Genetics, Genomics and Emerging Molecular Therapies of Pancreatic Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Genetics of Pancreatic Cancer
3. Genomics of Pancreatic Cancer
4. Risk of Metastasis and Genetic Background of the Process
5. Hereditary Pancreatic Cancer
6. Pancreatic Cancer Associated with Cancer Syndrome
6.1. Hereditary Breast and Ovarian Cancer
6.2. Familial Atypical Mole and Multiple Melanoma Syndrome
6.3. Lynch Syndrome
6.4. Peutz–Jeghers Syndrome
6.5. Li–Fraumeni Syndrome
6.6. Familial Adenomatous Polyposis
6.7. Ataxia–Telangiectasia
6.8. Fanconi Anaemia
6.9. Multiple Endocrine Neoplasia Type 1
6.10. Von Hippel–Lindau Syndrome
6.11. Neurofibromatosis 1
6.12. Tuberous Sclerosis (Bourneville’s Disease)
7. Targeted Therapy Overview and Future Perspectives
Treatment | Gene and Indication | Side Effects | References |
---|---|---|---|
PARPi (e.g., Niraparib, Olaparib) | BRCA1/2—known or suspected BRCA gene mutation, no worsening after the treatment with platinum resistant agent; also targeting tumours with HRD, including mutations in: PALB2, RAD51C, BRCA 1/2 | nausea, vomiting, diarrhoea or constipation, fatigue, anaemia, leukaemia, taste changes | [23,30,157,158,159] |
Erlotinib | EGFR—advanced pancreatic cancer may be administered in combination with gemcitabine | neutropenia, febrile neutropenia, fatigue, nausea, infections, vomiting, mucositis | [168,169,170] |
Larotrectinib and entrectinib | NTRK—pancreatic cancer with NTRK mutations, resistance to other treatment | fatigue, nausea, vomiting, constipation, weight gain, and diarrhoea | [163,164] |
Everolimus | inhibitor of mammalian target of rapamycin (mTOR); mutations in TSC1 and TSC2 genes | stomatitis, infections, diarrhoea, peripheral edema, fatigue rash, anaemia, hypercholesterolemia, lymphopenia, elevated aspartate transaminase (AST), fasting hyperglycemia | [171] |
Belzutifan | hypoxia-inducible factor-2 alpha (HIF-2α) inhibitor, used for the treatment of von Hippel–Lindau disease-associated cancers | anaemia, low oxygen levels—shortness of breath, headache, dizziness, tiredness; nausea; increased blood sugar (increased thirst or urination, dry mouth, fruity breath), abnormal kidney function tests | [172,173,174,175] |
Palbociclib | CDKN2A mutations | nausea, diarrhoea, vomiting, decreased appetite, changes in taste, tiredness, numbness or tingling in arms, hands, legs, and feet, sores on the lips, mouth or throat | [176] |
[experimental/clinical trials] | TGFBR2—known or suspected TGFBR2 gene mutation or its pathway | unknown | [19,20,21,177,178] |
[experimental/clinical trials] | SMAD4 mutations | unknown | [179,180,181] |
[experimental/clinical trials] | MLL3 mutations | unknown | [182,183,184,185] |
8. Drug Resistance Induced by Genetic and Genomic Alterations
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Didkowska, J.; Wojciechowska, U.; Olasek, P.; Caetano Dos Santos, F.L.; Michałek, I.M. Cancer in Poland in 2019; Ministry of Health: Warsaw, Poland, 2021.
- Michaud, D.S. Epidemiology of Pancreatic Cancer. Minerva Chir. 2004, 59, 99–111. [Google Scholar] [PubMed]
- Poruk, K.E.; Firpo, M.A.; Adler, D.G.; Mulvihill, S.J. Screening for Pancreatic Cancer. Ann. Surg. 2013, 257, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Lampe, P.; Grabarczyk, A.; Kuśnierz, K. Theoretical and Realistic Aspects in the Diagnosis of Pancreatic Cancer. Postep. Nauk. Med. 2015, 28, 4–10. [Google Scholar]
- Vujasinovic, M.; Dugic, A.; Maisonneuve, P.; Aljic, A.; Berggren, R.; Panic, N.; Valente, R.; Pozzi Mucelli, R.; Waldthaler, A.; Ghorbani, P.; et al. Risk of Developing Pancreatic Cancer in Patients with Chronic Pancreatitis. J. Clin. Med. 2020, 9, 3720. [Google Scholar] [CrossRef]
- Munigala, S.; Subramaniam, D.S.; Subramaniam, D.P.; Burroughs, T.E.; Conwell, D.L.; Sheth, S.G. Incidence and Risk of Pancreatic Cancer in Patients with a New Diagnosis of Chronic Pancreatitis. Dig. Dis. Sci. 2022, 67, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, N.; El-Serag, H.B.; Abrams, H.R.; Thrift, A.P. Burden of Pancreatic Cancer: From Epidemiology to Practice. Clin. Gastroenterol. Hepatol. 2021, 19, 876–884. [Google Scholar] [CrossRef]
- Wolfgang, C.L.; Herman, J.M.; Laheru, D.A.; Klein, A.P.; Erdek, M.A.; Fishman, E.K.; Hruban, R.H. Recent Progress in Pancreatic Cancer. CA Cancer J. Clin. 2013, 63, 318–348. [Google Scholar] [CrossRef] [Green Version]
- Johns Hopkins Medicine Pancreatic Cancer Types. Available online: https://www.hopkinsmedicine.org/health/conditions-and-diseases/pancreatic-cancer/pancreatic-cancer-types (accessed on 10 January 2023).
- Fotopoulos, G. Genetic Factors Affecting Patient Responses to Pancreatic Cancer Treatment. Ann. Gastroenterol. 2016, 29, 466–476. [Google Scholar] [CrossRef]
- Leidner, R.; Sanjuan Silva, N.; Huang, H.; Sprott, D.; Zheng, C.; Shih, Y.-P.; Leung, A.; Payne, R.; Sutcliffe, K.; Cramer, J.; et al. Neoantigen T-Cell Receptor Gene Therapy in Pancreatic Cancer. N. Engl. J. Med. 2022, 386, 2112–2119. [Google Scholar] [CrossRef]
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Merck Sharp & Dohme LLC.; Verastem, Inc. Study of Pembrolizumab with or without Defactinib Following Chemotherapy as a Neoadjuvant and Adjuvant Treatment for Resectable Pancreatic Ductal Adenocarcinoma. Available online: https://www.clinicaltrials.gov/ct2/show/NCT03727880 (accessed on 10 January 2023).
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Bristol-Myers Squibb. Trial of Neoadjuvant and Adjuvant Nivolumab and BMS-813160 With or Without GVAX for Locally Advanced Pancreatic Ductal Adenocarcinomas. Available online: https://clinicaltrials.gov/ct2/show/NCT03767582 (accessed on 10 January 2023).
- Sharma, A.; Kandlakunta, H.; Nagpal, S.J.S.; Feng, Z.; Hoos, W.; Petersen, G.M.; Chari, S.T. Model to Determine Risk of Pancreatic Cancer in Patients With New-Onset Diabetes. Gastroenterology 2018, 155, 730–739.e3. [Google Scholar] [CrossRef]
- Badowska-Kozakiewicz, A.; Fudalej, M.; Kwaśniewska, D.; Durlik, M.; Nasierowska-Guttmejer, A.; Mormul, A.; Włoszek, E.; Czerw, A.; Banaś, T.; Deptała, A. Diabetes Mellitus and Pancreatic Ductal Adenocarcinoma—Prevalence, Clinicopathological Variables, and Clinical Outcomes. Cancers 2022, 14, 2840. [Google Scholar] [CrossRef]
- PanCan: Genetic Hereditary Pancreatic Cancer. Available online: https://www.pancan.org/ (accessed on 3 October 2022).
- Cancer.Net: Hereditary Pancretic Cancer. Available online: https://www.cancer.net/ (accessed on 3 October 2022).
- BioPortal for Cancer Genomics. Available online: https://www.cbioportal.org/ (accessed on 3 October 2022).
