Iridoid Derivatives as Anticancer Agents: An Updated Review from 1970–2022
Abstract
:Simple Summary
Abstract
1. Introduction
2. Literature Sources and Search Strategy
3. Bibliometric Studies
4. Different Types of Iridoids
5. Occurrence of Iridoids
6. Isolation and Characterization of Iridoids
6.1. Solvent Systems
6.2. Thin-Layer Chromatography (TLC)
6.3. Column Chromatography (CC)
6.4. High-Performance Liquid Chromatography (HPLC)
6.5. Modern Isolation Techniques
7. In Vitro and In Vivo Anticancer Studies of Iridoids and Structure-Activity Relationships (SAR) Studies
8. Mechanism of Action of Iridoids
9. Safety Aspects of Iridoid Derivatives
10. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Kujan, O.; Farah, C.S.; Johnson, N.W. Oral and Oropharyngeal Cancer in the Middle East and North Africa. Transl. Res. Oral Oncol. 2017, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Organização Mundial de Saúde. World Health Statistics 2022 (Monitoring Health of the SDGs); WHO: Geneva, Switzerland, 2022; ISBN 9789240051140. [Google Scholar]
- Jung, S.Y.; Papp, J.C.; Sobel, E.M.; Pellegrini, M.; Yu, H.; Zhang, Z.F. Pro-Inflammatory Cytokine Polymorphisms and Interactions with Dietary Alcohol and Estrogen, Risk Factors for Invasive Breast Cancer Using a Post Genome-Wide Analysis for Gene–Gene and Gene–Lifestyle Interaction. Sci. Rep. 2021, 11, 1058. [Google Scholar] [CrossRef]
- Mansouri, V.; Beheshtizadeh, N.; Gharibshahian, M.; Sabouri, L.; Varzandeh, M.; Rezaei, N. Recent Advances in Regenerative Medicine Strategies for Cancer Treatment. Biomed. Pharmacother. 2021, 141, 111875. [Google Scholar] [CrossRef]
- Sutradhar, K.B.; Amin, M.L. Nanotechnology in Cancer Drug Delivery and Selective Targeting. ISRN Nanotechnol. 2014, 2014, 939378. [Google Scholar] [CrossRef] [Green Version]
- Chivere, V.T.; Kondiah, P.P.D.; Choonara, Y.E.; Pillay, V. Nanotechnology-Based Biopolymeric Oral Delivery Platforms for Advanced Cancer Treatment. Cancers 2020, 12, 522. [Google Scholar] [CrossRef] [Green Version]
- Parodi, A.; Buzaeva, P.; Nigovora, D.; Baldin, A.; Kostyushev, D.; Chulanov, V.; Savvateeva, L.V.; Zamyatnin, A.A. Nanomedicine for Increasing the Oral Bioavailability of Cancer Treatments. J. Nanobiotechnol. 2021, 19, 1–19. [Google Scholar] [CrossRef]
- Williams, H.R.T.; Vlavianos, P.; Blake, P.; Dearnaley, D.P.; Tait, U.; Andreyev, H.J.N. The Significance of Rectal Bleeding after Pelvic Radiotherapy. Aliment. Pharmacol. Ther. 2005, 21, 1085–1090. [Google Scholar] [CrossRef]
- Oun, R.; Moussa, Y.E.; Wheate, N.J. The Side Effects of Platinum-Based Chemotherapy Drugs: A Review for Chemists. Dalt. Trans. 2018, 47, 6645–6653. [Google Scholar] [CrossRef]
- Hoy, H.; Lynch, T.; Beck, M. Surgical Treatment of Lung Cancer. Crit. Care Nurs. Clin. N. Am. 2019, 31, 303–313. [Google Scholar] [CrossRef]
- Danielewski, M.; Matuszewska, A.; Nowak, B.; Kucharska, A.Z.; Sozański, T. The Effects of Natural Iridoids and Anthocyanins on Selected Parameters of Liver and Cardiovascular System Functions. Oxid. Med. Cell. Longev. 2020, 2020, 2735790. [Google Scholar] [CrossRef]
- Kim, C.W.; Choi, K.C. Potential Roles of Iridoid Glycosides and Their Underlying Mechanisms against Diverse Cancer Growth and Metastasis: Do They Have an Inhibitory Effect on Cancer Progression? Nutrients 2021, 13, 2974. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Gong, X.; Bo, A.; Zhang, L.; Zhang, M.; Zang, E.; Zhang, C.; Li, M. Iridoids: Research Advances in Their Phytochemistry, Biological Activities, and Pharmacokinetics. Molecules 2020, 25, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinda, B. Occurrence and Distribution of Iridoids; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 9783030055752. [Google Scholar]
- Stermitz, F.R.; Abdel-Kader, M.S.; Foderaro, T.A.; Pomeroy, M. Iridoid Glycosides from Some Butterflies and Their Larval Food Plants. Phytochemistry 1994, 37, 997–999. [Google Scholar] [CrossRef]
- Dinda, B.; Debnath, S.; Harigaya, Y. Naturally Occurring Iridoids. A Review, Part 1. Chem. Pharm. Bull. 2007, 55, 159–222. [Google Scholar] [CrossRef] [Green Version]
- Jensen, S. Plant Iridoids, Their Biosynthesis and Distribution in Angiosperms. Ecol. Chem. Biochem. Plant Terpenoids 1991, 31, 133–158. [Google Scholar]
- Neri-Numa, I.A.; Pessôa, M.G.; Arruda, H.S.; Pereira, G.A.; Paulino, B.N.; Angolini, C.F.F.; Ruiz, A.L.T.G.; Pastore, G.M. Genipap (Genipa americana L.) Fruit Extract as a Source of Antioxidant and Antiproliferative Iridoids. Food Res. Int. 2020, 134, 109252. [Google Scholar] [CrossRef]
- Pankoke, H.; Bowers, M.D.; Dobler, S. The Interplay between Toxin-Releasing β-Glucosidase and Plant Iridoid Glycosides Impairs Larval Development in a Generalist Caterpillar, Grammia Incorrupta (Arctiidae). Insect Biochem. Mol. Biol. 2012, 42, 426–434. [Google Scholar] [CrossRef]
