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1. Current ALL and AML Classification and Therapeutical Strategies

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer, in which
nearly 5% of the cases are diagnosed before the first year of age [1]. Around 75% of the
pediatric ALL cases are characterized by a high frequency of lysine methyltransferase 2A
(KTM2A, previously known as MLL) gene rearrangement KMT2A-r, which is associated
with neprilysin (CD10)-negative immature B-cell precursor phenotype and a very poor
prognosis [2]. Recently, an unbiased molecular classification of KTM2A-r based on tran-
scription factors (iroquois-class homeodomain protein IRX and homeobox protein HOXA),
fusion partners, and corresponding stages of B-lymphopoietic and hemato-endothelial
development has been suggested for genomic-driven diagnostics and potential therapeutic
strategies in infant ALL [3]. Interestingly, the combined mutations of KMT2D and phos-
phatidylinositol 3,4,5-triphosphate 3-phosphatase and dual-specificity protein phosphatase
(PTEN) defined a group of T-cell lymphoblastic lymphoma patients with a high incidence
of relapse [4]. Nearly 70% of childhood B-cell ALL (B-ALL) is currently characterized
by well-known cytogenetic abnormalities, which are associated with good or poor out-
comes [5]. Recently, genomic approaches have identified new genetic features among
the remaining 30%, including double homeobox protein 4 (DUX4)-rearranged (DUX4-r),
tyrosine-protein kinase ABL (ABL)-class fusions, and myocyte-specific enhancer factor 2
D (MEF2D)-rearranged (MED2D-r) [6–8]. A short while ago, whole-genome sequencing
(WGS) on 210 childhood B-ALL cases detected 294 subtype-defining genetic abnormalities
in 96% of patients. These included fusions affecting genes in the mitogen-activated protein
(MAP) kinase pathway and improved detection of DUX4-r [9]. Last year, RNA-sequencing
(RNA-seq) technology contributed remarkably to ALL classifications. RNA-seq data from
leukemic cells of 1,988 patients with B-ALL provided a revised taxonomy of B-ALL, in-
corporating 23 subtypes defined by chromosomal rearrangements, sequence mutations,
or heterogeneous genomic alterations [10]. To classify RNA-seq data according to 18 of
these 23 subtypes, ALLSorts software has recently been developed to analyze B-ALL gene
expression data and attribute study samples to the described subtypes [11].

ALL treatment typically involves several phases: induction (e.g., vincristine, pred-
nisone, and anthracycline), prophylaxis (e.g., methotrexate, cytarabine, and radiation
therapy), consolidation (allogeneic stem cell transplant (SCT)) and maintenance (e.g.,
methotrexate and 6-mercaptopurine). Targeted therapy protocols including the use of
tyrosine kinase inhibitors to Philadelphia chromosome-positive ALL patients and of im-
munotherapeutic agents such as antibody and chimeric antigen receptor (CAR) T-cell
therapies are now being examined to be part of the upfront setting [12,13].

Acute myeloid leukemia (AML) is an aggressive and heterogeneous hematological
cancer. Although most patients with newly diagnosed AML achieve complete remission
(CR) after intensive induction and consolidation therapy, more than half of them relapse
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within the next three years [14,15]. Because of the advances in cytogenetics, molecular biol-
ogy, next-generation sequencing (NGS), and an increasing number of prognostic markers
and therapeutic targets (i.e., Fms-like tyrosine kinase 3 (FLT3), B-cell lymphoma 2 (BCL2),
and isocitrate dehydrogenase 1 and 2 (IDH1/2)), AML cases are now classified according to
the World Health Organization (WHO) system that integrates clinical, molecular/genetic,
and pathologic parameters, providing the separation of AML with defining genetic ab-
normalities from AML defined by differentiation [16]. This WHO classification has been
recently supported by transcriptomics and differentiation hierarchies in the largest cohort
of AML patients in China [17]. The relevance of genomic characterization has also been
reflected in the new International Consensus Classification (ICC, [18]) and the European
LeukemiaNet (ELN) risk stratification [19]. Recently, the molecular genetic characteriza-
tion of Philadelphia chromosome-positive AML has been published, which showed that
patients with this type of AML shared similar genetic profiles and clinical outcomes with
those with chronic myeloid leukemia in myeloid blast crisis (CML-MBC) [20]. Within a
national context, the cooperative initiative PETHEMA has established the first nationwide
diagnostic network to provide standardized NGS studies for AML patients [21]. More-
over, it reported a distinct molecular profile between age groups at diagnosis and sex. In
such a national effort, the clinical validation of genomic classifications in the PETHEMA
cohort consisting of seven reference laboratories is carried out to demonstrate or adjust the
correlation of the molecular subgroups with clinical prognosis.

Besides intensive induction and consolidation therapy, AML treatment has improved
in recent years, and several new therapeutic options have been approved. Most of them
include mutation-specific approaches (e.g., gilteritinib for AML patients with activating
FLT3 mutations), combined epigenetic therapy with the BCL-2 inhibitor venetoclax, im-
munotherapy or restricted approaches for AML with myeloid-related changes (AML-MRC),
or therapy-related AML (CPX-351) cases [22].