- Waddell, N.; Pajic, M.; Patch, A.-M.; Chang, D.K.; Kassahn, K.S.; Bailey, P.; Johns, A.L.; Miller, D.; Nones, K.; Quek, K.; et al. Whole Genomes Redefine the Mutational Landscape of Pancreatic Cancer. Nature 2015, 518, 495–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pishvaian, M.J.; Bender, R.J.; Halverson, D.; Rahib, L.; Hendifar, A.E.; Mikhail, S.; Chung, V.; Picozzi, V.J.; Sohal, D.; Blais, E.M.; et al. Molecular Profiling of Patients with Pancreatic Cancer: Initial Results from the Know Your Tumor Initiative. Clin. Cancer Res. 2018, 24, 5018–5027. [Google Scholar] [CrossRef] [Green Version]
- Dreyer, S.B.; Chang, D.K.; Bailey, P.; Biankin, A.V. Pancreatic Cancer Genomes: Implications for Clinical Management and Therapeutic Development. Clin. Cancer Res. 2017, 23, 1638–1646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wattenberg, M.M.; Reiss, K.A. Determinants of Homologous Recombination Deficiency in Pancreatic Cancer. Cancers 2021, 13, 4716. [Google Scholar] [CrossRef] [PubMed]
- Negrini, S.; Gorgoulis, V.G.; Halazonetis, T.D. Genomic Instability—An Evolving Hallmark of Cancer. Nat. Rev. Mol. Cell Biol. 2010, 11, 220–228. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, Y.; Yang, F.; Zhu, L.; Zhu, X.-Q.; Wang, Z.-F.; Wu, X.-L.; Zhou, C.-H.; Yan, J.-Y.; Hu, B.-Y.; et al. The Molecular Biology of Pancreatic Adenocarcinoma: Translational Challenges and Clinical Perspectives. Signal Transduct. Target Ther. 2021, 6, 249. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, M.; Hruban, R.H.; Wood, L.D. New Developments in the Molecular Mechanisms of Pancreatic Tumorigenesis. Adv. Anat. Pathol. 2018, 25, 131–142. [Google Scholar] [CrossRef]
- Murphy, S.J.; Hart, S.N.; Halling, G.C.; Johnson, S.H.; Smadbeck, J.B.; Drucker, T.; Lima, J.F.; Rohakhtar, F.R.; Harris, F.R.; Kosari, F.; et al. Integrated Genomic Analysis of Pancreatic Ductal Adenocarcinomas Reveals Genomic Rearrangement Events as Significant Drivers of Disease. Cancer Res. 2016, 76, 749–761. [Google Scholar] [CrossRef] [Green Version]
- Strzyz, P. Nuclear MRNA Retention Buffers Expression Noise. Nat. Rev. Mol. Cell Biol. 2016, 17, 67. [Google Scholar] [CrossRef]
- Zhang, X.; Mao, T.; Zhang, B.; Xu, H.; Cui, J.; Jiao, F.; Chen, D.; Wang, Y.; Hu, J.; Xia, Q.; et al. Characterization of the Genomic Landscape in Large-Scale Chinese Patients with Pancreatic Cancer. EBioMedicine 2022, 77, 103897. [Google Scholar] [CrossRef] [PubMed]
- Golan, T.; Hammel, P.; Reni, M.; van Cutsem, E.; Macarulla, T.; Hall, M.J.; Park, J.-O.; Hochhauser, D.; Arnold, D.; Oh, D.-Y.; et al. Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer. N. Engl. J. Med. 2019, 381, 317–327. [Google Scholar] [CrossRef]
- O’Reilly, E.M.; Lee, J.W.; Zalupski, M.; Capanu, M.; Park, J.; Golan, T.; Tahover, E.; Lowery, M.A.; Chou, J.F.; Sahai, V.; et al. Randomized, Multicenter, Phase II Trial of Gemcitabine and Cisplatin With or Without Veliparib in Patients With Pancreas Adenocarcinoma and a Germline BRCA/PALB2 Mutation. J. Clin. Oncol. 2020, 38, 1378–1388. [Google Scholar] [CrossRef]
- Ogura, T.; Yamao, K.; Hara, K.; Mizuno, N.; Hijioka, S.; Imaoka, H.; Sawaki, A.; Niwa, Y.; Tajika, M.; Kondo, S.; et al. Prognostic Value of K-Ras Mutation Status and Subtypes in Endoscopic Ultrasound-Guided Fine-Needle Aspiration Specimens from Patients with Unresectable Pancreatic Cancer. J. Gastroenterol. 2013, 48, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Kenney, C.; Kunst, T.; Webb, S.; Christina, D.; Arrowood, C.; Steinberg, S.M.; Mettu, N.B.; Kim, E.J.; Rudloff, U. Phase II Study of Selumetinib, an Orally Active Inhibitor of MEK1 and MEK2 Kinases, in KRASG12R-Mutant Pancreatic Ductal Adenocarcinoma. Investig. New Drugs 2021, 39, 821–828. [Google Scholar] [CrossRef]
- Furniss, C.S.; Yurgelun, M.B.; Ukaegbu, C.; Constantinou, P.E.; Lafferty, C.C.; Talcove-Berko, E.R.; Schwartz, A.N.; Stopfer, J.E.; Underhill-Blazey, M.; Kenner, B.; et al. Novel Models of Genetic Education and Testing for Pancreatic Cancer Interception: Preliminary Results from the GENERATE Study. Cancer Prev. Res. 2021, 14, 1021–1032. [Google Scholar] [CrossRef] [PubMed]
- Bazzichetto, C.; Luchini, C.; Conciatori, F.; Vaccaro, V.; di Cello, I.; Mattiolo, P.; Falcone, I.; Ferretti, G.; Scarpa, A.; Cognetti, F.; et al. Morphologic and Molecular Landscape of Pancreatic Cancer Variants as the Basis of New Therapeutic Strategies for Precision Oncology. Int. J. Mol. Sci. 2020, 21, 8841. [Google Scholar] [CrossRef]
- Nanda, N.; Roberts, N.J. ATM Serine/Threonine Kinase and Its Role in Pancreatic Risk. Genes 2020, 11, 108. [Google Scholar] [CrossRef] [Green Version]
- Klatte, D.C.F.; Wallace, M.B.; Löhr, M.; Bruno, M.J.; van Leerdam, M.E. Hereditary Pancreatic Cancer. Best Pract. Res. Clin. Gastroenterol. 2022, 58–59, 101783. [Google Scholar] [CrossRef]
- Tamura, K.; Yu, J.; Hata, T.; Suenaga, M.; Shindo, K.; Abe, T.; MacGregor-Das, A.; Borges, M.; Wolfgang, C.L.; Weiss, M.J.; et al. Mutations in the Pancreatic Secretory Enzymes CPA1 and CPB1 Are Associated with Pancreatic Cancer. Proc. Natl. Acad. Sci. USA 2018, 115, 4767–4772. [Google Scholar] [CrossRef] [Green Version]
- Makohon-Moore, A.; Brosnan, J.A.; Iacobuzio-Donahue, C.A. Pancreatic Cancer Genomics: Insights and Opportunities for Clinical Translation. Genome Med. 2013, 5, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merz, V.; Mangiameli, D.; Zecchetto, C.; Quinzii, A.; Pietrobono, S.; Messina, C.; Casalino, S.; Gaule, M.; Pesoni, C.; Vitale, P.; et al. Predictive Biomarkers for a Personalized Approach in Resectable Pancreatic Cancer. Front Surg. 2022, 9, 866173. [Google Scholar] [CrossRef]
- Springer, S.; Wang, Y.; Dal Molin, M.; Masica, D.L.; Jiao, Y.; Kinde, I.; Blackford, A.; Raman, S.P.; Wolfgang, C.L.; Tomita, T.; et al. A Combination of Molecular Markers and Clinical Features Improve the Classification of Pancreatic Cysts. Gastroenterology 2015, 149, 1501–1510. [Google Scholar] [CrossRef]
- Wu, J.; Matthaei, H.; Maitra, A.; Dal Molin, M.; Wood, L.D.; Eshleman, J.R.; Goggins, M.; Canto, M.I.; Schulick, R.D.; Edil, B.H.; et al. Recurrent GNAS Mutations Define an Unexpected Pathway for Pancreatic Cyst Development. Sci. Transl. Med. 2011, 3, 92ra66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Sadakari, Y.; Shindo, K.; Suenaga, M.; Brant, A.; Almario, J.A.N.; Borges, M.; Barkley, T.; Fesharakizadeh, S.; Ford, M.; et al. Digital Next-Generation Sequencing Identifies Low-Abundance Mutations in Pancreatic Juice Samples Collected from the Duodenum of Patients with Pancreatic Cancer and Intraductal Papillary Mucinous Neoplasms. Gut 2017, 66, 1677–1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bettegowda, C.; Sausen, M.; Leary, R.J.; Kinde, I.; Wang, Y.; Agrawal, N.; Bartlett, B.R.; Wang, H.; Luber, B.; Alani, R.M.; et al. Detection of Circulating Tumor DNA in Early- and Late-Stage Human Malignancies. Sci. Transl. Med. 2014, 6, 224ra24. [Google Scholar] [CrossRef] [Green Version]