- Boysen, R.I.; Hearn, M.T.W. High Performance Liquid Chromatographic Separation Methods. Compr. Nat. Prod. III 2020, 9, 280–311. [Google Scholar] [CrossRef]
- Sesterhenn, K.; Distl, M.; Wink, M. Occurrence of Iridoid Glycosides in in Vitro Cultures and Intact Plants of Scrophularia nodosa L. Plant Cell Rep. 2007, 26, 365–371. [Google Scholar] [CrossRef]
- Veith, M.; Lorenz, M.; Boland, W.; Simon, H.; Dettner, K. Biosynthesis of Iridoid Monoterpenes in Insects: Defensive Secretions from Larvae of Leaf Beetles (Coleoptera: Chrysomelidae). Tetrahedron 1994, 50, 6859–6874. [Google Scholar] [CrossRef]
- Habtemariam, S. Iridoids and Other Monoterpenes in the Alzheimer’s Brain: Recent Development and Future Prospects. Molecules 2018, 23, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, H.; Nazir, M.; Green, I.R.; Saleem, M.; Raza, M.L. Therapeutic Potential of Iridoid Derivatives: Patent Review. Inventions 2019, 4, 29. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Fu, X.; Ran, Q.; Yang, K.; Wen, Y.; Li, H.; Wang, F. Globularifolin Exerts Anticancer Effects on Glioma U87 Cells through Inhibition of Akt/MTOR and MEK/ERK Signaling Pathways in Vitro and Inhibits Tumor Growth in Vivo. Biochimie 2017, 142, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Z.; Xu, G. Antitumor Effects of Sweroside in Human Glioblastoma: Its Effects on Mitochondrial Mediated Apoptosis, Activation of Different Caspases, G0/G1 Cell Cycle Arrest and Targeting JNK/P38 MAPK Signal Pathways. J. BUON 2019, 24, 2141–2146. [Google Scholar]
- Gálvez, M.; Martín-Cordero, C.; Ayuso, M.J. Iridoids as DNA Topoisomers I Poisons. J. Enzym. Inhib. Med. Chem. 2005, 20, 389–392. [Google Scholar] [CrossRef] [Green Version]
- Dinda, B.; Roy Chowdhury, D.; Mohanta, B.C. Naturally Occurring Iridoids, Secoiridoids and Their Bioactivity. An Updated Review, Part 3. Chem. Pharm. Bull. 2009, 57, 765–796. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.; Chen, L.; Zhang, Q.; Liu, J.; Yan, J.; Ito, Y. Separation of Catalpol from Rehmannia Glutinosa Libosch. by High-Speed Countercurrent Chromatography. J. Chromatogr. Sci. 2015, 53, 725–729. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Ahn, K.S.; Shanmugam, M.K.; Wang, H.; Shen, H.; Arfuso, F.; Chinnathambi, A.; Alharbi, S.A.; Chang, Y.; Sethi, G.; et al. Oleuropein Induces Apoptosis via Abrogating NF-ΚB Activation Cascade in Estrogen Receptor–Negative Breast Cancer Cells. J. Cell. Biochem. 2019, 120, 4504–4513. [Google Scholar] [CrossRef]
- Bharti, N.; Singh, S.; Naqvi, F.; Azam, A. Isolation and in Vitro Antiamoebic Activity of Iridoids Isolated from Kigelia Pinnata. Arkivoc 2006, 2006, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Feng, D.; Qian, Y.; Cheng, X.; Song, H.; Qian, Y.; Zhang, X.; Wu, Y.; Lv, H.; Liu, Q.; et al. Valtrate as a Novel Therapeutic Agent Exhibits Potent Anti-Pancreatic Cancer Activity by Inhibiting Stat3 Signaling. Phytomedicine 2021, 85, 153537. [Google Scholar] [CrossRef] [PubMed]
- Lou, C.; Zhu, Z.; Xu, X.; Zhu, R.; Sheng, Y.; Zhao, H. Picroside II, an Iridoid Glycoside from Picrorhiza Kurroa, Suppresses Tumor Migration, Invasion, and Angiogenesis in Vitro and in Vivo. Biomed. Pharmacother. 2019, 120, 109494. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xin, P.; Wang, Y.; Zhou, X.; Wei, D.; Deng, C.; Sun, S. Iridoids and Sfingolipids from Hedyotis Diffusa. Fitoterapia 2018, 124, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Villasenor, I. Bioactivities of Iridoids. Antiinflamm. Antiallergy Agents Med. Chem. 2008, 6, 307–314. [Google Scholar] [CrossRef]
- Viljoen, A.; Mncwangi, N.; Vermaak, I. Anti-Inflammatory Iridoids of Botanical Origin. Curr. Med. Chem. 2012, 19, 2104–2127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattamisra, S.K.; Yap, K.H.; Rao, V.; Choudhury, H. Multiple Biological Effects of an Iridoid Glucoside, Catalpol and Its Underlying Molecular Mechanisms. Biomolecules 2020, 10, 32. [Google Scholar] [CrossRef] [Green Version]
- Gorantla, J.N.; Vellekkatt, J.; Nath, L.R.; Anto, R.J.; Lankalapalli, R.S. Cytotoxicity Studies of Semi-Synthetic Derivatives of Theveside Derived from the Aqueous Extract of Leaves of Suicide Tree Cerbera Odollam. Nat. Prod. Res. 2014, 28, 1507–1512. [Google Scholar] [CrossRef]
- Chen, J.L.; Blanc, P.; Stoddart, C.A.; Bogan, M.; Rozhon, E.J.; Parkinson, N.; Ye, Z.; Cooper, R.; Balick, M.; Nanakorn, W.; et al. New Iridoids from the Medicinal Plant Barleria Prionitis with Potent Activity against Respiratory Syncytial Virus. J. Nat. Prod. 1998, 61, 1295–1297. [Google Scholar] [CrossRef]
- Yang, X.P.; Li, E.W.; Zhang, Q.; Yuan, C.S.; Jia, Z.J. Five New Iridoids from Patrinia Rupestris. Chem. Biodivers. 2006, 3, 762–770. [Google Scholar] [CrossRef]
