less than 1% of injected nanomedicines accumulate in tumors, and only about
0.001% eventually interact with cancer cells due to the presence of various biological
barriers [24,324]. Improving intratumoral accumulation and delivery to cancer cells is
thus of paramount importance [24,321,323,324]. Conceptually, nanomedicine formulations
consist of payload (i.e., the active drug to be delivered) and non-payload (i.e., scaffold to
integrate the payload and necessary functional moieties into a unitary agent) portions. The
non-payload portion, often comprising the majority of the nanomedicine formulation, is
not inert. Indeed, numerous physicochemical parameters of nanomedicine—irrespective of
deliberate functionalization—are known to elicit biological effects (called the ancillary effects
of nanomedicine formulations) and affect the efficiency of delivery [325]. For improved
delivery, these parameters must be optimized (Figure 9). Examples include particle size,
particle geometry, surface charge (zeta potential), surface chemistry, and elasticity, among
various others [24,321,324].
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as particle size, particle geometry, surface charge, surface chemistry, and elasticity, the efficiency of
nanomedicine delivery can be improved. Optimization must not only address attrition due to fibrotic
barriers but also attrition even before the nanomedicine reaches the tumor tissue.

Particle size greatly affects the ability of nanomedicine to penetrate fibrotic barriers
in PDAC. A comparison of platinum-loaded micelles of various diameters (30, 50, 70, and
100 nm) revealed that only 30 nm micelles could penetrate the fibrotic stroma sufficiently
to achieve a therapeutic effect in subcutaneous PDAC (BxPC-3 inoculated) mice [326]. The
small nanoparticle size poses an engineering challenge especially when the payload is of
large molecular weight, as in the case of nucleic acid therapeutics. However, strategies to
deliver nucleic acid therapeutics in the <30 nm size range have already been devised. For
example, dynamic interactions between Y-shaped block catiomers of precisely controlled
chain lengths with siRNAs have been utilized to generate unit polyion complexes (uPICs)
with a size of ~18 nm [327]. Another strategy complexed single-stranded DNA (instead
of double-stranded DNA that is bulkier due to its structural rigidity) with poly(ethylene
glycol)-b-poly(l-lysine) to generate polyplex micelles with a size of ~29 nm [328]. The
successful penetration of fibrotic stroma and the therapeutic effect of both nanomedicine
systems have been tested in subcutaneous PDAC (BxPC-3 inoculated) mice [327,328]. The
dependence of nanomedicine delivery efficiency and therapeutic efficacy on particle size
is likely a result of various filtration processes. While it is not definitively clear what
confers size selectivity within the fibrotic stroma, ECM density and composition are likely
important [329]. Interestingly, size selectivity seems to be different between models [330].
This raises the possibility of inter-patient variability in optimal nanomedicine particle
size, which could be problematic for clinical translation [331]. The efficiency of retention
must also be considered: while smaller particles more easily permeate, larger particles are
better retained within tissues. Various strategies have thus been proposed to achieve size
modulation within single nanoparticles in response to various external stimuli [324,332].

The effects of various physicochemical properties on cellular uptake have been in-
tensively studied [333–335]. This could inform the design of nanomedicine that evades
unintended uptake and clearance by phagocytic cells, such as macrophages, which are
abundant in the fibrotic PDAC TME [336–338]. Chemical modification of the nanoparti-
cle surface by PEGylation is a safe and clinically utilized method to avoid macrophage
uptake [339]. On the other hand, given the essential role of macrophages in tissue remod-
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eling and fibrosis [336,337,340], targeting macrophages by exploiting the innate tendency
of these cells to uptake nanomedicine may also be leveraged for therapy [338]. Such a
strategy could aim to reduce macrophage content altogether or attempt to shift macrophage
polarization away from a fibrosis-promoting phenotype and induce a fibrosis-resolving
phenotype [336,341].

The effects of physicochemical parameters other than particle size on the penetration
efficiency of fibrotic barriers are relatively under-studied in contrast to cellular uptake.
Regarding particle geometry (shape), a study comparing spherical vs. worm-like nanopar-
ticles of similar particle size (~110 nm) as determined by dynamic light scattering reported
enhanced accumulation of the latter in subcutaneous PDAC (B33 inoculated) mice. A
similar trend was observed but not statistically significant in KPC mice [330]. Various
non-spherical nanoparticles have been hitherto devised [342,343], and a comprehensive
comparison of different particle geometries and their effect on the penetration of the fibrotic
barriers in PDAC is warranted. In regard to the surface charge, positively charged nanopar-
ticles showed somewhat lower tumor accumulation than their neutral/anionic counterparts
of similar size (~100 nm) but demonstrated improved penetration and antitumor efficacy in
subcutaneous PDAC (BxPC-3 inoculated) mice [344]. As illustrated here, the surface charge
can sometimes have opposing effects on different phases in the process of nanomedicine
biodistribution. Strategies to modulate surface charge within single nanoparticles in re-
sponse to various external stimuli have thus been devised [324,345]. Particle elasticity [346]
and stiffness [347] also affected tumor accumulation in models of breast and ovarian cancer,
respectively. However, because these reports did not specifically assess fibrosis, the effect of
these parameters on the penetration efficiency of fibrotic barriers in PDAC remains unclear.