- Tie, J.; Wang, Y.; Tomasetti, C.; Li, L.; Springer, S.; Kinde, I.; Silliman, N.; Tacey, M.; Wong, H.-L.; Christie, M.; et al. Circulating Tumor DNA Analysis Detects Minimal Residual Disease and Predicts Recurrence in Patients with Stage II Colon Cancer. Sci. Transl. Med. 2016, 8, 346ra92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melisi, D.; Cavaliere, A.; Gobbo, S.; Fasoli, G.; Allegrini, V.; Simionato, F.; Gaule, M.; Casalino, S.; Pesoni, C.; Zecchetto, C.; et al. Role of Next-Generation Genomic Sequencing in Targeted Agents Repositioning for Pancreaticoduodenal Cancer Patients. Pancreatology 2021, 21, 1038–1047. [Google Scholar] [CrossRef]
- Li, Y.; Al Hallak, M.N.; Philip, P.A.; Azmi, A.S.; Mohammad, R.M. Non-Coding RNAs in Pancreatic Cancer Diagnostics and Therapy: Focus on LncRNAs, CircRNAs, and PiRNAs. Cancers 2021, 13, 4161. [Google Scholar] [CrossRef]
- Feigin, M.E.; Garvin, T.; Bailey, P.; Waddell, N.; Chang, D.K.; Kelley, D.R.; Shuai, S.; Gallinger, S.; McPherson, J.D.; Grimmond, S.M.; et al. Recurrent Noncoding Regulatory Mutations in Pancreatic Ductal Adenocarcinoma. Nat. Genet. 2017, 49, 825–833. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Hou, S.; Ye, Z.; Wang, W.; Hu, X.; Hang, Q. Long Non-Coding RNAs in Pancreatic Cancer: Biologic Functions, Mechanisms, and Clinical Significance. Cancers 2022, 14, 2115. [Google Scholar] [CrossRef] [PubMed]
- Campbell, P.J.; Yachida, S.; Mudie, L.J.; Stephens, P.J.; Pleasance, E.D.; Stebbings, L.A.; Morsberger, L.A.; Latimer, C.; McLaren, S.; Lin, M.-L.; et al. The Patterns and Dynamics of Genomic Instability in Metastatic Pancreatic Cancer. Nature 2010, 467, 1109–1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.-Q.; Liu, Y.-J.; Zhou, X.-L. An Integrated Microarray Analysis Reveals Significant Diagnostic and Prognostic Biomarkers in Pancreatic Cancer. Med. Sci. Monit. 2020, 26, e921769. [Google Scholar] [CrossRef] [PubMed]
- Campagna, D.; Cope, L.; Lakkur, S.S.; Henderson, C.; Laheru, D.; Iacobuzio-Donahue, C.A. Gene Expression Profiles Associated with Advanced Pancreatic Cancer. Int. J. Clin. Exp. Pathol. 2008, 1, 32–43. [Google Scholar]
- Niedergethmann, M.; Alves, F.; Neff, J.K.; Heidrich, B.; Aramin, N.; Li, L.; Pilarsky, C.; Grützmann, R.; Allgayer, H.; Post, S.; et al. Gene Expression Profiling of Liver Metastases and Tumour Invasion in Pancreatic Cancer Using an Orthotopic SCID Mouse Model. Br. J. Cancer 2007, 97, 1432–1440. [Google Scholar] [CrossRef] [Green Version]
- Yachida, S.; Jones, S.; Bozic, I.; Antal, T.; Leary, R.; Fu, B.; Kamiyama, M.; Hruban, R.H.; Eshleman, J.R.; Nowak, M.A.; et al. Distant Metastasis Occurs Late during the Genetic Evolution of Pancreatic Cancer. Nature 2010, 467, 1114–1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maddipati, R.; Stanger, B.Z. Pancreatic Cancer Metastases Harbor Evidence of Polyclonality. Cancer Discov. 2015, 5, 1086–1097. [Google Scholar] [CrossRef] [Green Version]
- Ro, C.; Chai, W.; Yu, V.E.; Yu, R. Pancreatic Neuroendocrine Tumors: Biology, Diagnosis, and Treatment. Chin. J. Cancer 2013, 32, 312–324. [Google Scholar] [CrossRef] [Green Version]
- Petersen, G.M. Familial Pancreatic Cancer. Semin. Oncol. 2016, 43, 548–553. [Google Scholar] [CrossRef] [Green Version]
- Hiripi, E.; Lorenzo Bermejo, J.; Li, X.; Sundquist, J.; Hemminki, K. Familial Association of Pancreatic Cancer with Other Malignancies in Swedish Families. Br. J. Cancer 2009, 101, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
- Cote, M.L.; Schenk, M.; Schwartz, A.G.; Vigneau, F.D.; Kinnard, M.; Greenson, J.K.; Fryzek, J.P.; Ying, G.S.; Garabrant, D.H. Risk of Other Cancers in Individuals with a Family History of Pancreas Cancer. J. Gastrointest. Cancer 2007, 38, 119–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, A.P. Genetic Susceptibility to Pancreatic Cancer. Mol. Carcinog. 2012, 51, 14–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breast Cancer Linkage Consortium. Cancer Risks in BRCA2 Mutation Carriers. J. Natl. Cancer Inst. 1999, 91, 1310–1316. [Google Scholar] [CrossRef] [PubMed]
- Giardiello, F.M.; Brensinger, J.D.; Tersmette, A.C.; Goodman, S.N.; Petersen, G.M.; Booker, S.V.; Cruz-Correa, M.; Offerhaus, J.A. Very High Risk of Cancer in Familial Peutz-Jeghers Syndrome. Gastroenterology 2000, 119, 1447–1453. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Leslie, G.; Doroszuk, A.; Schneider, S.; Allen, J.; Decker, B.; Dunning, A.M.; Redman, J.; Scarth, J.; Plaskocinska, I.; et al. Cancer Risks Associated with Germline PALB2 Pathogenic: An International Study of 524 Families. J. Clin. Oncol. 2020, 38, 674–685. [Google Scholar] [CrossRef]
- Rustgi, A.K. Familial Pancreatic Cancer: Genetic Advances. Genes Dev. 2014, 28, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Coco, D.; Leanza, S. Von Hippel-Lindau Syndrome: Medical Syndrome or Surgical Syndrome? A Surgical Perspective. J. Kidney Cancer VHL 2021, 9, 27–32. [Google Scholar] [CrossRef]
- Ruijs, M.W.G.; Verhoef, S.; Rookus, M.A.; Pruntel, R.; van der Hout, A.H.; Hogervorst, F.B.L.; Kluijt, I.; Sijmons, R.H.; Aalfs Cora, M.; Wagner, A.; et al. TP53 Germline Mutation Testing in 180 Families Suspected Of-Fraumeni Syndrome: Mutation Detection Rate and Relative of Cancers in Different Familial Phenotypes. J. Med. Genet. 2010, 47, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Tischkowitz, M.; Xia, B. PALB2/FANCN: Recombining Cancer and Fanconi Anemia. Cancer Res. 2010, 70, 7353–7359. [Google Scholar] [CrossRef] [Green Version]
- Lowenfels, A.B.; Maisonneuve, P.; DiMagno, E.P.; Elitsur, Y.; Gates, L.K.; Perrault, J.; Whitcomb, D.C. Hereditary Pancreatitis and the Risk of Pancreatic Cancer. International Hereditary Pancreatitis Study Group. J. Natl. Cancer Inst. 1997, 89, 442–446. [Google Scholar] [CrossRef] [Green Version]
- Kastrinos, F.; Mukherjee, B.; Tayob, N.; Wang, F.; Sparr, J.; Raymond, V.M.; Bandipalliam, P.; Stoffel, E.M.; Gruber Stephen, B.; Syngal, S. Risk of Pancreatic Cancer in Families with Lynch Syndrome. JAMA 2009, 302, 1790–1795. [Google Scholar] [CrossRef]
- Giardiello, F.M.; Offerhaus, G.J.; Lee, D.H.; Krush, A.J.; Tersmette, A.C.; Booker, S.V.; Kelley, N.C.; Hamilton, S.R. Increased Risk of Thyroid and Pancreatic Carcinoma in Familial Polyposis. Gut 1993, 34, 1394–1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gauci, J.; Azzopardi, N.; Babic, D.; Cortis, K.; Axisa, B. Neurofibromatosis Type 1. Pancreas 2022, 51, 559–562. [Google Scholar] [CrossRef] [PubMed]
- Jensen, R.T.; Berna, M.J.; Bingham, D.B.; Norton, J.A. Inherited Pancreatic Endocrine Tumor Syndromes: Advances in Molecular Pathogenesis, Diagnosis, Management, and Controversies. Cancer 2008, 113, 1807–1843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, C.; Hart, S.N.; Polley, E.C.; Gnanaolivu, R.; Shimelis, H.; Lee, K.Y.; Lilyquist, J.; Na, J.; Moore, R.; Antwi, S.O.; et al. Association Between Inherited Germline Mutations in Cancer Predisposition Genes and Risk of Pancreatic Cancer. JAMA 2018, 319, 2401. [Google Scholar] [CrossRef]