- Liu, R.H.; Zhang, W.D.; Gu, Z.B.; Zhang, C.; Su, J.; Xu, X.K. Two New Iridoids from Roots of Patrinia Scabra Bunge. Nat. Prod. Res. 2006, 20, 866–870. [Google Scholar] [CrossRef]
- Wang, S.J.; Qiu, X.Q.; Zhu, J.Y.; Ma, X.Q.; Lin, B.; Zheng, C.J.; Qin, L.P. Two New Iridoids from the Root and Rhizome of Valeriana Jatamansi Jones. Helv. Chim. Acta 2014, 97, 722–726. [Google Scholar] [CrossRef]
- Shimomura, H.; Sashida, Y.; Ogawa, K. Iridoid Glucosides and Phenylpropanoid Glycosides in Ajuga Species of Japan. Phytochemistry 1987, 26, 1981–1983. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, J.; Li, Y.; Yamakuni, T.; Ohizumi, Y. Three-Membered Ring Sesquiterpenoids with NGF-Potentiating Activity from the Roots of Valeriana Fauriei. Planta Med. 2006, 72, 373–375. [Google Scholar] [CrossRef]
- Takayama, H.; Morohoshi, Y.; Kitajima, M.; Aimi, N.; Wongseripipatana, S.; Ponglux, D.; Sakai, S.-I. Two New Iridoros from the Leaves of Gelsemium Elegans Benth. Nat. Prod. Lett. 1994, 5, 15–20. (In Thailand) [Google Scholar] [CrossRef]
- Kanchanapoom, T.; Noiarsa, P.; Ruchirawat, S.; Kasai, R.; Otsuka, H. Phenylethanoid and Iridoid Glycosides from the Thai Medicinal Plant, Barleria Strigosa. Chem. Pharm. Bull. 2004, 52, 612–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamasaki, K.; Kanchanapoom, T.; Klai-On, S.; Kasai, R.; Otsuka, H. A New Tricyclic Iridoid Glucoside from the Thai Medicinal Plant, Rothmannia wittii. Heterocycles 2002, 57, 2409–2412. [Google Scholar] [CrossRef]
- Vieira, I.J.C.; Mathias, L.; Braz-Filho, R.; Schripsema, J. Iridoids from Borreria Verticillata. Org. Lett. 1999, 1, 1169–1171. [Google Scholar] [CrossRef]
- Hamdi, H.K.; Castellon, R. Oleuropein, a Non-Toxic Olive Iridoid, Is an Anti-Tumor Agent and Cytoskeleton Disruptor. Biochem. Biophys. Res. Commun. 2005, 334, 769–778. [Google Scholar] [CrossRef]
- Gololo, S.S.; Bassey, K.; Olivier, M.T.; Agyei, N.M.; Shai, L.J.; Masoko, P.; Gamedze, M.; Mogale, M.A. Isolation of an Iridoid Glycoside Compound from the Leaves of Barleria Dinteri Collected from Zebediela Sub-Region in Limpopo Province, South Africa. J. Pharm. Sci. Res. 2017, 9, 1368–1372. [Google Scholar]
- Bianco, A. Recent Developments in Iridoids Chemistry. Pure Appl. Chem. 1994, 66, 2335–2338. [Google Scholar] [CrossRef]
- Laboratorium, K. Glycosides the Scrophulariaceae (I) Scrophulariaceae Iridoid Glycosides (See Catalpol (II) (Wieffering Harpagide (III) (Scarpati (IV) (Kitagawa Scrophularia Species; Species (Kitagawa Scrophulariaceae Strongly Family Syllabus (1964). Noted 1970, 19, 329–340. [Google Scholar]
- Bowers, M.D.; Rosenthal, G.A.; Berenbaum, M. Iridoid Glycosides. In Herbivores: Their Interactions with Secondary Plant Metabolites, 2nd ed.; Academic Press: London, UK, 1991. [Google Scholar]
- Inouye, H.; Uesato, S. Biosynthesis of Iridoids and Secoiridoids. Prog. Chem. Org. Nat. Prod. 1986, 50, 169–236. [Google Scholar] [CrossRef]
- Kooiman, P. The Occurrence of Iridoid Glycosides in the Scrophulariaceae. Acta Bot. Neerl. 1970, 19, 329–340. [Google Scholar] [CrossRef]
- Kooiman, P. The Occurrence in of Iridoid Glycosides the Verbenaceae Species (Cheymol, and Its p. Species (Han- Number of Other Iridoid Family; (IV) Unedoside from Stilbe Species (Rimpler Species (Rimpler (V) of (Rimpler Thoside Species (Rimpler Nyctanthe. Acta Bot. Neerl. 1975, 24, 677–679. [Google Scholar]
- Franzyk, H. Synthetic Aspects of Iridoid Chemistry. Prog. Chem. Org. Nat. Prod. 2000, 79, 1–114. [Google Scholar] [CrossRef]
- Mander, L.; Liu, H.W. Comprehensive Natural Products II: Chemistry and Biology. Compr. Nat. Prod. II Chem. Biol. 2010, 1, 1–7451. [Google Scholar]
- Jiang, R.W.; Wong, K.L.; Chan, Y.M.; Xu, H.X.; But, P.P.H.; Shaw, P.C. Isolation of Iridoid and Secoiridoid Glycosides and Comparative Study on Radix Gentianae and Related Adulterants by HPLC Analysis. Phytochemistry 2005, 66, 2674–2680. [Google Scholar] [CrossRef]
- Aires, A.; Marrinhas, E.; Carvalho, R.; Dias, C.; Saavedra, M.J. Phytochemical Composition and Antibacterial Activity of Hydroalcoholic Extracts of Pterospartum Tridentatum and Mentha Pulegium against Staphylococcus Aureus Isolates. Biomed. Res. Int. 2016, 2016, 5201879. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, H.; Karasawa, H.; Miyase, T.; Fukushima, S. Studies on the Constituents of Cistanchis Herba. VI. Isolation and Structure of a New Iridoid Glycoside, 6-Deoxycatalpol. Chem. Pharm. Bull. 1977, 57, 364–370. [Google Scholar] [CrossRef] [Green Version]
- Song, H.H.; Shin, I.S.; Woo, S.Y.; Lee, S.U.; Sung, M.H.; Ryu, H.W.; Kim, D.Y.; Ahn, K.S.; Lee, H.K.; Lee, D.; et al. Piscroside C, a Novel Iridoid Glycoside Isolated from Pseudolysimachion Rotundum Var. Subinegrum Suppresses Airway Inflammation Induced by Cigarette Smoke. J. Ethnopharmacol. 2015, 170, 20–27. [Google Scholar] [CrossRef]