4.2. Strategy #6: Active Targeting of Nanomedicine

The delivery of nanomedicine is driven by diffusion (movement governed by con-
centration gradient) and convection (movement governed by fluid flow) [222,324]. Pas-
sive targeting solely relies on these forces, whereas active targeting strategies involve the
installation of moieties that exploit features (such as the specific up-regulation of a partic-
ular protein) characteristic of the TME onto the surface of the nanomedicine formulation
(Figure 10) [348]. Strategies for subcellular targeting (or organellar targeting), the targeted
delivery of the payload (to specific organelles) after cellular internalization, is also an
active field of research [349,350]. Indeed, to achieve the maximal active targeting effect,
a hierarchical strategy that achieves tissue-type, cell-type, and intracellular specificity is
necessary [350]. Moieties utilized in active targeting include small molecules, polypeptides
of various lengths (small peptides to proteins such as antibodies), and aptamers [351–353].
Active targeting may also build upon the specificity of natural vectors, such as EVs and
viruses [354,355]. Active targeting was initially proposed to increase localization to and
retention at target tissues as well as enhance uptake by target cells [331,351]. There is
some debate as to how active targeting functions, but it seems that it does not necessarily
work by significantly increasing overall tumor localization but rather by enhancing cellular
uptake [24,331]. Interestingly, active targeting using the V7 peptide (a pH-low insertion
peptide: pHLIP) which exploits the acidic TME outperformed particle size modulation
in orthotopic PDAC (S2VP10 inoculated) mice [356], with the caveat that the histological
evaluation of fibrosis was not performed in the study.
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active targeting, moieties (antibody is depicted as an example in the figure) that recognize specific
features of the tumor tissue (such as cell surface markers or ECM components) are utilized to enhance
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Active targeting generally is directed at cellular targets, especially proteins over-
expressed on the surface of cancer cells [352,357]. Strategies to target stromal cell types
are much less explored except for tumor endothelial cells that have been extensively
targeted given their role in regulating the extravasation of nanomedicine into the tumor
tissue [348,358]. Attempts have been made to target fibroblast activation protein (FAP),
which is a membrane protein up-regulated in PDAC CAFs. The stromal expression of
FAP in PDAC correlates with desmoplasia and worse prognosis clinically [359,360]. FAP+

CAFs mediate immunosuppression in PDAC via the secretion of CXCL12 [361]. However,
targeting FAP+ CAFs showed little therapeutic benefit and further resulted in cachexia and
anemia [362,363]. The latter adverse effects were shown to be due to collateral damage
against FAP-expressing multipotent bone marrow stem cells [363]. This example illustrates
that specificity is especially crucial, and the unintended targeting of even numerically minor
cell populations can have dire, systemic consequences. The active targeting of fibroblasts
thus requires the identification of highly specific, membrane-expressed markers, which
could be complicated by the highly heterogeneous nature of CAFs.

In addition to directly targeting fibroblasts, the abundantly deposited ECM in fibrosis
can also be targeted [364]. Compared to simply targeting the cancer cells, targeting the
ECM within the TME might have the additional benefit of affecting tumor-supportive
stromal cells. An example is the cancer-stroma targeting (CAST) therapy [365]. In the
CAST therapy, cytotoxic agents are conjugated to ECM-targeting antibodies (which result
in an antibody–drug conjugate [ADC]). The ECM-bound ADCs serve as a scaffold from
which cytotoxic agents are sustainably released and diffuse through the tumor tissue. An
ADC consisting of SN38 conjugated to an anti-collagen IV monoclonal antibody showed
therapeutic efficacy against subcutaneous PDAC xenograft (SUIT-2 or PSM1 inoculated)
mice [366]. ECM-directed nanomedicines do not necessarily need to be ADCs, and other
nanoparticles can also in principle be actively targeted to the ECM.

Apart from collagen IV, other ECM components such as tenascin-C, fibronectin, aggre-
can, heparan sulfate, and chondroitin sulfate have been targeted in other cancer types [364].
Given the strong expression of tenascin-C and fibronectin in the PDAC stroma com-
pared to healthy tissue, these ECM components may be promising targets but remain
unassessed [367]. Connective tissue growth factor (CTGF) is chiefly produced by PSCs and
significantly over-expressed (>40-fold induction over normal tissue) in PDAC [368,369].
CTGF expression level correlates with the degree of fibrosis [368], and thus, CTGF could
potentially be actively targeted. Interestingly, targeting CTGF with the monoclonal anti-
body FG-3019 improved the efficacy of gemcitabine in KPC mice. However, intratumoral
gemcitabine concentration was not affected by FG-3019 treatment, pointing at mechanisms
independent of drug delivery, at least of small molecular weight cytotoxic agents [370].
Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein whose ex-
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pression in CAFs is associated with an activated stroma phenotype and portends a poor
prognosis [371,372]. SPARC expression is driven by the interaction of CAFs with PDAC
cancer cells [373]. Thus, SPARC could potentially be actively targeted. Of note, stromal
SPARC is necessary for collagen deposition in PDAC [36,374]. Although Sparc knockout in
KC mice reportedly did not lead to increased intratumoral gemcitabine concentrations [374],
its effect on nanomedicine delivery remains unknown. In line with reports that the genetic
ablation of stromal collagen I reduces survival in KPC mice, a profound reduction in sur-
vival was seen also upon SPARC knockout in KC mice as would be expected from its effect
on decreased intratumoral collagen content [246,374]. Interestingly, SPARC was initially
thought to augment the efficacy of nab-paclitaxel due to its albumin-binding potential [375],
although confirmation studies have offered conflicting results [376,377].