- Chaffee, K.G.; Oberg, A.L.; McWilliams, R.R.; Majithia, N.; Allen, B.A.; Kidd, J.; Singh, N.; Hartman, A.-R.; Wenstrup, R.J.; Petersen, G.M. Prevalence of Germ-Line Mutations in Cancer Genes among Pancreatic Cancer Patients with a Positive Family History. Genet. Med. 2018, 20, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Zhen, D.B.; Rabe, K.G.; Gallinger, S.; Syngal, S.; Schwartz, A.G.; Goggins, M.G.; Hruban, R.H.; Cote, M.L.; McWilliams, R.R.; Roberts, N.J.; et al. BRCA1, BRCA2, PALB2, and CDKN2A Mutations in Familial Pancreatic Cancer: A PACGENE Study. Genet. Med. 2015, 17, 569–577. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, J.; Ragone, A.; Lubinski, J.; Lynch, H.T.; Moller, P.; Ghadirian, P.; Foulkes, W.D.; Armel, S.; Eisen, A.; Neuhausen, S.L.; et al. The Incidence of Pancreatic Cancer in BRCA1 and BRCA2 Carriers. Br. J. Cancer 2012, 107, 2005–2009. [Google Scholar] [CrossRef]
- Wong, W.; Raufi, A.G.; Safyan, R.A.; Bates, S.E.; Manji, G.A. BRCA Mutations in Pancreas Cancer: Spectrum, Current, Challenges and Future Prospects. Cancer Manag. Res. 2020, 12, 2731–2742. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.; Easton, D.F.; The Breast Cancer Linkage Consortium. Cancer Incidence in BRCA1 Mutation Carriers. J. Natl. Cancer Inst. 2002, 94, 1358–1365. [Google Scholar] [CrossRef] [Green Version]
- van Lier, M.G.F.; Wagner, A.; Mathus-Vliegen, E.M.H.; Kuipers, E.J.; Steyerberg, E.W.; van Leerdam, M.E. High Cancer Risk in Peutz–Jeghers Syndrome: A Systematic Review and Surveillance Recommendations. Am. J. Gastroenterol. 2010, 105, 1258–1264. [Google Scholar] [CrossRef]
- Korsse, S.E.; Harinck, F.; van Lier, M.G.F.; Biermann, K.; Offerhaus, G.J.A.; Krak, N.; Looman, C.W.N.; van Veelen, W.; Kuipers, E.J.; Wagner, A.; et al. Pancreatic Cancer Risk in Peutz-Jeghers Syndrome Patients: A Large Cohort Study and Implications for Surveillance. J. Med. Genet. 2013, 50, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Lynch, H.T.; Fusaro, R.M.; Lynch, J.F.; Brand, R. Pancreatic Cancer and the FAMMM Syndrome. Fam. Cancer 2008, 7, 103–112. [Google Scholar] [CrossRef]
- Gu, K.; van de Velde, R.; Pitz, M.; Silver, S. Recurrent Melanoma Development in a Caucasian Female with CDKN2A+ Mutation and FAMMM Syndrome: A Case Report. SAGE Open Med. Case Rep. 2020, 8, 2050313X20936034. [Google Scholar] [CrossRef] [PubMed]
- Zwolak, A.; Świrska, J.; Tywanek, E.; Dudzińska, M.; Tarach, J.S.; Matyjaszek-Matuszek, B. Pancreatic Neuroendocrine Tumours in Patients with Von-Lindau Disease. Endokrynol. Pol. 2020, 71, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Mezquita, L.; Jové, M.; Nadal, E.; Kfoury, M.; Morán, T.; Ricordel, C.; Dhooge, M.; Tlemsani, C.; Léna, H.; Teulé, A.; et al. High Prevalence of Somatic Oncogenic Driver Alterations in Patients With NSCLC and Li-Fraumeni Syndrome. J. Thorac. Oncol. 2020, 15, 1232–1239. [Google Scholar] [CrossRef]
- Roberts, N.J.; Norris, A.L.; Petersen, G.M.; Bondy, M.L.; Brand, R.; Gallinger, S.; Kurtz, R.C.; Olson, S.H.; Rustgi, A.K.; Schwartz, A.G.; et al. Whole Genome Sequencing Defines the Genetic Heterogeneity of Familial Pancreatic Cancer. Cancer Discov. 2016, 6, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Howes, N.; Lerch, M.M.; Greenhalf, W.; Stocken, D.D.; Ellis, I.; Simon, P.; Truninger, K.; Ammann, R.; Cavallini, G.; Charnley, R.M.; et al. Clinical and Genetic Characteristics of Hereditary Pancreatitis in Europe. Clin. Gastroenterol. Hepatol. 2004, 2, 252–261. [Google Scholar] [CrossRef]
- Hes, F.J.; Nielsen, M.; Bik, E.C.; Konvalinka, D.; Wijnen, J.T.; Bakker, E.; Vasen, H.F.A.; Breuning, M.H.; Tops, C.M.J. Somatic APC Mosaicism: An Underestimated Cause of Polyposis. Gut 2008, 57, 71–76. [Google Scholar] [CrossRef]
- Burt, R.W. Colon Cancer Screening. Gastroenterology 2000, 119, 837–853. [Google Scholar] [CrossRef]
- Møller, P.; Seppälä, T.T.; Bernstein, I.; Holinski-Feder, E.; Sala, P.; Gareth Evans, D.; Lindblom, A.; Macrae, F.; Blanco, I.; Sijmons, R.H.; et al. Cancer Risk and Survival in Path_MMR Carriers by Gene and Gender up to 75 Years of Age: A Report from the Prospective Lynch Syndrome Database. Gut 2018, 67, 1306–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haraldsdottir, S.; Rafnar, T.; Frankel, W.L.; Einarsdottir, S.; Sigurdsson, A.; Hampel, H.; Snaebjornsson, P.; Masson, G.; Weng, D.; Arngrimsson, R.; et al. Comprehensive Population-Wide Analysis of Lynch Syndrome in Iceland Reveals Founder Mutations in MSH6 and PMS2. Nat. Commun. 2017, 8, 14755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkitaraman, A.R. Cancer Susceptibility and the Functions of BRCA1 and BRCA2. Cell 2002, 108, 171–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brose, M.S.; Rebbeck, T.R.; Calzone, K.A.; Stopfer, J.E.; Nathanson, K.L.; Weber, B.L. Cancer Risk Estimates for BRCA1 Mutation Carriers Identified in a Risk Evaluation Program. J. Natl. Cancer Inst. 2002, 94, 1365–1372. [Google Scholar] [CrossRef] [PubMed]
- Moran, A.; O’Hara, C.; Khan, S.; Shack, L.; Woodward, E.; Maher, E.R.; Lalloo, F.; Evans, D.G.R. Risk of Cancer Other than Breast or Ovarian in Individuals with BRCA1 and BRCA2 Mutations. Fam. Cancer 2012, 11, 235–242. [Google Scholar] [CrossRef]
- Mersch, J.; Jackson, M.A.; Park, M.; Nebgen, D.; Peterson, S.K.; Singletary, C.; Arun, B.K.; Litton, J.K. Cancers Associated with BRCA1 and BRCA2 Mutations Other than Breast and Ovarian. Cancer 2015, 121, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Ferrone, C.R.; Levine, D.A.; Tang, L.H.; Allen, P.J.; Jarnagin, W.; Brennan, M.F.; Offit, K.; Robson, M.E. BRCA Germline Mutations in Jewish Patients with Pancreatic Adenocarcinoma. J. Clin. Oncol. 2009, 27, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Marmolejo, D.H.; Wong, M.Y.Z.; Bajalica-Lagercrantz, S.; Tischkowitz, M.; Balmaña, J.; Patócs, A.B.; Chappuis, P.; Colas, C.; Genuardi, M.; Haanpää, M.; et al. Overview of Hereditary Breast and Ovarian Cancer (HBOC) Guidelines across Europe. Eur. J. Med. Genet. 2021, 64, 104350. [Google Scholar] [CrossRef]
- Bergman, W.; Watson, P.; de Jong, J.; Lynch, H.; Fusaro, R. Systemic Cancer and the FAMMM Syndrome. Br. J. Cancer 1990, 61, 932–936. [Google Scholar] [CrossRef] [Green Version]
- Hansson, J. Familial Cutaneous Melanoma. In Diseases of DNA Repair; Springer: New York, NY, USA, 2010; pp. 134–145. [Google Scholar]
- Lynch, H.T.; Shaw, T.G. Familial Atypical Multiple Mole Melanoma (FAMMM) Syndrome: History, Genetics, and Heterogeneity. Fam. Cancer 2016, 15, 487–491. [Google Scholar] [CrossRef]
- Das, K.K.; Early, D. Pancreatic Cancer Screening. Curr. Treat. Options Gastroenterol. 2017, 15, 562–575. [Google Scholar] [CrossRef]
- Lynch, H.T.; Brand, R.E.; Hogg, D.; Deters, C.A.; Fusaro, R.M.; Lynch, J.F.; Liu, L.; Knezetic, J.; Lassam, N.J.; Goggins, M.; et al. Phenotypic Variation in Eight ExtendedCDKN2A Germline Mutation Familial Atypical Multiple Mole Melanoma-Pancreatic Carcinoma-Prone Families. Cancer 2002, 94, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, A.M.; Fraser, M.C.; Struewing, J.P.; Hussussian, C.J.; Ranade, K.; Zametkin, D.P.; Fontaine, L.S.; Organic, S.M.; Dracopoli, N.C.; Clark, W.H.; et al. Increased Risk of Pancreatic Cancer in Melanoma-Prone Kindreds with P16INK4 Mutations. N. Engl. J. Med. 1995, 333, 970–975. [Google Scholar] [CrossRef]
- Abe, K.; Kitago, M.; Kitagawa, Y.; Hirasawa, A. Hereditary Pancreatic Cancer. Int. J. Clin. Oncol. 2021, 26, 1784–1792. [Google Scholar] [CrossRef]