- Ma, L.; Meng, N.; Liu, B.; Wang, C.; Chai, X.; Huang, S.; Yu, H.; Wang, Y. Quantitative Analysis and Stability Study on Iridoid Glycosides from Seed Meal of Eucommia Ulmoides Oliver. Molecules 2022, 27, 5924. [Google Scholar] [CrossRef]
- Zhang, B.F.; Zhang, Q.P.; Liu, H.; Chou, G.X.; Wang, Z.T. Iridoids from Leaves of Gelsemium Elegans. Phytochemistry 2011, 72, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Imakura, Y.; Shigeru, K.; Yoshinobu, Y.; Masaru, K.; Motoko, T.F.M. Isolation and Structure of a New Iridoid Glucoside, Campsiside, from Campsis Chinensis. Chem. Pharm. Bull. 2002, 2091. [Google Scholar] [CrossRef] [Green Version]
- Handjieva, N.; Saadi, H.; Popov, S.; Baranovska, I. Separation of Iridoids by Vacuum Liquid Chromatography. Phytochem. Anal. 1991, 2, 130–133. [Google Scholar] [CrossRef]
- Carrillo-Ocampo, D.; Bazaldúa-Gómez, S.; Bonilla-Barbosa, J.R.; Aburto-Amar, R.; Rodríguez-López, V. Anti-Inflammatory Activity of Iridoids and Verbascoside Isolated from Castilleja Tenuiflora. Molecules 2013, 18, 12109–12118. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.; Chou, G.; Wang, Z. Two New Iridoids from Verbena officinalis L. Molecules 2014, 19, 10473–10479. [Google Scholar] [CrossRef] [Green Version]
- Dinda, B. Pharmacology and Application of Naturally Occuring Iridoids; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; ISBN 9783030055752. [Google Scholar]
- Coskun, O. Separation Tecniques: CHROMATOGRAPHY. North. Clin. Istanb. 2016, 3, 156–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.Q.; Bi, Z.M.; Li, P.; Tang, D.; Cai, H.X. A New Iridoid Glycoside from Gardenia Jasminoides. Chin. Chem. Lett. 2007, 18, 1221–1223. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Deng, L.; Cai, S.; Liu, J.; Li, W.; Du, L.; Cui, G.; Xu, X.; Lu, T.; et al. Systematic Separation and Purification of Iridoid Glycosides and Crocetin Derivatives from Gardenia Jasminoides Ellis by High-Speed Counter-Current Chromatography. Phytochem. Anal. 2015, 26, 202–208. [Google Scholar] [CrossRef]
- Xu, K.; Lin, Y.; Zhang, R.; Lan, M.; Chen, C.; Li, S.; Zuo, C.; Chen, C.; Zhang, T.; Yan, Z. Evaluation of Safety of Iridoids Rich Fraction from Valeriana Jatamansi Jones: Acute and Sub-Chronic Toxicity Study in Mice and Rats. J. Ethnopharmacol. 2015, 172, 386–394. [Google Scholar] [CrossRef]
- Kim, J.A.; Son, N.S.; Son, J.K.; Jahng, Y.; Chang, H.W.; Jang, T.S.; Na, M.; Lee, S.H. Two New Secoiridoid Glycosides from the Rhizomes of Gentiana Scabra Bunge. Arch. Pharm. Res. 2009, 32, 863–867. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; He, J.; Zhu, S.; Zhao, W.; Zhang, Y.; Ito, Y.; Sun, W. Preparation of Main Iridoid Glycosides in Fructus Corni by Macroporous Resin Column Chromatography and Countercurrent Chromatography. J. Liq. Chromatogr. Relat. Technol. 2013, 36, 983–999. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Liu, M.; Xie, H.; Jiang, Y.; Wei, X. Iridoids from Gentiana Loureirii. Phytochemistry 2009, 70, 746–750. [Google Scholar] [CrossRef] [PubMed]
- Maurya, A.K.; Kumar, A.; Agnihotri, V.K. New Iridoids from the Roots of Valeriana Jatamansi Jones. Nat. Prod. Res. 2022, 36, 3360–3367. [Google Scholar] [CrossRef]
- Bai, C.L.; Wang, Q.H.; Xu, Y.H.; Han, J.S.; Bao, Y.P. The Isolation and Structural Elucidation of a New Iridoid Glycoside from Cymbaria dahurica L. Z. Fur Naturforsch.-Sect. B J. Chem. Sci. 2018, 73, 377–379. [Google Scholar] [CrossRef]
- Zhou, T.; Fan, G.; Hong, Z.; Chai, Y.; Wu, Y. Large-Scale Isolation and Purification of Geniposide from the Fruit of Gardenia Jasminoides Ellis by High-Speed Counter-Current Chromatography. J. Chromatogr. A 2005, 1100, 76–80. [Google Scholar] [CrossRef]
- Lu, Q.; Sun, Y.; Shu, Y.; Tan, S.; Yin, L.; Guo, Y.; Tang, L. HSCCC Separation of the Two Iridoid Glycosides and Three Phenolic Compounds from Veronica Ciliata and Their in Vitro Antioxidant and Anti-Hepatocarcinoma Activities. Molecules 2016, 21, 1234. [Google Scholar] [CrossRef]
- Saracoglu, I.; Harput, U.S. In Vitro Cytotoxic Activity and Structure Activity Relationships of Iridoid Glucosides Derived from Veronica Species. Phyther. Res. 2012, 26, 148–152. [Google Scholar] [CrossRef]
- Kırmızıbekmez, H.; Kúsz, N.; Bérdi, P.; Zupkó, I.; Hohmann, J. New Iridoids from the Roots of Valeriana Dioscoridis Sm. Fitoterapia 2018, 130, 73–78. [Google Scholar] [CrossRef]
- Krohn, K.; Gehle, D.; Dey, S.K.; Nahar, N.; Mosihuzzaman, M.; Sultana, N.; Sohrab, M.H.; Stephens, P.J.; Pan, J.J.; Sasse, F. Prismatomerin, a New Iridoid from Prismatomeris Tetrandra. Structure Elucidation, Determination of Absolute Configuration, and Cytotoxicity. J. Nat. Prod. 2007, 70, 1339–1343. [Google Scholar] [CrossRef]