Proteomic analysis of the PDAC stroma [78,378] could guide the identification of over-
expressed ECM targets for active targeting, although tumor specificity warrants systemic
validation. In addition to over-expressed ECM components, active targeting may also
be directed at abnormally remodeled ECM components. For example, peptide probes
discriminating between different tensional/conformational states of fibronectin, which
result from force-mediated ECM modification, have been used for imaging prostate cancer
xenografts in mice [183]. Peptide probes that bind fibrillary collagens with damaged triple-
helix structures have been utilized to visualize areas of fibrosis and inflammation [280,281].
Currently, the utility of these probes for therapeutic or theranostic purposes in PDAC is
unknown, and future studies are warranted.

Whatever the strategy employed for active targeting, it must be kept in mind that
nanomedicines interact with the surrounding biological microenvironment once admin-
istered, and these interactions lead to various ancillary effects [325]. A notable example
is the rapid formation of a protein corona on the surface of nanomedicines in the blood,
which results from the interaction between the nanomedicine and serum proteins [379–381].
Protein corona formation is nanoparticle-specific and dynamically evolves [382–384]. Pro-
tein coronas may hamper the functionality of targeting moieties [385]. On the other hand,
protein corona formation can be engineered to design “stealth” nanomedicines that evade
clearance by the mononuclear phagocytic system [380,381].

4.3. Strategy #7: Installing Microenvironmental Responsivity in Nanomedicine

The PDAC TME poses a unique milieu distinct from that of normal pancreata [386], the
characteristics of which could serve as a microenvironmental on-switch for nanomedicines.
The installation of microenvironmental responsivity in nanomedicine would allow spa-
tiotemporal control of its therapeutic effects (Figure 11A,B) [387–390]. Especially in the
case of polymeric micelles, an ever-expanding body of work has focused on designing
“smart” polymers incorporating moieties that confer responsivity to stimuli such as a
change in pH and redox status as well as the presence of various enzymes, metabolites,
or ROS [391]. We refrain from delving into the specific chemistries which enable each
stimuli-responsivities (the reader is referred to dedicated reviews elsewhere: [391–400])
and focus on characteristics of the PDAC TME driven by fibrosis that may be exploited
for therapy.

Hypoxia and extracellular acidity are characteristics of PDAC. Fibrosis plays an im-
portant role in the generation of both. PDAC is known for its hypovascularity [37]. Fibrosis
seems to inhibit angiogenesis and decrease vessel density [140], although in vitro studies
report that PSCs produce angiogenic growth factors [55]. Increased IFP due to hyaluro-
nan accumulation in the fibrotic stroma leads to vascular compression/collapse, which
impedes vascular perfusion [232]. Hypovascularity compounded by decreased perfusion
leads to hypoxia in PDAC [401]. A study of seven PDAC patients revealed a markedly
decreased median tissue partial oxygen pressure (range: 0–5.3 mmHg) compared to the
adjacent normal pancreas (24.3–92.7 mmHg) [402]. Hypoxia, as well as the associated
metabolic reprogramming characterized by enhanced glycolysis in cancer cells and CAFs
alike, leads to an acidic extracellular milieu. Using acido-chemical exchange saturation
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transfer (acidoCEST) magnetic resonance imaging, it was shown that KC mice treated
with cerulein to induce PDAC demonstrated lower extracellular pH (~6.75) compared to
normal mice or KC mice without cerulein treatment (6.92~7.05) [403]. Consistent results
have been obtained using pHLIPs which activate at pH < 6.8. Orthotopic PDAC (S2VP10,
S2013, or Capan-2 inoculated) mice and KPC mice demonstrated an enhancement of pHLIP
accumulation suggesting low extracellular pH, although the conversion to exact pH val-
ues is difficult [404,405]. As we mentioned above, pHLIPs have been previously utilized
for active targeting in experimental PDAC [356]. At least theoretically, the tumor core is
expected to be more acidic than the tumor periphery. Micelles that co-deliver and release
gemcitabine and paclitaxel in response to an acidic milieu have been proposed to selectively
target stroma in the tumor core, thus achieving therapeutic effect while preserving the
tumor-suppressive roles of the stroma via the peripherally located stroma [406].
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Various proteolytic enzymes are involved in the active tissue remodeling observed
in the PDAC TME, and their enzymatic activities can be exploited as an on-stimulus. For
example, numerous MMPs have been reported to be up-regulated in PDAC, and MMPs are
often considered to be key players in tumorigenesis and progression [281]. As such, MMP
responsivity has been intensively studied and applied in nanomedicine [407]. PSCs have
been shown to secrete various MMPs in response to interaction with pancreatic cancer cells
as well as inflammatory stimuli [408–410]. However, a recent systematic review revealed
a great discrepancy between reports regarding the expression levels of various MMPs as
well as their association with clinical outcomes in PDAC [279]. Notwithstanding, most
studies seem to agree that the gelatinases MMP2 and MMP9 as well as the matrilysin
MMP7 are often up-regulated in PDAC among the various MMPs [279,411,412]. MMP2
responsivity has been utilized to release gemcitabine-loaded, small nanoparticles from
nanofibrils in subcutaneous PDAC (Pan02 inoculated) mice [413]. MMP2-responsive
liposomes to co-deliver pirfenidone and gemcitabine [414] or nanopolyplexes to deliver
LY2109761 and CPI-613 (a chemotherapy agent) [415] have also been devised and tested
in subcutaneous PDAC (PANC-1 + PSC co-inoculated or PANC-1 inoculated, in [414]
and [415], respectively) mice. MMP-9-responsive nanovesicles that encapsulate and deliver
gemcitabine have been tested on subcutaneous PDAC (PANC-1 inoculated) mice [416].
ADAMs are another class of proteolytic enzymes deregulated in PDAC; ADAMs 8, 9,
and 15 have been reported to be up-regulated in PDAC [417]. Silica nanoparticles that
release paclitaxel in an ADAM9-responsive manner have been devised and tested against
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pancreatic cancer cells in vitro [418], although functionality within the fibrotic stroma of
PDAC warrants further assessment.