- Bujanda, L.; Herreros-Villanueva, M. Pancreatic Cancer in Lynch Syndrome Patients. J. Cancer 2017, 8, 3667–3674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seppälä, T.T.; Latchford, A.; Negoi, I.; Sampaio Soares, A.; Jimenez-Rodriguez, R.; Sánchez-Guillén, L.; Evans, D.G.; Ryan, N.; Crosbie, E.J.; Dominguez-Valentin, M.; et al. European Guidelines from the EHTG and ESCP for Lynch Syndrome: An Updated Third Edition of the Mallorca Guidelines Based on Gene and Gender. Br. J. Surg. 2021, 108, 484–498. [Google Scholar] [CrossRef]
- Steinke, V.; Engel, C.; Büttner, R.; Schackert, H.K.; Schmiegel, W.H.; Propping, P. Hereditary Nonpolyposis Colorectal Cancer (HNPCC)/Lynch Syndrome. Dtsch. Arztebl. Int. 2013, 110, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Tacheci, I.; Kopacova, M.; Bures, J. Peutz-Jeghers Syndrome. Curr. Opin. Gastroenterol. 2021, 37, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Signoretti, M.; Bruno, M.J.; Zerboni, G.; Poley, J.-W.; Delle Fave, G.; Capurso, G. Results of Surveillance in Individuals at High-risk of Pancreatic Cancer: A Systematic Review and Meta-analysis. United Eur. Gastroenterol. J. 2018, 6, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Spoto, C.P.E.; Gullo, I.; Carneiro, F.; Montgomery, E.A.; Brosens, L.A.A. Hereditary Gastrointestinal Carcinomas and Their Precursors: An Algorithm for Genetic Testing. Semin. Diagn. Pathol. 2018, 35, 170–183. [Google Scholar] [CrossRef] [PubMed]
- Benzel, J.; Fendrich, V. Familial Pancreatic Cancer. Oncol. Res. Treat. 2018, 41, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Guha, T.; Malkin, D. Inherited TP53 Mutations and the Li–Fraumeni Syndrome. Cold Spring Harb. Perspect. Med. 2017, 7, a026187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mai, P.L.; Best, A.F.; Peters, J.A.; DeCastro, R.M.; Khincha, P.P.; Loud, J.T.; Bremer, R.C.; Rosenberg, P.S.; Savage, S.A. Risks of First and Subsequent Cancers among TP53 Mutation Carriers in the National Cancer Institute Li-Fraumeni Syndrome Cohort. Cancer 2016, 122, 3673–3681. [Google Scholar] [CrossRef] [Green Version]
- Waller, A.; Findeis, S.; Lee, M. Familial Adenomatous Polyposis. J. Pediatr. Genet. 2016, 5, 78–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, G.M.; Slack, J.; Nakamura, Y. Screening Guidelines and Premorbid Diagnosis of Familial Adenomatous Polyposis Using Linkage. Gastroenterology 1991, 100, 1658–1664. [Google Scholar] [CrossRef]
- Chintalacheruvu, L.M.; Shaw, T.; Buddam, A.; Diab, O.; Kassim, T.; Mukherjee, S.; Lynch, H.T. Major Hereditary Gastrointestinal Cancer Syndromes: A Narrative Review. J. Gastrointest. Liver Dis. 2017, 26, 157–163. [Google Scholar] [CrossRef]
- Dinarvand, P.; Davaro, E.P.; Doan, J.V.; Ising, M.E.; Evans, N.R.; Phillips, N.J.; Lai, J.; Guzman, M.A. Familial Adenomatous Polyposis Syndrome: An Update and Review of Extraintestinal Manifestations. Arch. Pathol. Lab. Med. 2019, 143, 1382–1398. [Google Scholar] [CrossRef] [Green Version]
- Kanth, P.; Grimmett, J.; Champine, M.; Burt, R.; Samadder, J.N. Hereditary Colorectal Polyposis and Cancer Syndromes: A Primer on Diagnosis and Management. Am. J. Gastroenterol. 2017, 112, 1509–1525. [Google Scholar] [CrossRef]
- Horii, A.; Nakatsuru, S.; Miyoshi, Y.; Ichii, S.; Nagase, H.; Ando, H.; Yanagisawa, A.; Tsuchiya, E.; Kato, Y.; Nakamura, Y. Frequent Somatic Mutations of the APC Gene in Human Pancreatic Cancer. Cancer Res. 1992, 52, 6696–6698. [Google Scholar]
- Ding, S.-F.; Habib, N.; Delhanty, J.; Bowles, L.; Greco, L.; Wood, C.; Williamson, R.; Dooley, J. Loss of Heterozygosity on Chromosomes 1 and 11 in Carcinoma of the Pancreas. Br. J. Cancer 1992, 65, 809–812. [Google Scholar] [CrossRef] [Green Version]
- Neuman, W.L.; Wasylyshyn, M.L.; Jacoby, R.; Erroi, F.; Angriman, I.; Montag, A.; Brasitus, T.; Michelassi, F.; Westbrook, C.A. Evidence for a Common Molecular Pathogenesis in Colorectal, Gastric, and Pancreatic Cancer. Genes Chromosomes Cancer 1991, 3, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Roberts, N.J.; Jiao, Y.; Yu, J.; Kopelovich, L.; Petersen, G.M.; Bondy, M.L.; Gallinger, S.; Schwartz, A.G.; Syngal, S.; Cote, M.L.; et al. ATM Mutations in Patients with Hereditary Pancreatic Cancer. Cancer Discov. 2012, 2, 41–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savitsky, K.; Bar-Shira, A.; Gilad, S.; Rotman, G.; Ziv, Y.; Vanagaite, L.; Tagle, D.A.; Smith, S.; Uziel, T.; Sfez, S.; et al. A Single Ataxia Telangiectasia Gene with a Product Similar to PI-3 Kinase. Science 1995, 268, 1749–1753. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.; Zhang, X.; Parsons, D.W.; Lin, J.C.-H.; Leary, R.J.; Angenendt, P.; Mankoo, P.; Carter, H.; Kamiyama, H.; Jimeno, A.; et al. Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses. Science 2008, 321, 1801–1806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, R.; Perkhofer, L.; Liebau, S.; Lin, Q.; Lechel, A.; Feld, F.M.; Hessmann, E.; Gaedcke, J.; Güthle, M.; Zenke, M.; et al. Loss of ATM Accelerates Pancreatic Cancer Formation and Epithelial–Mesenchymal Transition. Nat. Commun. 2015, 6, 7677. [Google Scholar] [CrossRef] [Green Version]
- Murphy, S.J.; Hart, S.N.; Lima, J.F.; Kipp, B.R.; Klebig, M.; Winters, J.L.; Szabo, C.; Zhang, L.; Eckloff, B.W.; Petersen, G.M.; et al. Genetic Alterations Associated With Progression From Pancreatic Intraepithelial Neoplasia to Invasive Pancreatic Tumor. Gastroenterology 2013, 145, 1098–1109.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, F.-C.; Roberts, N.J.; Childs, E.; Porter, N.; Rabe, K.G.; Borgida, A.; Ukaegbu, C.; Goggins, M.G.; Hruban, R.H.; Zogopoulos, G.; et al. Risk of Pancreatic Cancer Among Individuals With Pathogenic Variants in the ATM Gene. JAMA Oncol. 2021, 7, 1664. [Google Scholar] [CrossRef]
- Michl, J.; Zimmer, J.; Tarsounas, M. Interplay between Fanconi Anemia and Homologous Recombination Pathways in Genome Integrity. EMBO J. 2016, 35, 909–923. [Google Scholar] [CrossRef]
- Smith, A.L.; Alirezaie, N.; Connor, A.; Chan-Seng-Yue, M.; Grant, R.; Selander, I.; Bascuñana, C.; Borgida, A.; Hall, A.; Whelan, T.; et al. Candidate DNA Repair Susceptibility Genes Identified by Exome Sequencing in High-Risk Pancreatic Cancer. Cancer Lett. 2016, 370, 302–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, C.D.; van der Heijden, M.S.; Brune, K.; Yeo, C.J.; Hruban, R.H.; Kern, S.E.; Goggins, M. The Genetics of FANCC and FANCG in Familial Pancreatic Cancer. Cancer Biol. Ther. 2004, 3, 167–169. [Google Scholar] [CrossRef] [Green Version]
- van der Heijden, M.S.; Brody, J.R.; Gallmeier, E.; Cunningham, S.C.; Dezentje, D.A.; Shen, D.; Hruban, R.H.; Kern, S.E. Functional Defects in the Fanconi Anemia Pathway in Pancreatic Cancer Cells. Am. J. Pathol. 2004, 165, 651–657. [Google Scholar] [CrossRef]
- Mathew, C.G. Fanconi Anaemia Genes and Susceptibility to Cancer. Oncogene 2006, 25, 5875–5884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couch, F.J.; Johnson, M.R.; Rabe, K.; Boardman, L.; McWilliams, R.; de Andrade, M.; Petersen, G. Germ Line Fanconi Anemia Complementation Group C Mutations and Pancreatic Cancer. Cancer Res. 2005, 65, 383–386. [Google Scholar] [CrossRef] [PubMed]
- Newey, P.J.; Thakker, R.V. Role of Multiple Endocrine Neoplasia Type 1 Mutational Analysis in Clinical Practice. Endocr. Pract. 2011, 17, 8–17. [Google Scholar] [CrossRef]
