Machine Learning Logistic Regression Model for Early Decision Making in Referral of Children with Cervical Lymphadenopathy Suspected of Lymphoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Inclusion
2.2. Data Collection and Definitions
2.3. Statistical Analysis
3. Results
3.1. Study Population and Baseline Characteristics
3.2. Univariate Analysis Identified 29 Predictive Factors for Lymphoma
3.3. Multivariate Analysis Creates a Diagnostic Model for Predicting Lymphoma
Added Value of the Model Compared to the Literature
3.4. Added Value of TARC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
ALCL | Anaplastic large cell lymphoma |
AUC | Area under the curve |
BL | Burkitt lymphoma |
B-LBL | B-cell lymphoblastic lymphoma |
cHL | Classical Hodgkin lymphoma |
CI | Confidence interval |
CRP | C-reactive protein |
CV | Cross validation |
DLBCL | Diffuse large B-cell lymphoma |
ELISA | Enzyme-linked immunosorbent assay |
ESR | Erythrocyte sedimentation rate |
LD | Lactate dehydrogenase |
NHL | Non-Hodgkin lymphoma |
NLPHL | Nodular lymphocyte-predominant Hodgkin lymphoma |
OR | Odds ratio |
PMBCL | Primary mediastinal large B-cell lymphoma |
PTGC | Progressive transformation of germinal centers |
PTLD | Post-transplant lymphoproliferative disorders |
ROC | Receiver operating characteristic |
TARC | Thymus and activation regulated chemokine |
T-LBL | T-cell lymphoblastic lymphoma |
References
- D’Anza, B.; Kraseman, S.J.; Canto-Helwig, C.; Greene, J.S.; Wood, W.E. FNA biopsy of pediatric cervicofacial masses and validation of clinical characteristics of malignancy. Int. J. Pediatr. Otorhinolaryngol. 2015, 79, 1196–1200. [Google Scholar] [CrossRef]
- Larsson, L.; Bentzon, M.W.; Kelly, K.B.; Mellander, L.; Skoogh, B.-E.; Strannegard, I.-L.; Lind, A. Palpable lymph nodes of the neck in Swedish schoolchildren. Acta Paediatr. 1994, 83, 1091–1094. [Google Scholar] [CrossRef]
- Torsiglieri, A.J.; Tom, L.W.; Ross, A.J.; Wetmore, R.F.; Handler, S.D.; Potsic, W.P. Pediatric neck masses: Guidelines for evaluation. Int. J. Pediatr. Otorhinolaryngol. 1988, 16, 199–210. [Google Scholar] [CrossRef]
- Twist, C.J.; Link, M.P. Assessment of lymphadenopathy in children. Pediatr. Clin. N. Am. 2002, 49, 1009–1025. [Google Scholar] [CrossRef] [PubMed]
- Vallejo, A.; Menter, T.; Tzankov, A.; Dirnhofer, S. Reactive Lymphadenopathies. Ther. Umsch. 2019, 76, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Citak, E.C.; Koku, N.; Demirci, M.; Tanyeri, B.; Deniz, H. A retrospective chart review of evaluation of the cervical lymphadenopathies in children. Auris Nasus Larynx 2011, 38, 618–621. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, H.H.; Wax, M.K.; Boyd, C.B. Fine-needle aspiration of head and neck masses in children. Am. J. Otolaryngol. 1997, 18, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Venturini, E.; Grillandini, C.; Bianchi, L.; Montagnani, C.; Chiappini, E.; Galli, L. Clinical features and outcomes of lymphadenopathy in a tertiary children’s hospital. J. Paediatr. Child Health. 2020, 56, 1277–1282. [Google Scholar] [CrossRef]
