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Simple Summary: Studies aimed at assessing the potential prognostic role of gene expression profiles
in cancer patients often employ running procedures to select optimal cut-offs for the identification
of groups with a poorer outcome. The corresponding hazard ratio (HR) is the most frequently
used measure of association between gene expression and patient survival, but it is prone to an
overestimation bias. If rare diseases are investigated in the absence of an external cohort, it is difficult
to control this lack of accuracy. We propose a simple, test-based method to obtain the HR, adjusted
for the overestimation bias. Validation using both simulated data and gene expression profiles from
two publicly available data sets is provided. Furthermore, we show that the proposed method is
able to identify a new gene with potential oncogenic activity in the reanalysis of a data set including
134 patients affected by Stage 4S neuroblastoma.

Abstract: The early evaluation of prognostic tumour markers is commonly performed by comparing
the survival of two groups of patients identified on the basis of a cut-off value. The corresponding
hazard ratio (HR) is usually estimated, representing a measure of the relative risk between patients
with marker values above and below the cut-off. A posteriori methods identifying an optimal cut-off
are appropriate when the functional form of the relation between the marker distribution and patient
survival is unknown, but they are prone to an overestimation bias. In the presence of a small sample
size, which is typical of rare diseases, the external validation sets are hardly available and internal
cross-validation could be unfeasible. We describe a new method to obtain an unbiased estimate of the
HR at an optimal cut-off, exploiting the simple relation between the HR and the associated p-value
estimated by a random permutation analysis. We validate the method on both simulated data and set
of gene expression profiles from two large, publicly available data sets. Furthermore, a reanalysis of a
previously published study, which included 134 Stage 4S neuroblastoma patients, allowed for the
identification of E2F1 as a new gene with potential oncogenic activity. This finding was confirmed by
an immunofluorescence analysis on an independent cohort.

Keywords: tumour markers; hazard ratio; Cox model; survival analysis; overestimation bias;
neuroblastoma; E2F1

1. Introduction

The early evaluation of potential tumour markers for prognostic applications is usually
carried out by comparing the survival of two groups of patients identified on the basis of a
threshold value. A cut-off selected a priori can be used for such a purpose, based on the
percentiles of the observed marker distribution as median, tertile, or quartile values [1]. In
most cases, the functional form of the relation between the marker distribution and the
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patients’ survival is unknown, and a posteriori methods for the identification of an optimal
cut-off could be more appropriate. For instance, a running method is usually applied that
recursively splits the data set on the basis of each observed marker value. For each cut-off,
some measure of distance between the survival probabilities in the two groups is calculated
and the cut-off corresponding to the highest value is retained. Common measures include
survival estimates via the Kaplan–Meier method, the associated log-rank test statistic, and
the hazard ratio (HR) obtained by the corresponding Cox regression model [2]. In any case,
results of the analysis may be prone to an overestimation bias that can be controlled by a
validation procedure on an independent cohort [1,3,4]. In the absence of an external cohort,
an internal cross-validation can be applied, randomly splitting the available data into (at
least) one training and one test set [4]. However, in the presence of a small sample size, the
cross-validation procedure cannot be applied. A p-value, adjusted for the overestimation
bias, can be obtained to test the null hypothesis of no association between the marker
levels and the patients’ survival by a random permutation analysis. The distribution
of the corresponding test statistic is obtained under the null hypothesis by recursively
swapping the follow-up times and the corresponding outcome indicators in couples of
patients randomly selected in the data set [4,5]. The proportion of simulated values that
are higher than the observed values provides an estimate of the corresponding p-value
but does not remove the overestimation bias from the HR. The purpose of this study is
to illustrate a simple, test-based method to obtain HR estimates that are adjusted for the
overestimation bias. An example of its application will be provided by a reanalysis of data
from a previously published study involving 134 patients with Stage 4S neuroblastoma
(NB) [6].

Section 2 describes the new proposed method used to obtain unbiased HR estimates.
Section 3 shows the results of the statistical validation, which used data from two publicly
available data sets. Section 4 reports the results of the validation on the simulated data.
Section 5 provides an application to a real data set, evaluating the potential prognostic role
of three gene expression profiles in a reanalysis of a previously published study. Section 6
provides the biological validation of the results reported in Section 5, using information
from an independent cohort. Section 7 includes the discussion of the obtained results.

2. Adjusting the Hazard Ratio for the Overestimation Bias

Let T be the (likely biased) test statistic calculated for the comparison of two groups
identified by an optimal cut-off and let T*(k) be the corresponding set of statistics obtained
from k permuted data sets. The null hypothesis of no difference between the two groups
can be assessed by computing an estimate of the corresponding p-value (p*), obtained from
the proportion of T*(k) ≥ T [5,7]:

p∗ =
#
(

T∗(k) ≥ T
)

k
, (1)

In the analysis of patient survival, T is usually a test statistic for the comparison of two
survival curves or for the inference on the corresponding coefficient from a Cox regression
model. For instance, a Cox model is usually employed to assess the association between
a tumour marker evaluated at a specific cut-off and patient survival. The corresponding
regression coefficient represents an estimate of the natural logarithm of the HR (ln(HR))
between the group of patients with marker values above the selected threshold and those
with values below the threshold [2]. The estimate of ln(HR) is prone to an overestimation
bias when the threshold is identified by a running procedure. Here, we propose a simple
method to obtain an unbiased estimate of ln(HR) from the corresponding adjusted p-value
(p*), which is estimated according to Equation (1).
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Under the null hypothesis (H0: ln(HR) = 0), a normal asymptotic distribution for
ln(HR) can be assumed [8]. Accordingly:

(ln(HR))2

V
d→ χ2

1 (2)

where V is the variance of ln(HR) and χ2
1 is a chi squared distribution with one degree of

freedom (d.f.). The equation above is the basis for the application of the Wald test for the
inference for the Cox regression coefficient [8].