- Apisornopas, J.; Silalai, P.; Kasemsuk, T.; Athipornchai, A.; Sirion, U.; Suksen, K.; Piyachaturawat, P.; Suksamrarn, A.; Saeeng, R. Synthetic Analogues of Durantoside I from Citharexylum spinosum L. and Their Cytotoxic Activity. Bioorganic Med. Chem. Lett. 2018, 28, 1558–1561. [Google Scholar] [CrossRef]
- Saengsai, J.; Kongtunjanphuk, S.; Yoswatthana, N.; Kummalue, T.; Jiratchariyakul, W. Antibacterial and Antiproliferative Activities of Plumericin, an Iridoid Isolated from Momordica Charantia Vine. Evid.-Based Complement. Altern. Med. 2015, 2015, 823178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konoshima, T.; Takasaki, M.; Tokuda, H.; Nishino, H. Cancer Chemopreventive Activity of an Iridoid Glycoside, 8-Acetylharpagide, from Ajuga Decumbens. Cancer Lett. 2000, 157, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Isiguro, M.K.; Yamaki, S.; Takagi, Y.; Ikeda, K.; Kawakami, K.; Ito, T.N. Studies on Iridoid-Related Compounds. IV. Antitumor Activity of Iridoid Aglycones. Chem. Pharm. Bull. 2002, 2091. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Zhu, R.; Tian, S.; Wang, Y.; Lou, S.; Zhao, H. Jatamanvaltrate P Induces Cell Cycle Arrest, Apoptosis and Autophagy in Human Breast Cancer Cells in Vitro and in Vivo. Biomed. Pharmacother. 2017, 89, 1027–1036. [Google Scholar] [CrossRef]
- Hwang, H.; Kim, C.; Kim, S.M.; Kim, W.S.; Choi, S.H.; Chang, I.M.; Ahn, K.S. The Hydrolyzed Products of Iridoid Glycoside with β-Glucosidase Treatment Exert Anti-Proliferative Effects through Suppression of STAT3 Activation and STAT3-Regulated Gene Products in Several Human Cancer Cells. Pharm. Biol. 2012, 50, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Rathee, D.; Thanki, M.; Bhuva, S.; Anandjiwala, S.; Agrawal, R. Iridoid Glycosides-Kutkin, Picroside I, and Kutkoside from Picrorrhiza Kurroa Benth Inhibits the Invasion and Migration of MCF-7 Breast Cancer Cells through the down Regulation of Matrix Metalloproteinases. 1st Cancer Update. Arab. J. Chem. 2013, 6, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Pandeti, S.; Sharma, K.; Bathula, S.R.; Tadigoppula, N. Synthesis of Novel Anticancer Iridoid Derivatives and Their Cell Cycle Arrest and Caspase Dependent Apoptosis. Phytomedicine 2014, 21, 333–339. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Ren, P.; Qin, H.; Zhang, C.; Li, B.; Zhang, Y. Anticancer Activity of Globularifolin against Human Adenoid Cystic Carcinoma Cells Is Due to ROS-Mediated Apoptotic Cell Death and Modulation of the JAK/STAT Signalling Pathway. J. BUON 2019, 24, 1276–1282. [Google Scholar]
- Hu, Z.; Wang, H.; Fu, Y.; Ma, K.; Ma, X.; Wang, J. Gentiopicroside Inhibits Cell Growth and Migration on Cervical Cancer via the Reciprocal MAPK/Akt Signaling Pathways. Nutr. Cancer 2021, 73, 1459–1470. [Google Scholar] [CrossRef]
- Gao, N.; Tian, J.X.; Shang, Y.H.; Zhao, D.Y.; Wu, T. Catalpol Suppresses Proliferation and Facilitates Apoptosis of OVCAR-3 Ovarian Cancer Cells through Upregulating MicroRNA-200 and Downregulating MMP-2 Expression. Int. J. Mol. Sci. 2014, 15, 19394–19405. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Gao, H.; Wang, H.; Zhang, Y.; Xu, W.; Lin, S.; Wang, H.; Wu, Q.; Guo, J. Catalpol Promotes Cellular Apoptosis in Human HCT116 Colorectal Cancer Cells via MicroRNA-200 and the Downregulation of PI3K-Akt Signaling Pathway. Oncol. Lett. 2017, 14, 3741–3747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, D.; Cao, M.; Mu, X.; Yang, G.; Xue, W.; Huang, Y.; Chen, H. Catalpol Inhibited the Proliferation of T24 Human Bladder Cancer Cells by Inducing Apoptosis Through the Blockade of Akt-Mediated Anti-Apoptotic Signaling. Cell Biochem. Biophys. 2015, 71, 1349–1356. [Google Scholar] [CrossRef]
- Liu, J.; Du, J.; Li, Y.; Wang, F.; Song, D.; Lin, J.; Li, B.; Li, L. Catalpol Induces Apoptosis in Breast Cancer in Vitro and in Vivo: Involvement of Mitochondria Apoptosis Pathway and Post-Translational Modifications. Toxicol. Appl. Pharmacol. 2022, 454, 116215. [Google Scholar] [CrossRef]
- Zhu, P.; Wu, Y.; Yang, A.; Fu, X.; Mao, M.; Liu, Z. Catalpol Suppressed Proliferation, Growth and Invasion of CT26 Colon Cancer by Inhibiting Inflammation and Tumor Angiogenesis. Biomed. Pharmacother. 2017, 95, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Kuang, Z.; Wang, W.; Li, S.; Li, G.; Song, Y.; Li, H.; Cui, G.; Zhou, H. Aucubin Exerts Anticancer Activity in Breast Cancer and Regulates Intestinal Microbiota. Evid.-Based Complement. Altern. Med. 2022, 2022, 4534411. [Google Scholar] [CrossRef]
- Li, X.; Yang, C.; Shen, H. Gentiopicroside Exerts Convincing Antitumor Effects in Human Ovarian Carcinoma Cells (Skov3) by Inducing Cell Cycle Arrest, Mitochondrial Mediated Apoptosis and Inhibition of Cell Migration. J. BUON 2019, 24, 280–284. [Google Scholar]