- Al Yamani, A.O.; Al Sebaei, M.O.; Bassyoni, L.J.; Badghaish, A.J.; Shawly, H.H. Variation of pediatric and adolescents head and neck pathology in the city of Jeddah: A retrospective analysis over 10 years. Saudi Dent. J. 2011, 23, 197–200. [Google Scholar] [CrossRef]
- Gaddey, H.L.; Riegel, A.M. Unexplained Lymphadenopathy: Evaluation and Differential Diagnosis. Am. Fam. Physician 2016, 94, 896–903. [Google Scholar]
- Riva, G.; Sensini, M.; Peradotto, F.; Scolfaro, C.; Di Rosa, G.; Tavormina, P. Pediatric neck masses: How clinical and radiological features can drive diagnosis. Eur. J. Pediatr. 2019, 178, 463–471. [Google Scholar] [CrossRef]
- Papadopouli, E.; Michailidi, E.; Papadopoulou, E.; Paspalaki, P.; Vlahakis, I.; Kalmanti, M. Cervical lymphadenopathy in childhood epidemiology and management. Pediatr. Hematol. Oncol. 2009, 26, 454–460. [Google Scholar] [CrossRef]
- Buhtoiarov, I.N. Pediatric Lymphoma. Pediatr. Rev. 2017, 38, 410–423. [Google Scholar] [CrossRef]
- Sandlund, J.T.; Downing, J.R.; Crist, W.M. Non-Hodgkin’s lymphoma in childhood. N. Engl. J. Med. 1996, 334, 1238–1248. [Google Scholar] [CrossRef]
- Ward, E.; DeSantis, C.; Robbins, A.; Kohler, B.; Jemal, A. Childhood and adolescent cancer statistics, 2014. CA: A Cancer J. Clin. 2014, 64, 83–103. [Google Scholar] [CrossRef]
- Pizzo, P.A. Principles and Practice of Pediatric Oncology, 2nd ed.; J.B. Lippincott: Philadelphia, PA, USA, 1993. [Google Scholar]
- EuroNet-PHL-C2 protocol 2022 11-2-2022. Available online: https://www.orpha.net/consor/cgi-bin/ResearchTrials_ClinicalTrials.php?lng=EN&data_id=117368&ClinicalTrialName=EuroNet-PHL-C2--European-Network-Paediatric-Hodgkin-Lymphoma-Study-Group--EuroNet-PHL--Second-International-Inter-Group-Study-for-Classical-Hodgkin-Lymphoma-in-Children-and-Adolescents--Phase-III----AT&title=EuroNet-PHL-C2:%20European%20Network-Paediatric%20Hodgkin%20Lymphoma%20Study%20Group%20EuroNet-PHL%20Second%20International%20Inter-Group%20Study%20for%20Classical%20Hodgkin%20Lymphoma%20in%20Children%20and%20Adolescents%20Phase%20III%20-%20AT&search=ResearchTrials_ClinicalTrials_Simple (accessed on 1 August 2022).
- Aleman, B.M.; van den Belt-Dusebout, A.W.; De Bruin, M.L.; van’t Veer, M.B.; Baaijens, M.H.; de Boer, J.P.; Hart, A.A.; Klokman, W.J.; Kuenen, M.A.; Ouwens, G.M.; et al. Late cardiotoxicity after treatment for Hodgkin lymphoma. Blood 2007, 109, 1878–1886. [Google Scholar] [CrossRef]
- Castellino, S.M.; Geiger, A.M.; Mertens, A.C.; Leisenring, W.M.; Tooze, J.A.; Goodman, P.; Stovall, M.; Robison, L.L.; Hudson, M.M. Morbidity and mortality in long-term survivors of Hodgkin lymphoma: A report from the Childhood Cancer Survivor Study. Blood 2011, 117, 1806–1816. [Google Scholar] [CrossRef]
- Kreuser, E.D.; Xiros, N.; Hetzel, W.D.; Heimpel, H. Reproductive and endocrine gonadal capacity in patients treated with COPP chemotherapy for Hodgkin’s disease. J. Cancer Res. Clin. Oncol. 1987, 113, 206–260. [Google Scholar] [CrossRef]