Redox metabolism is also deregulated in PDAC, which is driven by metabolic repro-
gramming and limiting levels of an important biological electron receptor, oxygen, due
to intratumoral hypoxia [419]. PSCs seem to promote a more oxidized state in cancer
cells and help overcome this limitation, thereby promoting cancer cell proliferation as
well as conferring treatment resistance [420,421]. Glutathione biosynthesis is up-regulated
in Kras-mutant tumors and plays an important role in alleviating redox stress [422]. A
glutathione-responsive nanocomplex was devised to drive ROS generation via the Fenton
reaction in tumor cells as well as macrophages. The nanocomplex, through the pheno-
typic reprogramming of macrophages, attenuated the myofibroblastic differentiation of
fibroblasts in vitro and improved the survival of orthotopic PDAC (KPC1199 inoculated)
mice [423]. The production of ROS resulting from altered redox metabolism in the PDAC
TME has also been exploited in nanomedicine design. ROS-responsive polymeric micelles
that co-deliver a polo-like kinase 1 inhibitor (volasertib/BI6727) together with miR-34a
showed improved treatment response compared to either agent alone in orthotopic PDAC
(MiaPaCa-2 inoculated) mice [424]. Micelles incorporating both ROS responsivity and acid
responsivity to deliver doxorubicin have also been devised and tested in subcutaneous
PDAC (PANC-1 inoculated) mice [425].

4.4. Strategy #8: Utilizing Nanomedicine as Nanosensitizers to Physically Manipulate the
Fibrotic Stroma

We have so far focused on nanomedicine strategies that adapt to or exploit the fi-
brotic stroma, but nanomedicines can also be utilized to physically manipulate the fibrotic
stroma directly. Given sufficient tumor-specific accumulation, the use of nanomedicines
as “nanosensitizers” would allow for the locoregional physical manipulation of the PDAC
TME (Figure 11C) [426–428].

Nanomedicines can be designed to emanate heat in response to external stimuli. For
example, magnetic fields can be externally applied to induce hyperthermia (a strategy
referred to as magnetic hyperthermia) where the nanomedicines have intratumorally ac-
cumulated [429,430]. Mild magnetic hyperthermia induced by iron oxide nanoparticles
placed under alternating magnetic fields diminished the viability of PDAC cancer cells and
organoids [431] and disrupted collagen fiber architecture in PDAC heterospheroids consist-
ing of tumor cells and fibroblasts [432]. In vivo studies suggest that the co-administration
of ECM-degrading enzymes such as hyaluronidase might further enhance the therapeutic
effect [433]. Hyperthermia can also be induced by light (a strategy referred to as photother-
mal therapy (PTT) or photohyperthermia) [434–437]. An in vitro study demonstrated that the
use of gold nano-rods for PTT disrupted Collagen I architecture and increased the average
diffusivity of 50 nm and 120 nm nanoparticles by >10-fold [438]. Single-walled carbon nan-
otubes targeted with anti-IGF1R antibodies have been devised for PTT and demonstrated
therapeutic efficacy against orthotopic PDAC (BxPC-3 inoculated) mice [439].

Light can also be used to activate photosensitizing molecules, which instead of emanat-
ing heat results in ROS production to kill tumor cells (a strategy referred to as photodynamic
therapy [PDT]) [437,440]. Given systemic toxicities associated with the administration of
photosensitizers such as skin phototoxicity and hyperpigmentation, nanomedicines for
PDT have also been devised [435,436,441]. Nanoparticles co-delivering gemcitabine, the
photosensitizer chlorin e6, and a pro-apoptotic peptide showed enhanced accumulation in
tumors (compared to chlorin e6 administered as a single agent) and improved therapeutic
efficacy in subcutaneous PDAC (PANC-1 inoculated) mice [442]. Liposomes delivering the
photosensitizer benzoporphyrin derivative monoacid A demonstrated comparable tumor
growth suppression to liposomal verteporfin (a photosensitizer) in subcutaneous PDAC
(AsPC1 inoculated) mice, and the therapeutic effect further improved with the co-delivery
of bevacizumab (anti-VEGF antibody) [443]. In a strategy coined photodynamic priming
(PDP), sub-tumoricidal PDT is used not to directly kill tumor cells but to relieve fibrotic
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stromal barriers and improve nanomedicine delivery [444]. With PDP, the accumulation
of liposomal irinotecan improved >10-fold in orthotopic PDAC (MiaPaCa-2 or AsPC-1
inoculated) mice [445]. PDP seems to exert its effect, at least in part, by affecting fibrob-
lasts and the ECM that they produce. Using PDAC heterospheroids consisting of tumor
cells and fibroblasts, a recent study demonstrated that the photodestruction of fibroblasts
via verteporfin resulted in the softening of tumor tissue and increased delivery of RNA
nanomedicine in vitro [446]. A photonanoimmunoconjugate consisting of lipidated benzo-
porphyrin derivatives conjugated to cetuximab (anti-EGFR antibody) decreased collagen
density in subcutaneous PDAC (MiaPaCa-2 + CAF co-inoculated) mice [447].