- Al-Salameh, A.; Baudry, C.; Cohen, R. Update on Multiple Endocrine Neoplasia Type 1 and 2. Presse Med. 2018, 47, 722–731. [Google Scholar] [CrossRef]
- Ito, T.; Sasano, H.; Tanaka, M.; Osamura, R.Y.; Sasaki, I.; Kimura, W.; Takano, K.; Obara, T.; Ishibashi, M.; Nakao, K.; et al. Epidemiological Study of Gastroenteropancreatic Neuroendocrine Tumors in Japan. J. Gastroenterol. 2010, 45, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Thakker, R.V.; Newey, P.J.; Walls, G.V.; Bilezikian, J.; Dralle, H.; Ebeling, P.R.; Melmed, S.; Sakurai, A.; Tonelli, F.; Brandi, M.L. Clinical Practice Guidelines for Multiple Endocrine Neoplasia Type 1 (MEN1). J. Clin. Endocrinol. Metab. 2012, 97, 2990–3011. [Google Scholar] [CrossRef]
- Thakker, R.V. Multiple Endocrine Neoplasia Type 1 (MEN1) and Type 4 (MEN4). Mol. Cell Endocrinol. 2014, 386, 2–15. [Google Scholar] [CrossRef]
- Kfir, S.K.; Halperin, R.; Percik, R.; Uri, I.; Halpern, N.; Shlomai, G.; Laish, I.; Tirosh, A.; Tirosh, A. Distinct Prognostic Factors in Sporadic and Multiple Endocrine Neoplasia Type 1-Related Pancreatic Neuroendocrine Tumors. Horm. Metab. Res. 2021, 53, 319–325. [Google Scholar] [CrossRef]
- Tsang, S.H.; Sharma, T. Von Hippel-Lindau Disease. In Atlas of Inherited Retinal Diseases; Springer: Cham, Switzerland, 2018; pp. 201–203. [Google Scholar]
- Varshney, N.; Kebede, A.A.; Owusu-Dapaah, H.; Lather, J.; Kaushik, M.; Bhullar, J.S. A Review of Von Hippel-Lindau Syndrome. J. Kidney Cancer VHL 2017, 4, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Hammel, P.R.; Vilgrain, V.; Terris, B.; Penfornis, A.; Sauvanet, A.; Correas, J.; Chauveau, D.; Balian, A.; Beigelman, C.; O’Toole, D.; et al. Pancreatic Involvement in von Hippel–Lindau Disease. Gastroenterology 2000, 119, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Reich, M.; Jaegle, S.; Neumann-Haefelin, E.; Klingler, J.; Evers, C.; Daniel, M.; Bucher, F.; Ludwig, F.; Nuessle, S.; Kopp, J.; et al. Genotype–Phenotype Correlation in von Hippel-Lindau Disease. Acta Ophthalmol. 2021, 99, e1492–e1500. [Google Scholar] [CrossRef] [PubMed]
- Ferner, R.E.; Huson, S.M.; Thomas, N.; Moss, C.; Willshaw, H.; Evans, D.G.; Upadhyaya, M.; Towers, R.; Gleeson, M.; Steiger, C.; et al. Guidelines for the Diagnosis and Management of Individuals with Neurofibromatosis 1. J. Med. Genet. 2006, 44, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Cawthon, R.M.; Weiss, R.; Xu, G.; Viskochil, D.; Culver, M.; Stevens, J.; Robertson, M.; Dunn, D.; Gesteland, R.; O’Connell, P.; et al. A Major Segment of the Neurofibromatosis Type 1 Gene: CDNA Sequence, Genomic Structure, and Point Mutations. Cell 1990, 62, 193–201. [Google Scholar] [CrossRef]
- Nishi, T.; Kawabata, Y.; Hari, Y.; Imaoka, H.; Ishikawa, N.; Yano, S.; Maruyama, R.; Tajima, Y. A Case of Pancreatic Neuroendocrine Tumor in a Patient with Neurofibromatosis-1. World J. Surg. Oncol. 2012, 10, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujisawa, T.; Osuga, T.; Maeda, M.; Sakamoto, N.; Maeda, T.; Sakaguchi, K.; Onishi, Y.; Toyoda, M.; Maeda, H.; Miyamoto, K.; et al. Malignant Endocrine Tumor of the Pancreas Associated with von Recklinghausen’s Disease. J. Gastroenterol. 2002, 37, 59–67. [Google Scholar] [CrossRef]
- Schwartz, R.A.; Fernández, G.; Kotulska, K.; Jóźwiak, S. Tuberous Sclerosis Complex: Advances in Diagnosis, Genetics, and Management. J. Am. Acad. Dermatol. 2007, 57, 189–202. [Google Scholar] [CrossRef]
- Sepp, T.; Yates, J.R.; Green, A.J. Loss of Heterozygosity in Tuberous Sclerosis Hamartomas. J. Med. Genet. 1996, 33, 962–964. [Google Scholar] [CrossRef] [Green Version]
- Cheadle, J.P.; Reeve, M.P.; Sampson, J.R.; Kwiatkowski, D.J. Molecular Genetic Advances in Tuberous Sclerosis. Hum. Genet. 2000, 107, 97–114. [Google Scholar] [CrossRef]
- Merritt, J.L.; Davis, D.M.R.; Pittelkow, M.R.; Babovic-Vuksanovic, D. Extensive Acrochordons and Pancreatic Islet-Cell Tumors in Tuberous Sclerosis Associated WithTSC2 Mutations. Am. J. Med. Genet. A 2006, 140A, 1669–1672. [Google Scholar] [CrossRef]
- Francalanci, P.; Diomedi-Camassei, F.; Purificato, C.; Santorelli, F.M.; Giannotti, A.; Dominici, C.; Inserra, A.; Boldrini, R. Malignant Pancreatic Endocrine Tumor in a Child With Tuberous Sclerosis. Am. J. Surg. Pathol. 2003, 27, 1386–1389. [Google Scholar] [CrossRef] [PubMed]
- Verhoef, S.; van Diemen-Steenvoorde, R.; Akkersdijk, W.L.; Bax, N.M.A.; Ariyurek, Y.; Hermans, C.J.; van Nieuwenhuizen, O.; Nikkels, P.G.J.; Lindhout, D.; Halley, D.J.J.; et al. Malignant Pancreatic Tumour within the Spectrum of Tuberous Sclerosis Complex in Childhood. Eur. J. Pediatr. 1999, 158, 284–287. [Google Scholar] [CrossRef] [Green Version]
- Wood, L.D.; Canto, M.I.; Jaffee, E.M.; Simeone, D.M. Pancreatic Cancer: Pathogenesis, Screening, Diagnosis, and Treatment. Gastroenterology 2022, 163, 386–402.e1. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Liu, W. Pancreatic Cancer: A Review of Risk Factors, Diagnosis, and Treatment. Technol. Cancer Res. Treat. 2020, 19, 153303382096211. [Google Scholar] [CrossRef]
- Chen, H.; Zhuo, Q.; Ye, Z.; Xu, X.; Ji, S. Organoid Model: A New Hope for Pancreatic Cancer Treatment? Biochim. Biophys. Acta Rev. Cancer 2021, 1875, 188466. [Google Scholar] [CrossRef] [PubMed]
- Blomstrand, H.; Batra, A.; Cheung, W.Y.; Elander, N.O. Real-World Evidence on First- and Second-Line Palliative Chemotherapy in Advanced Pancreatic Cancer. World J. Clin. Oncol. 2021, 12, 787–799. [Google Scholar] [CrossRef] [PubMed]
- Golan, T.; Kanji, Z.S.; Epelbaum, R.; Devaud, N.; Dagan, E.; Holter, S.; Aderka, D.; Paluch-Shimon, S.; Kaufman, B.; Gershoni-Baruch, R.; et al. Overall Survival and Clinical Characteristics of Pancreatic Cancer in BRCA Mutation Carriers. Br. J. Cancer 2014, 111, 1132–1138. [Google Scholar] [CrossRef]
- Tempero, M.A. NCCN Guidelines Updates: Pancreatic Cancer. J. Natl. Compr. Cancer Netw. 2019, 17, 603–605. [Google Scholar] [CrossRef]
- Mirza, M.R.; Monk, B.J.; Herrstedt, J.; Oza, A.M.; Mahner, S.; Redondo, A.; Fabbro, M.; Ledermann, J.A.; Lorusso, D.; Vergote, I.; et al. Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer. N. Engl. J. Med. 2016, 375, 2154–2164. [Google Scholar] [CrossRef]
- Mishra, N.K.; Southekal, S.; Guda, C. Survival Analysis of Multi-Omics Data Identifies Potential Prognostic Markers of Pancreatic Ductal Adenocarcinoma. Front Genet. 2019, 10, 624. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Xu, H.; Chai, C.; Qin, Z.; Zhou, W. Integrated Bioinformatics Analysis of Potential Biomarkers for Pancreatic Cancer. J. Clin. Lab. Anal. 2022, 36, e24381. [Google Scholar] [CrossRef] [PubMed]
- Sakharkar, M.K.; Dhillon, S.K.; Mazumder, M.; Yang, J. Key Drug-Targeting Genes in Pancreatic Ductal Adenocarcinoma. Genes Cancer 2021, 12, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Daoud, A.Z.; Mulholland, E.J.; Cole, G.; McCarthy, H.O. MicroRNAs in Pancreatic Cancer: Biomarkers, Prognostic, and Therapeutic Modulators. BMC Cancer 2019, 19, 1130. [Google Scholar] [CrossRef] [Green Version]
- Bayer A Study to Test the Effect of the Drug Larotrectinib in Adults and Children with NTRK-Fusion Positive Solid Tumors. Available online: https://clinicaltrials.gov/ct2/show/NCT02576431 (accessed on 10 January 2023).