- O’Brien, M.M.; Donaldson, S.S.; Balise, R.R.; Whittemore, A.S.; Link, M.P. Second malignant neoplasms in survivors of pediatric Hodgkin’s lymphoma treated with low-dose radiation and chemotherapy. J. Clin. Oncol. 2010, 28, 1232–1239. [Google Scholar] [CrossRef]
- Mauz-Körholz, C.; Lange, T.; Hasenclever, D.; Burkhardt, B.; Feller, A.C.; Dörffel, W.; Kluge, R.; Vordermark, D.; Körholz, D. Pediatric Nodular Lymphocyte-predominant Hodgkin Lymphoma: Treatment Recommendations of the GPOH-HD Study Group. Klin. Padiatr. 2015, 227, 314–321. [Google Scholar] [CrossRef]
- Pellegrino, B.; Terrier-Lacombe, M.; Oberlin, O.; Leblanc, T.; Perel, Y.; Bertrand, Y.; Beard, C.; Edan, C.; Schmitt, C.; Plantaz, D.; et al. Lymphocyte-Predominant Hodgkin’s Lymphoma in Children: Therapeutic Abstention After Initial Lymph Node Resection—A Study of the French Society of Pediatric Oncology. J. Clin. Oncol. 2003, 21, 2948–2952. [Google Scholar] [CrossRef] [PubMed]
- Shankar, A.; Hall, G.W.; Gorde-Grosjean, S.; Hasenclever, D.; Leblanc, T.; Hayward, J.; Lambilliotte, A.; Daw, S.; Perel, Y.; McCarthy, K.; et al. Treatment outcome after low intensity chemotherapy [CVP] in children and adolescents with early stage nodular lymphocyte predominant Hodgkin’s lymphoma – An Anglo-French collaborative report. Eur. J. Cancer 2011, 48, 1700–1706. [Google Scholar] [CrossRef] [PubMed]
- Reedijk, A.M.J.; Zijtregtop, E.A.M.; Coebergh, J.W.W.; Meyer-Wentrup, F.A.G.; Hebeda, K.M.; Zwaan, C.M.; Janssens, G.O.R.; Pieters, R.; Plattel, W.J.; Dinmohamed, A.G.; et al. Improved survival for adolescents and young adults with Hodgkin lymphoma and continued high survival for children in the Netherlands: A population-based study during 1990–2015. Br. J. Haematol. 2020, 189, 1093–1106. [Google Scholar] [CrossRef] [PubMed]
- Mauz-Körholz, C.; Metzger, M.L.; Kelly, K.M.; Schwartz, C.L.; Castellanos, M.E.; Dieckmann, K.; Kluge, R.; Körholz, D. Pediatric Hodgkin Lymphoma. J. Clin. Oncol. 2015, 33, 2975–2985. [Google Scholar] [CrossRef] [PubMed]
- Nolder, A.R. Paediatric cervical lymphadenopathy: When to biopsy? Curr. Opin. Otolaryngol. Head Neck Surg. 2013, 21, 567–570. [Google Scholar] [CrossRef]
- Locke, R.; Comfort, R.; Kubba, H. When does an enlarged cervical lymph node in a child need excision? A systematic review. Int. J. Pediatr. Otorhinolaryngol. 2014, 78, 393–401. [Google Scholar] [CrossRef]
- Indolfi, P.; Perrotta, S.; Rossi, F.; Di Martino, M.; Pota, E.; Di Pinto, D.; Gualdiero, G.; Boccieri, E.; Indolfi, C.; Casale, F. Childhood Head and Neck Lymphadenopathy: A Report by a Single Institution (2003–2017). J. Pediatr. Hematol. 2019, 41, 17–20. [Google Scholar] [CrossRef]
- Chiappini, E.; Camaioni, A.; Benazzo, M.; Biondi, A.; Bottero, S.; De Masi, S.; Di Mauro, G.; Doria, M.; Esposito, S.; Felisati, G.; et al. Development of an algorithm for the management of cervical lymphadenopathy in children: Consensus of the Italian Society of Preventive and Social Pediatrics, jointly with the Italian Society of Pediatric Infectious Diseases and the Italian Society of Pediatric Otorhinolaryngology. Expert Rev. Anti-infect. Ther. 2015, 13, 1557–1567. [Google Scholar] [CrossRef]