- Wang, X.; Wang, T. Swertiamarin Exerts Anticancer Effects on Human Cervical Cancer Cells via Induction of Apoptosis, Inhibition of Cell Migration and Targeting of MEK-ERK Pathway. Trop. J. Pharm. Res. 2021, 20, 75–81. [Google Scholar] [CrossRef]
- Kshirsagar, P.R.; Pai, S.R.; Nimbalkar, M.S.; Gaikwad, N.B. RP-HPLC Analysis of Seco-Iridoid Glycoside Swertiamarin from Different Swertia Species. Nat. Prod. Res. 2016, 30, 865–868. [Google Scholar] [CrossRef]
- Huang, S.; Zou, C.; Xie, S.; Wang, B.; LingHu, X.; Wang, Y.; Xu, X.; Huang, S.; Wa, Q. Anticancer Activity of Sweroside Nanoparticles in Prostate Cancer Bone Metastasis in PC-3 Cells Involved in Wnt/β-Catenin Signaling Pathway. J. Biomed. Nanotechnol. 2021, 17, 1960–1971. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, H.; Shen, L.; Yao, L.; Ma, Y.; Yu, D.; Chen, J.; Li, P.; Chen, Y.; Zhang, C. Isolation and Purification of Six Iridoid Glycosides from Gardenia Jasminoides Fruit by Medium-Pressure Liquid Chromatography Combined with Macroporous Resin Chromatography. J. Sep. Sci. 2015, 38, 4119–4126. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, W.; Qin, Z.; Liang, X.; Tian, G. Geniposide Exhibits Anticancer Activity to Medulloblastoma Cells by Downregulating MicroRNA-373. J. Biochem. Mol. Toxicol. 2020, 34, e22471. [Google Scholar] [CrossRef] [PubMed]
- Lv, K.; Zhu, J.; Zheng, S.; Jiao, Z.; Nie, Y.; Song, F.; Liu, T.; Song, K. Evaluation of Inhibitory Effects of Geniposide on a Tumor Model of Human Breast Cancer Based on 3D Printed Cs/Gel Hybrid Scaffold. Mater. Sci. Eng. C 2021, 119, 111509. [Google Scholar] [CrossRef]
- Qian, Y.; Song, J.L.; Sun, P.; Yi, R.; Liu, H.; Feng, X.; Park, K.Y.; Zhao, X. Lactobacillus Casei Strain Shirota Enhances the in Vitro Antiproliferative Effect of Geniposide in Human Oral Squamous Carcinoma HSC-3 Cells. Molecules 2018, 23, 1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, M.; Zheng, S. Geniposide Inhibits Non-Small Cell Lung Cancer Cell Migration and Angiogenesis by Regulating PPARγ/VEGF-A Pathway. Qual. Assur. Saf. Crop. Foods 2022, 14, 46–54. [Google Scholar] [CrossRef]
- Chen, J.P.; Xu, D.G.; Yu, X.Y.; Zhao, F.M.; Xu, D.Q.; Zhang, X.; Cai, B.C.; Wang, M.Y. Discrepancy between the Effects of Morronside on Apoptosis in Human Embryonic Lung Fibroblast Cells and Lung Cancer A549 Cells. Oncol. Lett. 2014, 7, 927–932. [Google Scholar] [CrossRef] [Green Version]
- Moon, M.K.; Choi, B.M.; Oh, G.S.; Pae, H.O.; Kim, J.D.; Oh, H.; Oh, C.S.; Kim, D.H.; Rho, Y.D.; Shin, M.K.; et al. Catalposide Protects Neuro 2A Cells from Hydrogen Peroxide-Induced Cytotoxicity via the Expression of Heme Oxygenase-1. Toxicol. Lett. 2003, 145, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.U.; Sung, M.H.; Ryu, H.W.; Lee, J.; Kim, H.S.; In, H.J.; Ahn, K.S.; Lee, H.J.; Lee, H.K.; Shin, D.H.; et al. Verproside Inhibits TNF-α-Induced MUC5AC Expression through Suppression of the TNF-α/NF-ΚB Pathway in Human Airway Epithelial Cells. Cytokine 2016, 77, 168–175. [Google Scholar] [CrossRef]
- Lee, C.; Ryu, H.W.; Kim, S.; Kim, M.; Oh, S.R.; Ahn, K.S.; Park, J. Verminoside from Pseudolysimachion Rotundum Var. Subintegrum Sensitizes Cisplatin-Resistant Cancer Cells and Suppresses Metastatic Growth of Human Breast Cancer. Sci. Rep. 2020, 10, 20337. [Google Scholar] [CrossRef]
- Yin, L.; Lu, Q.; Tan, S.; Ding, L.; Guo, Y.; Chen, F.; Tang, L. Bioactivity-Guided Isolation of Antioxidant and Anti-Hepatocarcinoma Constituents from Veronica Ciliata. Chem. Cent. J. 2016, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hassan, Z.K.; Elamin, M.H.; Daghestani, M.H.; Omer, S.A.; Al-Olayan, E.M.; Elobeid, M.A.; Virk, P.; Mohammed, O.B. Oleuropein Induces Anti-Metastatic Effects in Breast Cancer. Asian Pac. J. Cancer Prev. 2012, 13, 4555–4559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asgharzade, S.; Sheikhshabani, S.H.; Ghasempour, E.; Heidari, R.; Rahmati, S.; Mohammadi, M.; Jazaeri, A.; Amini-Farsani, Z. The Effect of Oleuropein on Apoptotic Pathway Regulators in Breast Cancer Cells. Eur. J. Pharmacol. 2020, 886, 173509. [Google Scholar] [CrossRef]
- Giner, E.; Recio, M.C.; Ríos, J.L.; Cerdá-Nicolás, J.M.; Giner, R.M. Chemopreventive Effect of Oleuropein in Colitis-Associated Colorectal Cancer in C57bl/6 Mice. Mol. Nutr. Food Res. 2016, 60, 242–255. [Google Scholar] [CrossRef]
- Bulotta, S.; Corradino, R.; Celano, M.; Maiuolo, J.; D’Agostino, M.; Oliverio, M.; Procopio, A.; Filetti, S.; Russo, D. Antioxidant and Antigrowth Action of Peracetylated Oleuropein in Thyroid Cancer Cells. J. Mol. Endocrinol. 2013, 51, 181–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzekaki, E.E.; Geromichalos, G.; Lavrentiadou, S.N.; Tsantarliotou, M.P.; Pantazaki, A.A.; Papaspyropoulos, A. Oleuropein Is a Natural Inhibitor of PAI-1-Mediated Proliferation in Human ER-/PR- Breast Cancer Cells. Breast Cancer Res. Treat. 2021, 186, 305–316. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, Y. Globularifolin Exhibits Potent Anticancer Activity on A549 Human Lung Cancer Cell Line via Induction of Mitochondrial Apoptosis, Cell Cycle Arrest and NF-ΚB Inhibition. Int. J. Clin. Exp. Med. 2018, 11, 1758–1764. [Google Scholar]