- O’Reilly, E.M.; Hechtman, J.F. Tumour Response to TRK Inhibition in a Patient with Pancreatic Adenocarcinoma Harbouring an NTRK Gene Fusion. Ann. Oncol. 2019, 30, viii36–viii40. [Google Scholar] [CrossRef] [Green Version]
- Torres, C.; Grippo, P.J. Pancreatic Cancer Subtypes: A Roadmap for Precision Medicine. Ann. Med. 2018, 50, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, M.; Matsukawa, M.; Fujii, Y.; Matsuda, Y.; Arai, T.; Ochiai, Y.; Itoi, T.; Yahagi, N. Effects of EUS-Guided Intratumoral Injection of Oligonucleotide STNM01 on Tumor Growth, Histology, and Overall Survival in Patients with Unresectable Pancreatic Cancer. Gastrointest. Endosc. 2018, 87, 1126–1131. [Google Scholar] [CrossRef]
- Yamakawa, K.; Nakano-Narusawa, Y.; Hashimoto, N.; Yokohira, M.; Matsuda, Y. Development and Clinical Trials of Nucleic Acid Medicines for Pancreatic Cancer Treatment. Int. J. Mol. Sci. 2019, 20, 4224. [Google Scholar] [CrossRef] [Green Version]
- Ko, A. Erlotinib in the Treatment of Advanced Pancreatic Cancer. Biologics 2008, 2, 83–95. [Google Scholar] [CrossRef] [Green Version]
- Hoyer, K.; Hablesreiter, R.; Inoue, Y.; Yoshida, K.; Briest, F.; Christen, F.; Kakiuchi, N.; Yoshizato, T.; Shiozawa, Y.; Shiraishi, Y.; et al. A Genetically Defined Signature of Responsiveness to Erlotinib in Early-Stage Pancreatic Cancer Patients: Results from the CONKO-005 Trial. EBioMedicine 2021, 66, 103327. [Google Scholar] [CrossRef]
- Han, B.; Kim, B.J.; Kim, H.S.; Choi, D.R.; Shim, B.Y.; Lee, K.H.; Kim, J.W.; Kim, J.H.; Song, H.; Kim, J.H.; et al. A Phase II Study of Gemcitabine, Erlotinib and S-1 in Patients with Advanced Pancreatic Cancer. J. Cancer 2021, 12, 912–917. [Google Scholar] [CrossRef]
- U. S. Food and Drug Administration Everolimus (Afinitor). Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/everolimus-afinitor (accessed on 10 January 2023).
- Drugs.com Belzutifan. Available online: https://www.drugs.com/mtm/belzutifan.html (accessed on 10 January 2023).
- Neuroendocrine Tumor Research Foundation Clinical Trial of Belzutifan in Pancreatic NETs and Pheo/Para. Available online: https://netrf.org/2021/07/27/clinical-trial-of-belzutifan-in-pancreatic-nets-and-pheo-para/ (accessed on 10 January 2023).
- Pelle, E.; Al-Toubah, T.; Morse, B.; Strosberg, J. Belzutifan in a Patient With VHL-Associated Metastatic Pancreatic Neuroendocrine Tumor. J. Natl. Compr. Cancer Netw. 2022, 20, 1285–1287. [Google Scholar] [CrossRef]
- Varghese, A.; O’Reilly, E. An Open-Label, Multicenter, Phase 2 Study to Evaluate the Efficacy and Safety of Pembrolizumab Plus Lenvatinib in Combination with Belzutifan in Multiple Solid Tumors. Available online: https://www.mskcc.org/cancer-care/clinical-trials/22-169 (accessed on 10 January 2023).
- Al Baghdadi, T.; Halabi, S.; Garrett-Mayer, E.; Mangat, P.K.; Ahn, E.R.; Sahai, V.; Alvarez, R.H.; Kim, E.S.; Yost, K.J.; Rygiel, A.L.; et al. Palbociclib in Patients With Pancreatic and Biliary Cancer with CDKN2A Alterations: Results From the Targeted Agent and Profiling Utilization Registry Study. JCO Precis Oncol. 2019, 3, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhang, Y.; Gallegos, V.; Sorrelle, N.; Zaid, M.M.; Toombs, J.; Du, W.; Wright, S.; Hagopian, M.; Wang, Z.; et al. Targeting TGFβR2-mutant Tumors Exposes Vulnerabilities to Stromal TGFβ Blockade in Pancreatic Cancer. EMBO Mol. Med. 2019, 11, e10515. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, S.; Liu, X.; Jiang, X.; Jiang, J. CircSEC24A Upregulates TGFBR2 Expression to Accelerate Pancreatic Cancer Proliferation and Migration via Sponging to MiR-606. Cancer Cell Int. 2021, 21, 671. [Google Scholar] [CrossRef]
- Shugang, X.; Hongfa, Y.; Jianpeng, L.; Xu, Z.; Jingqi, F.; Xiangxiang, L.; Wei, L. Prognostic Value of SMAD4 in Pancreatic Cancer: A Meta-Analysis. Transl. Oncol. 2016, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Liu, Z.; Zhu, R.; Liang, R.; Wang, W.; Li, J.; Zhang, Y.; Guo, C.; Han, X.; Sun, Y. Multi-Omics Landscape and Clinical Significance of a SMAD4-Driven Immune Signature: Implications for Risk Stratification and Frontline Therapies in Pancreatic Cancer. Comput. Struct. Biotechnol. J. 2022, 20, 1154–1167. [Google Scholar] [CrossRef] [PubMed]
- Principe, D.R.; Underwood, P.W.; Kumar, S.; Timbers, K.E.; Koch, R.M.; Trevino, J.G.; Munshi, H.G.; Rana, A. Loss of SMAD4 Is Associated With Poor Tumor Immunogenicity and Reduced PD-L1 Expression in Pancreatic Cancer. Front Oncol. 2022, 12, 806963. [Google Scholar] [CrossRef]
- Hosein, A.N.; Dougan, S.K.; Aguirre, A.J.; Maitra, A. Translational Advances in Pancreatic Ductal Adenocarcinoma Therapy. Nat. Cancer 2022, 3, 272–286. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Gong, Y.; Fan, Z.; Luo, G.; Huang, Q.; Deng, S.; Cheng, H.; Jin, K.; Ni, Q.; Yu, X.; et al. Molecular Alterations and Targeted Therapy in Pancreatic Ductal Adenocarcinoma. J. Hematol. Oncol. 2020, 13, 130. [Google Scholar] [CrossRef]
- Hessmann, E.; Johnsen, S.A.; Siveke, J.T.; Ellenrieder, V. Epigenetic Treatment of Pancreatic Cancer: Is There a Therapeutic Perspective on the Horizon? Gut 2017, 66, 168–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baretti, M.; Ahuja, N.; Azad, N.S. Targeting the Epigenome of Pancreatic Cancer for Therapy: Challenges and Opportunities. Ann. Pancreat. Cancer 2019, 2, 18. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, C.; Xie, K.-P. Therapeutic Resistance of Pancreatic Cancer: Roadmap to Its Reversal. Biochim. Biophys. Acta Rev. Cancer 2021, 1875, 188461. [Google Scholar] [CrossRef] [PubMed]
- Bailey, P.; Chang, D.K.; Nones, K.; Johns, A.L.; Patch, A.-M.; Gingras, M.-C.; Miller, D.K.; Christ, A.N.; Bruxner, T.J.C.; Quinn, M.C.; et al. Genomic Analyses Identify Molecular Subtypes of Pancreatic Cancer. Nature 2016, 531, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, N.; Kronenberger, D.; Stefaniak, A.; Hassan, M.S.; von Holzen, U.; Schwarz, M.A.; Schwarz, R.E. Dual Inhibition of the PI3K and MAPK Pathways Enhances Nab-Paclitaxel/Gemcitabine Chemotherapy Response in Preclinical Models of Pancreatic Cancer. Cancer Lett. 2019, 459, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Fell, J.B.; Fischer, J.P.; Baer, B.R.; Blake, J.F.; Bouhana, K.; Briere, D.M.; Brown, K.D.; Burgess, L.E.; Burns, A.C.; Burkard, M.R.; et al. Identification of the Clinical Development Candidate MRTX849, a Covalent KRAS G12C Inhibitor for the Treatment of Cancer. J. Med. Chem. 2020, 63, 6679–6693. [Google Scholar] [CrossRef] [Green Version]