- Karaman, A.; Karaman, I.; Cavusoglu, Y.H.; Erdogan, D. The ongoing problem with peripheral lymphadenopathies: Which ones are malignant? Pediatr. Surg. Int. 2010, 26, 247–250. [Google Scholar] [CrossRef]
- Oguz, A.; Karadeniz, C.; Temel, E.A.; Citak, E.C.; Okur, F.V. Evaluation of Peripheral Lymphadenopathy in Children. Pediatr. Hematol. Oncol. 2006, 23, 549–561. [Google Scholar] [CrossRef]
- Soldes, O.S.; Yunger, J.G.; Hirschl, R.B. Predictors of malignancy in childhood peripheral lymphadenopathy. J. Pediatr. Surg. 1999, 34, 1447–1452. [Google Scholar] [CrossRef]
- Celenk, F.; Gulsen, S.; Baysal, E.; Aytac, I.; Kul, S.; Kanlikama, M. Predictive factors for malignancy in patients with persistent cervical lymphadenopathy. Eur. Arch. Oto-Rhino-Laryngol. 2015, 273, 251–256. [Google Scholar] [CrossRef]
- Sgro, J.M.; Campisi, E.S.; Selvam, S.; Greer, M.-L.C.; Alexander, S.; Ngan, B.; Campisi, P. Cervical lymph node biopsies in the evaluation of children with suspected lymphoproliferative disorders: Experience in a tertiary pediatric setting. J. Pediatr. Surg. 2021, 57, 1525–1531. [Google Scholar] [CrossRef]
- Bozlak, S.; Varkal, M.A.; Yildiz, I.; Toprak, S.; Karaman, S.; Erol, O.B.; Yekeler, E.; Unuvar, A.; Kilic, A.; Oguz, F.; et al. Cervical lymphadenopathies in children: A prospective clinical cohort study. Int. J. Pediatr. Otorhinolaryngol. 2016, 82, 81–87. [Google Scholar] [CrossRef]
- Wang, J.; Pei, G.; Yan, J.; Zhao, Q.; Li, Z.; Cao, Y.; Li, J.; Zhang, G.; Chen, H.; Hao, X. Unexplained cervical lymphadenopathy in children: Predictive factors for malignancy. J. Pediatr. Surg. 2010, 45, 784–788. [Google Scholar] [CrossRef]
- Zijtregtop, E.A.M.; Meyer-Wentrup, F.; Wong, W.; Hoogendijk, R.; Lopez-Yurda, M.; Zwaan, C.M.; Beishuizen, A. Plasma thymus and activation-regulated chemokine (TARC) as diagnostic marker in pediatric Hodgkin lymphoma. Ejhaem 2020, 1, 152–160. [Google Scholar] [CrossRef]
- Zijtregtop, E.; Strate, I.; Beishuizen, A.; Zwaan, C.; Scheijde-Vermeulen, M.; Brandsma, A.; Meyer-Wentrup, F. Biology and Clinical Applicability of Plasma Thymus and Activation-Regulated Chemokine (TARC) in Classical Hodgkin Lymphoma. Cancers 2021, 13, 884. [Google Scholar] [CrossRef]
- Asadi, H.; Dowling, R.; Yan, B.; Mitchell, P. Machine Learning for Outcome Prediction of Acute Ischemic Stroke Post Intra-Arterial Therapy. PLOS ONE 2014, 9, e88225. [Google Scholar] [CrossRef]
- Heo, J.; Yoon, J.; Park, H.; Kim, Y.D.; Nam, H.S.; Heo, J.H. Machine Learning–Based Model for Prediction of Outcomes in Acute Stroke. Stroke 2019, 50, 1263–1265. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Lee, Y.W.; Choi, J.W.; Shin, E.-H. Machine learning model for predicting malaria using clinical information. Comput. Biol. Med. 2020, 129, 104151. [Google Scholar] [CrossRef] [PubMed]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; Depristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef] [PubMed]