In the case of both PTT and PDT/PDP, the anatomical location of the pancreas could
pose technical challenges in light irradiation (for example, compared to tumors on or
near the body surface). However, clinical studies have already established the safety and
feasibility of therapeutic light delivery to the pancreas [448]. In contrast to PTT, PDT/PDP
additionally requires molecular oxygen, which could be scarce in the hypoxic PDAC TME,
to function. To circumvent limitations posed by tissue hypoxia, a nanomedicine that
generates oxygen through a Fenton-like reaction from hydrogen peroxide has been devised
and tested in subcutaneous PDAC (PANC-1 inoculated) mice [449].

Another external stimulus utilized is high-intensity-focused ultrasound (HIFU). In
HIFU, a focused ultrasound beam is used to create thermal (hyperthermia) and/or mechan-
ical (cavitation) effects [426,427]. HIFU applied alone induced cavitation and improved
delivery and therapeutic efficacy in PDAC heterospheroids consisting of DT66066 cancer
cells and normal fibroblasts [450] as well as in KPC mice [451]. Notably, in KPC mice treated
with HIFU, the fibrotic stroma was disrupted, and intratumoral doxorubicin concentrations
were improved by 4.5-fold [451]. HIFU can also be used in combination with microbub-
bles to induce cavitation and trigger drug release [452,453]. Microbubbles loaded with
doxorubicin demonstrated a 12-fold improvement of intratumoral doxorubicin concentra-
tion with HIFU in subcutaneous PDAC (DSL6A inoculated) rats [454]. Interestingly, an
analysis of microbubbles loaded with paclitaxel demonstrated that an optimal range of
HIFU application exists and that suboptimal settings may detrimentally promote tumor
growth [455].

5. Discussion: Key Unknowns and Future Directions

Having overviewed the eight main strategies to overcome fibrotic barriers to nanomedicine
in the PDAC TME, we now highlight key unknowns. We furthermore propose future
directions of research that are necessary to deepen our understanding of fibrotic barriers as
well as to accelerate clinical translation (Figure 12).

5.1. How Does the PDAC Genotype Affect the Fibrotic Phenotype?

Our understanding of the mechanisms driving fibrosis in PDAC is advancing, but
there is still much left to learn. The CAF phenotype is greatly influenced by reciprocal
interaction with cancer cells, whose phenotype greatly depends on genotype (mutational
status) [104,312]. Indeed, treatment with the small molecule KRASG12D inhibitor MRTX1133
induced tumor regression with a concomitant increase in myCAFs and collagen deposition,
which suggests that mutant KRAS plays a crucial role in shaping the composition of
CAF subpopulations and the ECM [456]. Missense TP53 mutations in PDAC cancer cells
seem to promote fibrosis and shorten patient survival at least partly via promoting an
immunosuppressive milieu [457]. Furthermore, KTC mice, which harbor pancreas-specific
depletion of TGFβ signaling [458], spontaneously give rise to PDAC characterized by
thicker collagen fibers, enhanced expression of fibrotic ECM proteins, as well as increased
stiffness compared to KPC mice [101]. Because cancer cell-derived EVs can also transfer
mutant proteins such as KRASG12D to non-mutant cells [459], a comparison of exosomal
cargo by tumor genotype and its corresponding effects on fibrotic phenotypes might be an
interesting future direction of research.
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affect fibrosis? (B) Are CAF subpopulations interconvertible, and what determines interconvertibility?
(C) What distinguishes good from bad stroma, and how does a particular mix of CAF subpopulations
determine stromal behavior? (D) How do stromal composition and architecture affect nanomedicine
delivery and efficacy? How do signaling at the cellular level and stromal composition/architecture
interrelate? (E) How do nanomedicines penetrate the tumor stroma? What is their route of passage?
(F) What are the mechanisms governing the nanoparticle–bio interface, and how do these mechanisms
affect the ancillary effects of nanomedicine? Are the nanomedicines safe in the long term? (G) What
can be combined with strategies targeting the fibrotic barrier to achieve synergy? (H) Which model
should be used to study fibrotic barriers?