- Janes, M.R.; Zhang, J.; Li, L.-S.; Hansen, R.; Peters, U.; Guo, X.; Chen, Y.; Babbar, A.; Firdaus, S.J.; Darjania, L.; et al. Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor. Cell 2018, 172, 578–589.e17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamska, A.; Elaskalani, O.; Emmanouilidi, A.; Kim, M.; Abdol Razak, N.B.; Metharom, P.; Falasca, M. Molecular and Cellular Mechanisms of Chemoresistance in Pancreatic Cancer. Adv. Biol. Regul. 2018, 68, 77–87. [Google Scholar] [CrossRef]
- Awad, M.M.; Liu, S.; Rybkin, I.I.; Arbour, K.C.; Dilly, J.; Zhu, V.W.; Johnson, M.L.; Heist, R.S.; Patil, T.; Riely, G.J.; et al. Acquired Resistance to KRAS G12C Inhibition in Cancer. N. Engl. J. Med. 2021, 384, 2382–2393. [Google Scholar] [CrossRef]
- Lito, P.; Solomon, M.; Li, L.-S.; Hansen, R.; Rosen, N. Allele-Specific Inhibitors Inactivate Mutant KRAS G12C by a Trapping Mechanism. Science 2016, 351, 604–608. [Google Scholar] [CrossRef] [Green Version]
- Gurtner, K.; Kryzmien, Z.; Koi, L.; Wang, M.; Benes, C.H.; Hering, S.; Willers, H.; Baumann, M.; Krause, M. Radioresistance of KRAS/TP53-mutated Lung Cancer Can Be Overcome by Radiation Dose Escalation or EGFR Tyrosine Kinase Inhibition in Vivo. Int. J. Cancer 2020, 147, 472–477. [Google Scholar] [CrossRef]
- Huang, B.; Wang, J.; Chen, Q.; Qu, C.; Zhang, J.; Chen, E.; Zhang, Y.; Wang, Y.; Ni, L.; Liang, T. Gemcitabine Enhances OSI-027 Cytotoxicity by Upregulation of MiR-663a in Pancreatic Ductal Adenocarcinoma Cells. Am. J. Transl. Res. 2019, 11, 473–485. [Google Scholar]
- Huang, L.; Hu, C.; Cao, H.; Wu, X.; Wang, R.; Lu, H.; Li, H.; Chen, H. MicroRNA-29c Increases the Chemosensitivity of Pancreatic Cancer Cells by Inhibiting USP22 Mediated Autophagy. Cell. Physiol. Biochem. 2018, 47, 747–758. [Google Scholar] [CrossRef]
- Fan, P.; Liu, L.; Yin, Y.; Zhao, Z.; Zhang, Y.; Amponsah, P.S.; Xiao, X.; Bauer, N.; Abukiwan, A.; Nwaeburu, C.C.; et al. MicroRNA-101-3p Reverses Gemcitabine Resistance by Inhibition of Ribonucleotide Reductase M1 in Pancreatic Cancer. Cancer Lett. 2016, 373, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhao, Z.; Zhou, Z.; Liu, R. Linc-ROR Confers Gemcitabine Resistance to Pancreatic Cancer Cells via Inducing Autophagy and Modulating the MiR-124/PTBP1/PKM2 Axis. Cancer Chemother. Pharmacol. 2016, 78, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- REN, Z.-G.; DONG, S.-X.; HAN, P.; QI, J. MiR-203 Promotes Proliferation, Migration and Invasion by Degrading SIK1 in Pancreatic Cancer. Oncol. Rep. 2016, 35, 1365–1374. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Wang, D.; Zhang, J.; Zhu, Y.; Li, Y.; Chen, H.; Shi, M.; Wang, X.; Shen, B.; Deng, X.; et al. GFRα2 Prompts Cell Growth and Chemoresistance through Down-Regulating Tumor Suppressor Gene PTEN via Mir-17-5p in Pancreatic Cancer. Cancer Lett. 2016, 380, 434–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, X.; Shivapurkar, N.; Wu, Z.; Hwang, J.J.; Pishvaian, M.J.; Weiner, L.M.; Ley, L.; Zhou, D.; Zhi, X.; Wellstein, A.; et al. Circulating MicroRNA Profile Predicts Disease Progression in Patients Receiving Second-Line Treatment of Lapatinib and Capecitabine for Metastatic Pancreatic Cancer. Oncol Lett. 2016, 11, 1645–1650. [Google Scholar] [CrossRef] [Green Version]
SNP ID or SNP Location | Germline/Somatic | References |
---|---|---|
SNPs located in the BRCA1 (location: 17q21.31) and BRCA2 gene (location: 13q13.1) | germline | [29] |
Mutation in the PALB2 (parner and localiser of BRCA2) gene (location: 16p12.2) | germline | [30] |
The KRAS G12D, KRAS G12V and KRAS G12R mutations in the KRAS gene (location: 12p12.1) | somatic | [31] |
The KRAS G12R mutation in the KRAS gene (location: 12p12.1) | somatic | [32] |
Mutations in the gene (location: 11q22.3) encoding the ATM serine/threonine kinase and the gene (location: 9p21.3) encoding the CDKN2A cyclin-dependent kinase inhibitor 2A | germline | [33] |
Mutation in the GNAS gene (chromosome 20) | somatic | [34] |
Mutation in the ATM gene | germline | [35] |
Mutations in the MLH1, MSH2, MSH6 and PSM2 genes | germline | [36] |
Mutations in the genes encoding the CPB1 and CPA1 carboxypeptidases | germline | [37] |
Cancer Syndrome | Gene(s) | Location | Mode of Inheritance | Relative Risk for PC Compared with the General Population | Cumulative Risk of PC (%) | References |
---|---|---|---|---|---|---|
HBOC | BRCA2 | 13q13.1 | AD | 3.5–10 fold | 3–5% by age 70 2–7% lifetime risk | [60,75,76] |
BRCA1 | 17q21.31 | AD | 2.26–3 fold | 1–3% lifetime risk | [75,76,77] | |
PALB2 | 16p12.2 | AD | 2.37 fold | 2–3% up to 80 years | [62] | |
PJS | STK11/LKB1 | 19p13.3 | AD | 76–132 fold | 11–36% to age 65–70 | [61,78,79] |
FAMMM | CDKN2A | 9p21.3 | AD | 13–38 fold | 17% by age 70 up to 20% by the age of 75 | [63,80,81] |
VHL | VHL | 16p13 | AD | - | 5–17% | [64,82] |
LFS | TP53 | 17p13 | AD | 6–7.3 fold | - | [65,83] |
FA | Fanconi anaemia complex genes: FANCN (PALB2) FANNG FANCM FANCL FANCD1 (BRCA2) FANCC | 16p12.2 9p13.3 14q21.2 2p16.1 13q13.1 9q22.32 | AR | - | - | [66,84] |
HP | PRSS1 SPINK1 | 7q35 5q32 | AD | 35–70 fold | 7.2–18% lifetime risk | [67,85] |
FAP | APC | 5q21 | AD | 4.46 fold | 2% lifetime risk | [69,86,87] |
LS (HNPCC) | MLH1, MSH2, MSH6, PMS2, EPCAM | 3p22.2 2p21 2p16.3 7p22.1 2p21 | AD | 5–8.6 fold | 1.1% up to age 50 3.9% up to age 70 6.2% up to age 75 | [68,88,89] |
AT | ATM | 11q22.3 | AR | 5.7–6.5 fold | 0.08% by age 30 6.3% by age 70 9.5% by age 80 | [71] |
MEN1 | MEN1 | 11q13 | AD | - | Frequency PET: 80–100% (microscopic) 20–80% (clinical) | [71] |
NF-1 | NF-1 | 17q11.2 | AD | - | Frequency PET: Uncommon (0–10%) | [71] |
TSC | TSC1 TSC2 | 9q34 16p13 | AD | - | Frequency PET: Uncommon | [71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Mroczek, M.; Mach, A.; Stępień, M.; Aplas, A.; Pronobis-Szczylik, B.; Bukowski, S.; Mielczarek, M.; Gajewska, E.; Topolski, P.; et al. Genetics, Genomics and Emerging Molecular Therapies of Pancreatic Cancer. Cancers 2023, 15, 779. https://doi.org/10.3390/cancers15030779
Liu J, Mroczek M, Mach A, Stępień M, Aplas A, Pronobis-Szczylik B, Bukowski S, Mielczarek M, Gajewska E, Topolski P, et al. Genetics, Genomics and Emerging Molecular Therapies of Pancreatic Cancer. Cancers. 2023; 15(3):779. https://doi.org/10.3390/cancers15030779
Chicago/Turabian StyleLiu, Jakub, Magdalena Mroczek, Anna Mach, Maria Stępień, Angelika Aplas, Bartosz Pronobis-Szczylik, Szymon Bukowski, Magda Mielczarek, Ewelina Gajewska, Piotr Topolski, and et al. 2023. "Genetics, Genomics and Emerging Molecular Therapies of Pancreatic Cancer" Cancers 15, no. 3: 779. https://doi.org/10.3390/cancers15030779
APA StyleLiu, J., Mroczek, M., Mach, A., Stępień, M., Aplas, A., Pronobis-Szczylik, B., Bukowski, S., Mielczarek, M., Gajewska, E., Topolski, P., Król, Z. J., Szyda, J., & Dobosz, P. (2023). Genetics, Genomics and Emerging Molecular Therapies of Pancreatic Cancer. Cancers, 15(3), 779. https://doi.org/10.3390/cancers15030779