- E Black, J.; Kueper, J.K.; Williamson, T.S. An introduction to machine learning for classification and prediction. Fam. Pr. 2022. [Google Scholar] [CrossRef] [PubMed]
- Bazemore, A.W.; Smucker, D.R. Lymphadenopathy and malignancy. Am. Fam. Physician 2002, 66. [Google Scholar]
- Cunnane, M.; Cheung, L.; Moore, A.; di Palma, S.; McCombe, A.; Pitkin, L. Level 5 Lymphadenopathy Warrants Heightened Suspicion for Clinically Significant Pathology. Head Neck Pathol. 2016, 10, 509–512. [Google Scholar] [CrossRef]
- Gupta, A.; Rahman, K.; Shahid, M.; Kumar, A.; Qaseem, S.M.D.; Hassan, S.A.; Siddiqui, F.A. Sonographic assessment of cervical lymphadenopathy: Role of high-resolution and color Doppler imaging. Head Neck 2010, 33, 297–302. [Google Scholar] [CrossRef]
- Karadeniz, C.; Oguz, A.; Ezer, U.; Öztürk, G.; Dursun, A. The Etiology of Peripheral Lymphadenopathy in Children. Pediatr. Hematol. Oncol. 1999, 16, 525–531. [Google Scholar] [CrossRef]
- Knight, P.J.; Mulne, A.F.; Vassy, L.E. When is lymph node biopsy indicated in children with enlarged peripheral nodes? Pediatrics 1982, 69, 391–396. [Google Scholar] [CrossRef]
- Restrepo, R.; Oneto, J.; Lopez, K.; Kukreja, K. Head and neck lymph nodes in children: The spectrum from normal to abnormal. Pediatr. Radiol. 2009, 39, 836–846. [Google Scholar] [CrossRef]
- Srouji, I.A.; Okpala, N.; Nilssen, E.; Birch, S.; Monnery, P. Diagnostic cervical lymphadenectomy in children: A case for multidisciplinary assessment and formal management guidelines. Int. J. Pediatr. Otorhinolaryngol. 2004, 68, 551–556. [Google Scholar] [CrossRef]
- Zhao, P.Y.B. On Model Selection Consistency of Lasso. J. Mach. Learn. Res. 2006, 2541–2563. [Google Scholar]
- Mansour, Y.; Schain, M. Learning with Maximum-Entropy Distributions. Mach. Learn. 2001, 45, 123–145. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Al Kadah, B.; Popov, H.H.; Schick, B.; Knöbber, D. Cervical lymphadenopathy: Study of 251 patients. Eur. Arch. Otorhinolaryngol. 2015, 272, 745–752. [Google Scholar] [CrossRef]
- Storck, K.; Brandstetter, M.; Keller, U.; Knopf, A. Clinical presentation and characteristics of lymphoma in the head and neck region. Head Face Med. 2019, 15, 1. [Google Scholar] [CrossRef]
- Gerber, N.K.; Atoria, C.L.; Elkin, E.B.; Yahalom, J. Characteristics and Outcomes of Patients With Nodular Lymphocyte-Predominant Hodgkin Lymphoma Versus Those With Classical Hodgkin Lymphoma: A Population-Based Analysis. Int. J. Radiat. Oncol. 2015, 92, 76–83. [Google Scholar] [CrossRef]
- Lake, A.M.; Oski, F.A. Peripheral lymphadenopathy in childhood. Ten-year experience with excisional biopsy. Am. J. Dis. Child. 1978, 132, 357–359. [Google Scholar] [CrossRef]
- Moussatos, G.H.; Baffes, T.G. CERVICAL MASSES IN INFANTS AND CHILDREN. Pediatrics 1963, 32. [Google Scholar] [CrossRef]