Additionally, technological advances in single-cell analyses have revealed various
CAF subpopulations, but the molecular mechanisms responsible for the heterogeneity
are still poorly understood [39,166]. Interestingly, gain-of-function TP53 mutations in
cancer cells seem to skew fibroblasts toward a pro-metastatic phenotype in PDAC [460].
Furthermore, mutations in breast cancer-1 (BRCA1) and BRCA2 in PDAC cancer cells
were recently reported to induce a myofibroblastic to immunosuppressive phenotypic
change of CAFs [461]. These studies suggest that the tumor cell genotype affects the CAF
phenotype, which is a concept that warrants further research. Systematically correlating
the PDAC genotype with histopathology and the composition of CAF subpopulations
could yield valuable information regarding the molecular mechanisms governing fibrosis
progression (Figure 12A). In this regard, the expanding repertoire of GEMMs that recapitu-
late important genetic lesions observed in human PDAC offers numerous opportunities.
Most PDAC GEMMs are based on the Kras oncogene [462], but approximately 8–10% of
PDAC patients do not harbor KRAS mutations [15]. It remains to be seen whether fibrotic
phenotypes and/or CAF compositions are different depending on KRAS mutational sta-
tus. Interestingly, BxPC-3, one of the few human PDAC cell-lines that induce appreciable
levels of fibrosis in murine xenografts [38], is wild type for KRAS and instead harbors
oncogenic mutations in BRAF [463,464]. A PDAC GEMM harboring Braf mutations (BC
mice: BrafCA/+; Pdx1-CreERT2 and BPC mice: BrafCA/+; LSL-Trp53R270H/+; Pdx1-CreERT2)
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has also been established [465] but is relatively less employed in nanomedicine research
compared to the KPC model. From a translational perspective, a better understanding of
how the PDAC genotype affects the fibrotic phenotype will aid in patient stratification and
the personalization of therapies targeting the fibrotic barriers.

5.2. Are CAF Subpopulations Interconvertible?

Another especially key unknown is in regard to the ambivalent role of the fi-
brotic stroma and the extensive heterogeneity of CAFs assumed to underlie this
context-dependency [48,60–64,75,161,166]. A particularly important question from a trans-
lational standpoint is whether CAF subpopulations are interconvertible, not least because
this is the basis of stromal reprogramming. For example, myCAFs and iCAFs seem to be
interconvertible [115]. Interestingly, the TGFβ co-receptor CD105/Endoglin, abundantly
expressed in PDAC stroma, has been reported to distinguish between tumor-suppressive
(CD105−) and tumor-permissive (CD105+) CAFs via its effects on adaptive immunity.
However, CD105+ and CD105− CAFs seem to be non-interconvertible [466]. Perhaps this
underlies the failure of CD105 neutralization to show efficacy against KPC mice [467].
Future research delineating distinct lineages (which are non-interconvertible) vs. plastic
states (which are interconvertible) of CAFs is thus warranted (Figure 12B) [75,166].

What determines interconvertibility (or lack thereof) between CAF subpopulations?
While this is a question open to future research, epigenetic cell memories might be at
play [468]. Different cell-of-origins may impart distinct epigenetic and thus transcrip-
tional states to CAFs. CAFs also dynamically respond and adapt to their surrounding
microenvironment during their life cycle [469]. For example, prolonged exposure to a
stiff microenvironment (such as found in the PDAC TME) causes irreversible phenotypic
changes to fibroblasts and mesenchymal stem cells, which is a phenomenon known as
mechanical memory [470]. Mechanical memory induces epigenetic remodeling that causes
persistent changes in the transcriptome, such as the expression of miR-21 that preserves
mechanical memory [471–473]. In addition to the mechanical microenvironment, con-
tact with tumor cells can also induce genomic methylations in genes such as SOCS1 in
PDAC CAFs [474]. Moreover, lactate derived from PDAC tumor cells drives widespread
epigenetic reprogramming of CAFs through the activation of TET demethylases via stimu-
lating increased production of α-ketoglutarate (a cofactor for TET enzymatic activity) [56].
These findings suggest that CAFs preserve “memories” of their microenvironment via
epigenetic mechanisms [47,475]. Indeed, there is increasing recognition of the importance
of epigenetics in fibrotic processes [476–478]. It would be interesting to analyze the re-
lationship between the interconvertibility of CAF subpopulations and their epigenetic
states. With an expanding arsenal of chemical modulators of epigenetic processes [479,480]
and an increased understanding of the transcriptomic landscape of different CAF sub-
populations [163–168], non-interconvertibility might be therapeutically overcome in the
future [481,482].

5.3. What Distinguishes Good from Bad Stroma?

Given the association of bulk stromal expression signatures with patient progno-
sis [372], one wonders how different CAF subpopulations existing in various ratios within
an individual tumor dictate the behavior of the stroma as a whole (Figure 12C). Clini-
cally useful indices that distinguish between good and bad stroma have recently begun
to emerge [75]. Knowledge of the underlying mechanisms would be useful in defining
strategic objectives when therapeutically targeting the fibrotic stroma. This is especially
pertinent considering that it is currently not entirely clear what objectives a successful
stromal reprogramming strategy needs to achieve. Moreover, further identification of
discriminative biomarkers of good vs. bad stroma could aid in patient stratification, which
is key in advancing the clinical application/translation of nanomedicine [62,483].