- Fukuyama, Y.; Minoshima, Y.; Kishimoto, Y.; Chen, I.S.; Takahashi, H.; Esumi, T. Iridoid Glucosides and P-Coumaroyl Iridoids from Viburnum Luzonicum and Their Cytotoxicity. J. Nat. Prod. 2004, 67, 1833–1838. [Google Scholar] [CrossRef]
- Delicato, A.; Masi, M.; de Lara, F.; Rubiales, D.; Paolillo, I.; Lucci, V.; Falco, G.; Calabrò, V.; Evidente, A. In Vitro Characterization of Iridoid and Phenylethanoid Glycosides from Cistanche Phelypaea for Nutraceutical and Pharmacological Applications. Phyther. Res. 2022, 36, 4155–4166. [Google Scholar] [CrossRef]
- Yamano, T.; Tsujimoto, Y.; Noda, T.; Shimizu, M.; Ohmori, M.; Morita, S.; Yamada, A. Hepatotoxicity of Geniposide in Rats. Food Chem. Toxicol. 1990, 28, 515–519. [Google Scholar] [CrossRef]
- Zeng, X.; Guo, F.; Ouyang, D. A Review of the Pharmacology and Toxicology of Aucubin. Fitoterapia 2020, 140, 104443. [Google Scholar] [CrossRef]
- Vajravijayan, S.; Nandhagopal, N.; Anantha Krishnan, D.; Gunasekaran, K. Isolation and Characterization of an Iridoid, Arbortristoside-C from Nyctanthes Arbor-Tristis Linn., a Potential Drug Candidate for Diabetes Targeting α-Glucosidase. J. Biomol. Struct. Dyn. 2022, 40, 337–347. [Google Scholar] [CrossRef] [PubMed]
Species | Iridoid(s) | Bioactivity | Target cancer | Mechanism Of Action | IC50 (µM) | Ref |
---|---|---|---|---|---|---|
Plantago asiatica | Aucubin (1) | Induces tumor cell apoptosis | Mouse 4T1 cell line and BALB/c mice | Causes DNA damage | - | [100] |
Rehmannia glutinosa | Catalpol (2) | Inhibits cancer cell migration, induces cell apoptosis, suppresses cellular proliferation and increases apoptosis, inhibits HCT116 cell proliferation and induces cell apoptosis, inhibits cell migration, and decreases cell viability and tumor growth | OVCAR-3 ovarian cells, gastric cancer cell lines, including HGC-27, MKN-45, human HCT116 colorectal cancer cells, human NSCLC cells (A549), and MF7 cells, female BALB/c nude mice, hepatocellular carcinoma (HCC), CT26 colon cancer, and T24 human bladder cancer cells | Upregulates MicroRNA-200 and downregulates MMP-2 expression, downregulates the phosphatase and tensin homolog/PI3K-Akt signaling pathway, inhibits TGF-β1-induced cell migration and invasion of A549 cells through the inactivation of the Smad2/3 and NF-κB signaling pathways, induces and regulates protein post-translational modifications, increases miR-140-5p expression, blocks akt-mediated anti-apoptotic signaling, and inhibits expressions (IL) of IL-6, IL-8, cyclooxygenase (COX-2), and inducible nitric oxide synthase (iNOS) | - | [95,96,97,98,99] |
Gentianella acuta | Gentiopicroside (11) | Induces apoptosis and is antiproliferative | Human ovarian carcinoma cells (SKOV3) and human cervical cancer cells (HeLa) | Causes G2/M cell cycle arrest and regulates the MAPK/Akt signaling pathway | - | [94,101] |
Swertia chirayita | Swertiamarin (14) | Induces apoptosis | Cervical cancer cells (HeLa) and HepG2 cell line | Induces mitochondria-mediated apoptosis and targets the MEKERK signaling pathway | - | [102,103] |
Gentiana scabra | Sweroside (15) | Induces apoptosis | Mice, leukemia P388, leukemia L12120, glioblastoma U251 cell, and PC-3 cells | Inhibits eβ-catenin transcription by suppressing TTCF/LEF activity in cells overexpressing β-catenin and downregulates the expression of Wnt downstream target genes | - | [27,104] |
Gardenia jasminoides | Geniposide (29) | Inhibits medulloblastoma cell viability and induces cell apoptosis | Medulloblastoma cells, human breast cancer cells (MCF-7), HSC-3 cancer cells, and non-small-cell lung cancer (NSCLC) cells | Blocks the Ras/Raf/MEK/ERK pathway by downregulating miR-373 expression and regulates the PPARγ/VEGF-A pathway | - | [105,106,107,108,109] |
Cornus officinalis | Morroniside (31) | Reverses the apoptotic effect of H2O2 on HELF cell growth, protecting cell proliferation and normal cell morphology, and inhibiting apoptosis | Human embryonic lung fibroblast (HELF) cell line and lung cancer A549 cell lines | Restores the S phase to normal levels. | - | [110] |
Veronicaanagallis aquatica Veronica persica Veronica thymoides | Catalposide (32) | Cytostatic | RD cell lines (human rhabdomyosarcoma) | Inhibits the NF-κB system | - | [82,111] |
Veratroylcatalposide (40) | Cytostatic | RD cell lines (human rhabdomyosarcoma) | Not specified | - | [82] | |
Verproside (33) | Cytostatic | RD cell lines (human rhabdomyosarcoma) | Blocks the TNF-α/NF-κB signaling pathway. | - | [82,112] | |