- Çolak, M.; Eravcı, F.C.; Karakurt, S.E.; Karakuş, M.F.; Ikincioğulları, A.; Özcan, K.M. The Predictive Value of Neutrophil-to-Lymphocyte Ratio for Hodgkin’s Lymphoma Diagnosis in Patients with Asymptomatic Cervical Lymphadenopathy. Indian J. Otolaryngol. Head Neck Surg. 2019, 71, 986–991. [Google Scholar] [CrossRef]
- Mauz-Körholz, C.; Ströter, N.; Baumann, J.; Botzen, A.; Körholz, K.; Körholz, D. Pharmacotherapeutic Management of Pediatric Lymphoma. Pediatr. Drugs 2017, 20, 43–57. [Google Scholar] [CrossRef]
- Matasar, M.J.; Zelenetz, A.D. Overview of Lymphoma Diagnosis and Management. Radiol. Clin. N. Am. 2008, 46, 175–198. [Google Scholar] [CrossRef] [PubMed]
- Rooney, N.; Foster, L.; Byers, R. Nodal B-cell lymphoma and Hodgkin lymphoma: Current WHO classification and differential diagnostic dilemmas. Diagn. Histopathol. 2010, 16, 54–68. [Google Scholar] [CrossRef]
Characteristics Malignant Group | Study Group, Malignant n = 115 | Test Group, Malignant n = 40 | Differences between Malignant Groups, p-Value | Differences between Test Group and Study Group in Total p-Values |
Gender | - | - | 0.72 | 0.88 |
Male (%) | 67 (58.2) | 22 (55.0) | - | - |
Female (%) | 48 (41.7) | 18 (45.0) | - | - |
Age median (range) | 14.0 (1–18) | 14.2 (2–18) | 0.53 | 0.80 |
Diagnoses (%) | - | - | 0.26 | - |
Hodgkin lymphoma | 90 (78.3) | 29 (72.5) | - | - |
cHL | 79 | 26 | - | - |
NLPHL | 11 | 3 | - | - |
Non-Hodgkin lymphoma | 24 (20.9) | 11 (27.5) | - | - |
ALCL | 5 | 1 | - | - |
PMBCL | 1 | 0 | - | - |
DLBCL | 3 | 1 | - | - |
BL | 5 | 0 | - | - |
T-LBL | 8 | 9 | - | - |
B-LBL | 2 | 0 | - | - |
Other malignancy | 1 (0.9) | 0 (0.0) | - | - |
Histiocytosis | 1 | 0 | - | - |
Isolated lymphadenopathy (%) * | 8 (6.9) | 3 (7.5) | 0.91 | 1.00 |
cHL | - | 1 | - | - |
NLPHL | 8 | 2 | - | - |
Characteristics Benign Group | Study Group, Benign n = 67 | Test Group, Benign n = 20 | Differences between Benign Groups, p-Value | Not Applicable |
Gender | - | 0.95 | - | |
Male (%) | 33 (49.3) | 10 (50.0) | - | - |
Female (%) | 34 (50.7) | 10 (50.0) | - | - |
Age median (range) | 12.5 (0–17) | 13.5 (1–18) | 0.51 | - |
Diagnoses (%) | - | 0.19 | - | |
Reactive/infective lymphadenopathy | 48 | 15 | - | - |
Immunological disorder | 5 | 2 | - | - |
PTGC | 4 | 2 | - | - |
Morbus Castleman | 2 | - | - | - |
Rheumatological disorder | 2 | - | - | - |
Ruptured branchiogenic cyst | 3 | - | - | - |
Venous malformation | 1 | 1 | - | - |
Lymphangioma | 1 | - | - | - |
Dermoid cysts | 1 | - | - | - |
Isolated lymphadenopathy (%) * | 21 (31.3) | 6 (30.0) | 0.91 | - |
Reactive/infective lymphadenopathy | 13 | 5 | - | - |
PTGC | 1 | - | - | - |
Morbus Castleman | 1 | - | - | - |
Ruptured branchiogenic cyst | 3 | - | - | - |
Venous malformation | 1 | 1 | - | - |
Lymphangioma | 1 | - | - | - |
Dermoid cysts | 1 | - | - | - |
Variables | Malignant Group (n = 115) | Benign Group (n = 67) | Total (n = 182) | Outcome Univariate Analysis | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | (%) | m | n | (%) | m | n | (%) | p Value | OR | 95% CI | |