Notably, the TME is highly heterogeneous even within a single patient: a cursory look
at fibroblast morphology reveals great variation [75]. Interestingly, it has recently been
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reported that the PDAC TME consists of sub-compartments (sub-TMEs) characterized by
distinct fibroblast morphologies (deserted regions with spindle-shaped CAFs with abundant
ECM and low cellularity, reactive regions with plump CAFs with enlarged nuclei, and
regions with intermediate characteristics) that possess distinct immune phenotypes as well as
response to chemotherapy [484]. Because the different sub-TMEs possess distinct expression
profiles, bulk RNA sequencing data of tumor tissue could be utilized to predict sub-TME
status and survival differences [484]. While the implications of sub-TMEs for nanomedicine
are currently unclear, the abundance of ECM in deserted vs. reactive regions presumably
will affect the efficiency of nanomedicine penetration. A better understanding of how
the different CAF subpopulations and sub-TMEs arise, interact, and evolve throughout
tumorigenesis and treatment will advance our understanding of fibrosis in PDAC and
inform novel therapeutic strategies targeting the fibrotic stroma [161,173].

5.4. How Does Stromal Tissue Architecture Affect Nanomedicine Delivery?

A related key unknown is how stromal composition and tissue architecture govern
tumor mechanics and vice versa. We are only beginning to understand how signaling
at a cellular scale affects tissue architecture [485,486]. We know even less about how
stromal tissue architecture, in turn, affects nanomedicine delivery and therapeutic efficacy
(Figure 12D). How the tissue architecture and mechanics of the TME dynamically evolve
over time needs to be studied. Indeed, fibroblast and ECM composition both dynamically
change in response to chemotherapy, which likely affects tumor mechanics and seems
to entail treatment resistance [173,484,487]. To understand the progression of fibrosis,
some have suggested the need for an atlas of fibrotic tissue: a spatially and temporally
co-registered dataset of ECM mechanical properties, composition, and organization, and
various relevant parameters of cell biology acquired at both micrometer and millimeter
resolution [488].

The failure of stromal ablation should serve as a cautionary tale: any therapeutic inter-
vention that modulates the stroma will alter tumor mechanics which may have therapeutic
consequences [101]. While altering stromal tissue architecture against a common genetic
background is extremely difficult, if not impossible, in vivo; a bottom–up approach to
modeling the PDAC TME in vitro is increasingly enabling the generation of PDAC tissues
with different stromal architectures [35,36,238]. Together with an in silico, mathematical
modeling of nanomedicine delivery [489,490], studies using advanced in vitro models of
PDAC will likely shed light on the relationship between stromal tissue architecture and the
efficacy of nanomedicine delivery.

5.5. How Do Nanomedicines Penetrate the PDAC Stroma?

Another unknown is the route of nanoparticle penetration of PDAC stroma (Figure 12E).
While paracellular passage is often assumed as the main route of nanomedicine passage
through PDAC stroma, experimental evidence is scarce. CAFs have been shown to inter-
act with and internalize nanoparticles [491], which affects the efficacy of nanomedicine
penetration [33]. The engagement of transcellular/transcytosis pathways is mainly being
studied to improve the extravasation of nanomedicine [492–494] but might also improve
delivery through the fibrotic stroma.

The relative contributions of the various cellular and ECM components comprising the
fibrotic stroma remain difficult to parse, although advanced in vitro models are increasingly
enabling the experimental tuning of various variables that would otherwise be difficult to
directly manipulate in vivo. For example, because ECM components are central to normal
development, knockout of ECM protein-encoding genes is often embryonic lethal [495].
A lack of CAF-specific Cre-driver lines as well as extensive heterogeneity in fibroblast
transcriptomes, greatly driven by ECM/matrisome genes, can also complicate conditional
knockout strategies [48,496]. On the other hand, in vitro models would allow the spatially
and temporally controlled manipulation and analysis of individual ECM genes. The
expanding ability to model and tune physicochemical parameters of the tumor tissue (such
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as stiffness) in vitro, for example through the use of advanced hydrogels [497,498], also
holds great promise in advancing our understanding of the TME.

5.6. What Are the Mechanisms Governing Nanoparticle-Bio Interactions?

From a nanotechnology perspective, a key unknown is the nanoparticle–bio inter-
face of nanomedicines: from the moment of administration until the release of the
payload against the cancer cells, nanomedicines complexly interact with the body
(Figure 12F) [22,321,325,499–501]. This is an especially important issue in clinical transla-
tion, since the nanoparticle–bio interface determines the safety and efficacy of nanomedicines.
Prime examples are corona formation on the surface of nanomedicines affecting its func-
tionality [382,385] and the various ancillary effects of nanoparticles [325]. Conventional
nanomedicine design criteria based on an over-simplistic understanding of the nanoparticle–bio
interface have been argued to underlie the low success rate of clinical translation [502]. A
fuller understanding of the nanoparticle–bio interface will allow the principled, rational
design of nanomedicines which is necessary to accelerate clinical translation [324]. The
development of high-throughput screening systems, combined with machine learning
approaches, to systematically correlate nanoparticle properties with various biological read-
outs would be one way forward [503–505]. An alternative, but complementary, approach
would be to study endogenous systems. Most, if not all, cell types secrete and employ EVs
to communicate [506,507]. EVs including exosomes are increasingly implicated in fibrogen-
esis [508,509]. An interesting aspect of EVs is their tropism (cell- and/or tissue-specificity
of uptake) [510]. The tropism of EVs at least partly seems to be dictated by the specific type
of integrin heterodimer present on their surfaces [511]. An improved understanding of
EV tropism could perhaps inspire novel active targeting methods with enhanced tissue
specificity. EVs can also be directly exploited as therapeutics and may be advantageous for
clinical translation in terms of safety [355,512].