Aquaticoside C (38) | Cytostatic | RD cell lines (human rhabdomyosarcoma) | Not specified | - | [82] | |
Verminoside (34) | Cytotoxic | Hep-2 cell line and human epidermoid carcinoma cells | Blocks the EMT process | 128 | [82,113] | |
Veronicoside (36) | Cytotoxic | Hep-2 cell line and human epidermoid carcinoma cells | Not specified | 153.3 | [82] | |
Amphicoside (35) | Cytotoxic antioxidant | Hep-2 cell line and human epidermoid carcinoma cells | Not specified | 340 | [82,114] | |
Valeriana dioscoridis | Dioscorin A (47), B (50), and C (51), 1-epibosnarol (49), 8-epi-deoxyloganin aglycone (49), 10-acetylpatrinoside (52), and 10,2′-diacetylpatrinoside (53) | Antiproliferative | HeLa, A2780, and T47D cell lines | Not specified | - | [83] |
Prismatomeris tetrandra | Prismatomerin (54) | Antitumor | L929 murine connective tissue, KB-31 human cervix carcinoma, A-549 human lung carcinoma, and SW-480 human colon adenocarcinoma | Interferes with mitotic spindle formation. | - | [84] |
Ajuga decumbens | 8-acet-ylharpagide (58) | Chemopreventative | Mice | Inhibits hepatic tumorigenesis | - | [87] |
Olea europea | Oleuropein (64) | Antimetastatic, antiproliferative, and induces apoptosis | Advanced-grade human tumors (TF-1a; 786-O, T-47D, RPMI-7951, and LoVo), mice, colorectal cancer (CRC) in C57BL/6 mice, hydroxityrosol (HT)-29 human colon adenocarcinoma cells, TPC-1 and BCPAP cells, human ER-/PR- breast cancer cells, and human MCF-7 and MDA-MB-231 cell lines | Suppresses the expression of MMP-2 and MMP-9 genes and upregulates the expression of TIMP1 and TIMP4 genes, decreases the expression levels of miR-125b, miR-16, miR-34a, p53, p21, reduces intestinal IL-6, IFN-γ, TNF-α, and IL-17A concentrations, decreases cyclooxygenase-2, downregulates hypoxia-inducible factor 1–alpha, inhibits plasminogen activator inhibitor, and suppresses the activation of the NF-κB signaling cascade | - | [31,50,115,116,117,118,119] |
Cerbera odollam | Theveside 2 (67) | Cytotoxic | SKBR3 (breast), HeLa (cervical), A375 (skin), HepG2 (liver), and HCT-116 (colon) | Not specified | 190 | [39] |
Picrorhiza kurroa | Picroside II (68) | Antiproliferative | MDA-MB-231 breast cancer cells | Inhibits the activity and expression of MMP-9 and suppresses HUVECs (tube formation) | - | [34] |
Picrorrhiza kurroa | Kutkin (71), picroside I (72), and kutkoside (73) | Inhibits MCF-7 cell invasion and migration | MCF-7 cell lines (Human breast cancer) | Reduces MMP-2,9 and MMP-1,13 activities, and reduces MMPs’ expressions | 61.9 | [91] |
Valeriana jatamansi | Jatamanvaltrate p (69) | Induces apoptosis | MDA-MB-231, MDA-MB-468, MDA-MB-453, MCF-7, and MCF-10A cancer cell lines | Inhibits growth of TNBC cells at the G2/M phase and down-regulates cdc2 and Cyclin B1 | - | [89] |
Globularia cordifolia | Globularifolin (76) | Induces apoptosis | Human glioma U87 cell line and human astrocytes, mice, salivary adenoid cystic carcinoma (SACC-83) cell line and normal human salivary gland (HSG) cell line, lung cancer A549 cancer cell line, and A549 human lung cancer cell line | Inhibits Akt/mTOR/p70S6K and MEK/ERK pathways, regulates the expression of matrix metalloproteinases (MMPs), increases Bax, Caspase 3, and 9 expression, reduces Bcl-2 expression, arrests the G2/M cycle, and inhibits the NF-Kb pathway | 7.5 | [26,93,120] |
Viburnum luzonicum | Luzonoside A (81) luzonoside B (82) | Cytotoxic | HeLa S3 cancer cells | Not specified | - | [121] |
Nyctanthes arbortristi | Arbortristoside-C (83) | Cytotoxic | Hep-2 cells | Not specified | - | [92] |
Cistanche phelypaea | Acetoside (84) | Induces cell death | Human A431 squamous carcinoma cells and Hacat keratinocytes | Not specified | - | [122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndongwe, T.; Witika, B.A.; Mncwangi, N.P.; Poka, M.S.; Skosana, P.P.; Demana, P.H.; Summers, B.; Siwe-Noundou, X. Iridoid Derivatives as Anticancer Agents: An Updated Review from 1970–2022. Cancers 2023, 15, 770. https://doi.org/10.3390/cancers15030770
Ndongwe T, Witika BA, Mncwangi NP, Poka MS, Skosana PP, Demana PH, Summers B, Siwe-Noundou X. Iridoid Derivatives as Anticancer Agents: An Updated Review from 1970–2022. Cancers. 2023; 15(3):770. https://doi.org/10.3390/cancers15030770
Chicago/Turabian StyleNdongwe, Tanaka, Bwalya A. Witika, Nontobeko P. Mncwangi, Madan S. Poka, Phumzile P. Skosana, Patrick H. Demana, Beverley Summers, and Xavier Siwe-Noundou. 2023. "Iridoid Derivatives as Anticancer Agents: An Updated Review from 1970–2022" Cancers 15, no. 3: 770. https://doi.org/10.3390/cancers15030770
APA StyleNdongwe, T., Witika, B. A., Mncwangi, N. P., Poka, M. S., Skosana, P. P., Demana, P. H., Summers, B., & Siwe-Noundou, X. (2023). Iridoid Derivatives as Anticancer Agents: An Updated Review from 1970–2022. Cancers, 15(3), 770. https://doi.org/10.3390/cancers15030770