Age | |||||||||||
0–5 years | 10 | 9 | 0 | 22 | 33 | 0 | 32 | 18 | <0.001 | ||
6–12 years | 37 | 32 | 15 | 22 | 52 | 29 | |||||
13–18 years | 68 | 59 | 30 | 45 | 98 | 55 | |||||
Gender | |||||||||||
Male | 67 | 58 | 0 | 33 | 49 | 0 | 100 | 55 | 0.28 | 1.44 | (0.79–2.64) |
Female | 48 | 42 | 34 | 51 | 82 | 45 | |||||
Lymph nodes ultrasound | |||||||||||
Pathological lymph nodes a | 101 | 96 | 10 | 24 | 37 | 2 | 125 | 74 | <0.001 | 43.14 | (14.09–132.07) |
No/uncertain pathological lymph nodes | 4 | 4 | 41 | 63 | 45 | 27 | |||||
Cervical levels involved in accordance with Robbins Classification [49] | |||||||||||
Level I | 15 | 14 | 11 | 11 | 18 | 6 | 26 | 16 | 0.51 | 0.75 | (0.32–1.76) |
Level II | 60 | 57 | 46 | 75 | 106 | 64 | 0.02 | 0.43 | (0.21–0.86) | ||
Level III | 62 | 58 | 23 | 38 | 85 | 51 | 0.01 | 2.33 | (1.22–4.44) | ||
Level IV | 91 | 86 | 18 | 30 | 109 | 65 | <0.001 | 14.49 | (6.67–31.47) | ||
Level V | 68 | 64 | 15 | 25 | 83 | 50 | <0.001 | 5.5 | (2.71–11.11) | ||
Level VI | 24 | 23 | 3 | 5 | 27 | 16 | 0.002 | 5.66 | (1.63–19.68) | ||
Number of involved cervical levels | |||||||||||
>3 levels involved | 36 | 32 | 11 | 4 | 6 | 6 | 40 | 22 | <0.001 | 7.27 | (2.46–21.51) |
Cervical involvement | |||||||||||
Unilateral | 36 | 34 | 11 | 43 | 67 | 3 | 79 | 47 | <0.001 | 3.98 | (2.06–7.69) |
Bilateral | 70 | 66 | 21 | 33 | 91 | 54 | |||||
Size lymph nodes level I, II, III (short axis) | |||||||||||
>15 mm | 22 | 77 | 0 | 14 | 42 | 0 | 36 | 56 | 0.03 | 3.31 | (1.18–9.37) |
Size lymph nodes level IV, V, VI (short axis) | |||||||||||
>10 mm | 44 | 92 | 1 | 6 | 60 | 1 | 58 | 86 | 0.024 | 7.33 | (1.44–37.22) |
Size non-cervical lymph nodes (short axis) | |||||||||||
>10 mm | 10 | 83 | 2 | 2 | 50 | 0 | 12 | 75 | 0.52 | 5.00 | (0.42–59.68) |
Thorax abnormalities | |||||||||||
Enlarged mediastinum | 64 | 56 | 0 | 2 | 3 | 4 | 66 | 37 | <0.001 | 38.28 | (8.93–164.10) |
Obstructed airway | 32 | 28 | 1 | 2 | 33 | 19 | <0.001 | 23.90 | (3.18–179.72) | ||
Trachea deviation | 22 | 19 | 1 | 2 | 23 | 13 | <0.001 | 14.67 | (1.93–111.63) | ||
V. cava superior syndrome | 20 | 17 | 0 | 0 | 20 | 11 | <0.001 | 0 | NA | ||
Enlarged liver and/or spleen | |||||||||||
No abnormalities | 71 | 62 | 1 | 47 | 90 | 15 | 118 | 71 | <0.001 | 5.69 | (2.10–15.43) |
Abnormal | 43 | 38 | 5 | 10 | 48 | 29 | |||||
Body regions involved (presence of pathological lymph node or mass) | |||||||||||
High cervical | 108 | 94 | 0 | 64 | 96 | 0 | 172 | 95 | 0.75 | 0.72 | (0.18–2.89) |
Supraclavicular | 97 | 84 | 19 | 28 | 116 | 64 | <0.001 | 13.61 | (6.55–28.29) | ||
Infraclavicular | 39 | 34 | 0 | 0 | 39 | 21 | <0.001 | 0 | NA | ||
Axilla | 39 | 34 | 8 | 12 | 47 | 26 | 0.001 | 3.79 | (1.65–8.71) | ||
Mediastinal | 90 | 78 | 5 | 8 | 95 | 52 | <0.001 | 44.64 | (16.21–122.96) | ||
Abdominal lymph nodes | 40 | 35 | 9 | 13 | 49 | 27 | 0.002 | 3.44 | (1.54–7.65) | ||
Other locations | 69 | 60 | 16 | 24 | 85 | 47 | <0.001 | 4.78 | (2.44–9.38) | ||
Number of body regions involved | |||||||||||