Another important point is that our current understanding of the nanoparticle–bio in-
terface is based mostly on animal studies [321]. From a translational perspective, the assess-
ment especially of long-term safety and efficacy in humans is key for cancer nanomedicine
to be a sustainable strategy in the clinic [324]. The emergence of immune responses
against nanomedicines upon repeated exposures and the associated diminution of ther-
apeutic efficacy is a case in point [513,514]. Increased understanding of these long-term
responses will not only ensure patient safety but can also motivate the development of new
materials [515,516].

5.7. How Can Therapeutic Strategies Targeting Fibrotic Stroma Be Utilized in
Combination Therapies?

The fibrotic stroma is not just a physical barrier to nanomedicine delivery but itself an
important determinant of clinical outcome [372,484]. Interestingly, the same TME features
that result in poor efficiency of nanomedicine penetration are also immunosuppressive [517].
Indeed, fibrosis driven by TGFβ signaling promotes immune evasion in PDAC [114]. A
pan-cancer transcriptomic analysis revealed that TGFβ-associated ECM gene signatures
correlate with immune evasion [518]. Inhibition of collagen cross-linking softens tumor
tissue and improves T cell migration as well as anti-PD-1 treatment in KPC mice [243]. Thus,
therapeutic strategies targeting the fibrotic barriers to nanomedicine penetration will likely
synergize with immunotherapeutic strategies [517]. This is an exciting avenue of research
given the recent, widespread clinical deployment of mRNA vaccines based on decades of
basic research but which progressed with the COVID epidemic as a final impetus [519,520].
Indeed, mRNA cancer vaccines against PDAC are in clinical development [15,521]. Whether
therapeutic strategies targeting fibrotic barriers potentiate vaccine efficacy against PDAC is
an interesting question. More generally, an improved understanding of the pathobiology
of fibrosis in PDAC will enable us to move forward from an ad hoc to a rational approach
to designing combination therapies (Figure 12G) [483].
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5.8. Which Experimental Model Should Be Used to Study Fibrotic Barriers in PDAC?

Lastly, we would like to emphasize that the choice of the experimental model of PDAC
used, whether in vitro or in vivo, is especially crucial when studying fibrotic barriers
(Figure 12H) [32,501]. In animals, this is because different models recapitulate fibrotic
lesions to varying extents, which may have direct implications for the potential, clinical
translation of research findings [502]. Numerous commonly used human PDAC cell lines
fail to demonstrate appreciable levels of fibrosis when xenografted into mice. A notable
exception is the BxPC-3 cell-line, especially when inoculated in the presence of FGF2 [38].
Co-inoculation with fibroblasts/PSCs is thus usually necessary to model fibrosis in cell-line
derived PDAC xenografts in mice [522]. On the other hand, GEMMs tend to recapitulate
fibrotic histopathology better but are time-consuming and relatively costly [386,462,523,524].
Whatever the model used, histological analyses should be routinely performed to assess
fibrosis in animal models of PDAC to correlate histopathology with nanomedicine delivery
and efficacy.

Regarding in vitro models of PDAC, 3D cell culture models are increasingly utilized to
more faithfully recapitulate pathogenetic mechanisms as well as to predict therapeutic out-
comes [523–527]. Advances in organoid technology are particularly remarkable [523,528].
That PDAC patient-derived organoids recapitulated clinical responses to treatment in indi-
vidual patients is a testament to their clinical relevance [529]. The incorporation of stromal
elements (e.g., vasculature and fibrosis) remains a challenge in many 3D cell culture models
but will open up various opportunities to study the TME [524,526,528]. The characteri-
zation of 3D cell culture models in terms of tumor mechanics and treatment response as
compared to PDAC in vivo is lagging and warrants thorough analyses in the future.

6. Conclusions

Overcoming fibrotic barriers is necessary for nanomedicine to be effective against
PDAC. As detailed above, numerous therapeutic opportunities exist. The fibrotic stroma
may be therapeutically modified through stromal ablation (strategy #1), stromal reprogram-
ming (strategy #2), targeting fibroblast metabolism (strategy #3), and/or targeting ECM
abnormalities (strategy #4). In addition, optimization/tuning of nanomedicines will also
likely be required. This includes the optimization of various physicochemical properties
(strategy #5), active targeting strategies (strategy #6), installation of microenvironmental
responsivity (strategy #7), and/or the use of nanomedicines as nanosensitizers (strategy #8).
So far, targeting fibrosis in PDAC has proven more difficult than initially appreciated, and
the field has experienced numerous disappointments. We are always learning something
new: our improved understanding of fibroblast and stromal biology will continue to inform
novel therapeutic strategies to ameliorate fibrotic barriers to nanomedicine penetration in
the PDAC TME. It is worth mentioning that just 10 years ago, CAF activation was deemed
an irreversible process [46], which shows just how far our understanding has progressed.
All the more since the effects of fibrosis on weakening treatment response are not limited to
nanomedicine: strategies that successfully target fibrosis hold great promise in improving
the prognosis of patients with PDAC.
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