2. Single-Omics and Integration of Multi-Omics

The genetic and clinical heterogeneity of ALL and AML cases represent a challenge
even for the new therapies. Moreover, relapse and treatment resistance seriously hinder
ALL and AML treatment. To understand the biology underlying those differences, omic
sciences have increasingly been utilized to produce useful knowledge.

Multi-omic analyses of 49 childhood ALL cell lines using proteomics, transcriptomics,
and pharmacoproteomic characterization (arranged as a database for the interactive online
Functional Omics Resource of ALL (FORALL), at https://proteomics.se/forall accessed on
8 January 2023) identified the diacylglycerol-analog bryostatin-1 as a therapeutic candidate
in the myocyte enhancer factor 2D (MEF2D)-heterogeneous nuclear ribonucleoprotein
U-like protein 1 (HNRNPUL1) fusion high-risk subtype, for which this drug activates pro-
apoptotic mitogen-activated protein kinase (ERK) signaling associated with the molecular
mediators of pre-B-cell negative selection [23].

To uncover the molecular changes allowing AML cells to escape treatment, two
proteomic studies with liquid chromatography–mass spectrometry (LC–MS) and serial
time-point samples during the disease progression of patients have shown that the pro-
teomic profile at relapse is enriched for mitochondrial ribosomal proteins and subunits
of the respiratory chain complex, indicative of reprogrammed energy metabolism from
diagnosis to relapse [14,24]. Using a proteogenomic strategy, the most recent study on the
latter detected 370 novel peptides, which represent a promising repertoire in the search for
biomarkers and tumor-specific druggable targets. A multi-omic approach involving ge-
nomics, transcriptomics, LC–MS proteomics, and phosphoproteomics identified examples
of post-transcriptionally regulated proteins and phosphorylation events both in all studied
AML samples and also in patients with recurrent AML driver mutations (e.g., samples with
IDH1/2 mutations displayed a high expression of the 2-oxoglutarate–dependent histone
demethylases KDM4A/B/C, despite no changes in messenger RNA levels for these genes,
and samples with FLT3-tyrosine kinase domain (TKD) mutationsassociated with the acti-
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vation of the SRC-family tyrosine kinases FGR and HCK) [25]. Using systems medicine
and multi-omics, an approach involving transcriptomics, proteomics, and metabolomics
identified new molecular references such as mir-484, miR-519d-3p, activin receptor type-1
(ACVR1), receptor-type tyrosine-protein phosphatase gamma (PTPRG), PR domain zinc fin-
ger protein 14 (PRDM14), trans-acting T-cell-specific transcription factor GATA-3 (GATA3),
and amino acid derivatives [26].

Altogether, these studies show us the importance and strength of single- and multi-
omic approaches to decode the complex and heterogenous molecular basis of acute
leukemias and to improve the current treatment and survival of ALL and AML patients.

3. Implementation and Future Use

In the past few decades, single-omic strategies have been used for research leading to
ALL- and AML-related biomarker discovery. Genomic approaches have described several
causative variants that are now part of international diagnosis guidelines. However, the
integration of genome sequencing into a healthcare setting still lags behind. Nevertheless,
examples of genomic incorporation, such as the reported initiative across multiple clin-
ical entities of rare diseases [27] and the PETHEMA initiative described earlier, should
promote the implementation of genomic approaches into clinical diagnosis. To facilitate
the identification of genomic alterations of clinical significance in ALL and encourage the
implementation of RNA-seq analysis in the clinic, the RaScALL platform (codes and scripts)
is publicly available from the GitHub repository (https://github.com/j-rehn/RaScALL
accessed on 10 January 2023) [28].

Numerous single-omic studies with patient cohorts have revealed a high number of
leukemia biomarkers [29–31]. Regarding MS-based omic studies for biomarker discovery,
very few of them have undergone validation to support their use in the clinic (Figure 1). The
real bottleneck when considering the clinical use of new biomarkers is their validation using
external cohorts. Because of the remarkable efforts and funds employed in both single- and
multi-omic projects, it is hoped that stronger validation initiatives and closer collaborations
at national and international levels can be established soon so that the introduction and
use of new biomarkers in the clinic unveil more accurate diagnostic and treatment tools to
defeat acute leukemias.
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Figure 1. Single- and multi-omic workflow (e.g., genomics, transcriptomics, proteomics, and
metabolomics) from new biomarker discovery to new biomarker applications in the clinic.

Multi-omic approaches that integrate the data from distinct levels of the cellular or-
ganization, i.e., from genes to metabolites, have recently been reported, which offer new
perspectives for innovation in ALL and AML diagnostics and therapeutics. Multi-omic
strategies bring together researchers with different expertise, including data managers
and bioinformaticians, to provide protein and metabolite targets of specific genomic back-
grounds. The incorporation of more clinicians in research teams appears to be more
necessary than ever to transfer clinical innovation into practice.
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