>3 involved | 78 | 68 | 0 | 8 | 12 | 0 | 86 | 47 | <0.001 | 15.55 | (6.74–35.86) |
Laboratory values | |||||||||||
ESR > 16.5 mm/h b | 77 | 72 | 8 | 28 | 43 | 2 | 105 | 61 | <0.001 | 3.39 | (1.77–6.48) |
Hb < 8.15 g/dL c | 82 | 71 | 0 | 39 | 58 | 0 | 121 | 67 | 0.08 | 1.78 | (0.95–3.36) |
Leukocytes > 8.35 (×103/mm3) c | 73 | 64 | 0 | 31 | 46 | 0 | 104 | 57 | 0.03 | 2.02 | (1.09–3.72) |
Neutrophils > 6.0 (×103/mm3) b | 58 | 51 | 1 | 9 | 14 | 1 | 67 | 37 | <0.001 | 6.56 | (2.97–14.49) |
Lymphocytes < 2.6 (×103/mm3) b | 87 | 81 | 7 | 33 | 52 | 1 | 120 | 70 | <0.001 | 3.39 | (1.96–7.71) |
Monocytes > 0.62 (×103/mm3) b | 74 | 68 | 6 | 27 | 44 | 5 | 101 | 59 | <0.001 | 3.26 | (1.70–6.26) |
Thrombocytes > 307.5 (×103/mm3) b | 87 | 77 | 1 | 32 | 49 | 1 | 119 | 66 | <0.001 | 3.42 | (1.79–6.54) |
Uric acid > 0.225 mg/dL d | 75 | 75 | 15 | 33 | 58 | 10 | 108 | 69 | 0.03 | 2.18 | (1.09–4.37) |
LD > 260.0 U/L b, f | 19 | 79 | 7 | 29 | 47 | 5 | 48 | 56 | 0.01 | 3.68 | (1.23–11.03) |
CRP > 3.35 µg/mL e | 78 | 82 | 20 | 20 | 36 | 11 | 98 | 65 | <0.001 | 8.26 | (3.87–17.62) |
TARC > 850.0 pg/mL g | 69 | 90 | 7 | 3 | 8 | 30 | 72 | 63 | <0.001 | 97.75 | (24.37–392.06) |
Presence of B-symptoms | |||||||||||
Presence of ≥1 B-symptoms | 41 | 36 | 1 | 19 | 31 | 5 | 60 | 34 | 0.51 | 1.27 | (0.66–2.46) |
Weight loss | 17 | 15 | 3 | 11 | 19 | 8 | 28 | 16 | 0.66 | 0.78 | (0.34–1.79) |
Night sweats | 28 | 26 | 5 | 10 | 17 | 8 | 38 | 23 | 0.25 | 1.67 | (0.74–3.74) |
Fever | 18 | 16 | 3 | 11 | 17 | 2 | 29 | 16 | 1.00 | 0.94 | (0.41–2.14) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zijtregtop, E.A.M.; Winterswijk, L.A.; Beishuizen, T.P.A.; Zwaan, C.M.; Nievelstein, R.A.J.; Meyer-Wentrup, F.A.G.; Beishuizen, A. Machine Learning Logistic Regression Model for Early Decision Making in Referral of Children with Cervical Lymphadenopathy Suspected of Lymphoma. Cancers 2023, 15, 1178. https://doi.org/10.3390/cancers15041178
Zijtregtop EAM, Winterswijk LA, Beishuizen TPA, Zwaan CM, Nievelstein RAJ, Meyer-Wentrup FAG, Beishuizen A. Machine Learning Logistic Regression Model for Early Decision Making in Referral of Children with Cervical Lymphadenopathy Suspected of Lymphoma. Cancers. 2023; 15(4):1178. https://doi.org/10.3390/cancers15041178
Chicago/Turabian StyleZijtregtop, Eline A. M., Louise A. Winterswijk, Tammo P. A. Beishuizen, Christian M. Zwaan, Rutger A. J. Nievelstein, Friederike A. G. Meyer-Wentrup, and Auke Beishuizen. 2023. "Machine Learning Logistic Regression Model for Early Decision Making in Referral of Children with Cervical Lymphadenopathy Suspected of Lymphoma" Cancers 15, no. 4: 1178. https://doi.org/10.3390/cancers15041178
APA StyleZijtregtop, E. A. M., Winterswijk, L. A., Beishuizen, T. P. A., Zwaan, C. M., Nievelstein, R. A. J., Meyer-Wentrup, F. A. G., & Beishuizen, A. (2023). Machine Learning Logistic Regression Model for Early Decision Making in Referral of Children with Cervical Lymphadenopathy Suspected of Lymphoma. Cancers, 15(4), 1178. https://doi.org/10.3390/cancers15041178