Let p* be the adjusted p-value associated to χ2
1, estimated according to Equation (1),

and let χ2∗ be the quantile of the chi-squared distribution with 1 d.f. corresponding to
p*. An estimate of the HR adjusted for the overestimation bias (HR*) is easily obtained by
replacing χ2

1 with χ2∗ in Equation (2) and solving for HR:

ĤR∗ = esign(ln (ĤR))·
√

V̂·χ2∗
(3)

where the sign of ln
(

ĤR
)

is introduced to preserve the direction of the association, i.e., to
allow ĤR∗ be <1 in the case of a positive association observed between the gene expression
and the patient survival. Accordingly, a negative sign would be expected, for example, in
the presence of a gene with a tumour suppression activity.

3. Statistical Validation of the Proposed Method to Control the Overestimation Bias:
Analysing in Silico Data from Two Real Data Sets
3.1. The Data Sets

The statistical validation of the proposed method was performed using data from two
large databases that were randomly split into a training set and a test set of equal sample
size. The first data set, published by Cangelosi and collaborators, included information on
786 patients affected by NB, the most frequently occurring solid malignancy in infants, and
13,696 gene expression profiles [9]. Data were randomly split into a training set and a test
set of equal sample size (n = 393). Their characteristics are summarized in Table 1. In the
whole data set, there were 337 (43%) patients aged ≥ 18 months, MYCN amplification was
observed in 153 (20%), and 373 (48%) were diagnosed in localised stages: namely, 143 in
Stage 1, 125 in Stage 2, and 105 in Stage 3. There were 412 (53%) patients diagnosed with
metastatic disease, including 320 at Stage 4 and 92 at Stage 4S. The number of observed
deaths was 229. Random splitting allowed for a quite balanced distribution of the variables
in the training and in the test sets, except for a slightly higher proportion of patients with
disseminated disease in the former (55.5% vs. 49.4%). This was due to a higher proportion
of Stage 4 patients (43.3% vs. 38.2%).

The second data set, published by Cavalli et al., included the expression profiles of
18,479 genes in 763 samples of medulloblastoma (MB), the most common malignant central
nervous system tumour in children [10]. Patients aged ≥ 14 years (n = 186) and without
follow up information (n = 78) were excluded from the analyses. Characteristics of the
499 considered patients are presented in Table 2. In the whole data set, 109 patients were
0–3 years of age at diagnosis (21.8%), 320 were 4–10 years of age (64.1%), and 70 were
11–13 years of age (14.0%). The number of males was 323 (64.7%). Group 4 was the most
common molecular subgroup (n = 241, 48.3%) followed by Group 3 (n = 106, 21.2%), WNT
(8.0%), and SHH (n = 112, 22.4%). Classic histology was observed in 279 patients (55.9%),
desmoplastic in 65 (13.0%), large cell/anaplastic in 57 (11.4%), and extensive nodularity in
14 (2.8%). Metastatic disease was observed in 148 patients (29.7%), and 139 patients died
of MB (27.9%). Random splitting allowed for a quite balanced allocation of the patients’
characteristics except for the male gender, which was slightly more represented in the test
set (70.3% vs. 59.2%).
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Table 1. Main characteristics of the data sets selected from the validation analyses from the Cangelosi
et al. database [9].

Whole Data (n = 786) Training Set (n = 393) Test Set (n = 393)

Patient Characteristics N (%) N (%) N (%)

Age at diagnosis
<18 months 449 (57.1) 228 (58.0) 221 (56.2)
≥18 months 337 (42.9) 165 (42.0) 172 (43.8)

MYCN status
Not amplified 629 (80.0) 312 (79.4) 317 (80.7)
Amplified 153 (19.5) 78 (19.8) 75 (19.1)
Missing 4 (0.5) 3 (0.8) 1 (0.2)

Disease extension
Localised 373 (47.5) 174 (44.3) 199 (50.6)
Disseminated 412 (52.4) 218 (55.5) 194 (49.4)
Missing 1 (0.1) 1 (0.2) 0 (0.0)

INSS Stage
1 143 (18.2) 56 (14.2) 87 (22.1)
2 125 (15.9) 67 (17.0) 58 (14.8)
3 105 (13.4) 51 (13.0) 54 (13.7)
4 320 (40.7) 170 (43.3) 150 (38.2)
4s 92 (11.7) 48 (12.2) 44 (11.2)
Missing 1 (0.1) 1 (0.3) 0 (0.0)

Deaths 229 (29.1) 116 (29.5) 113 (28.8)

Table 2. Main characteristics of the data sets selected from the validation analyses from the Cavalli
et al. database [10].

Whole Data (n = 499) Training Set (n = 250) Test Set (n = 249)

Patient Characteristics N (%) N (%) N (%)

Age at diagnosis
0–3 years 109 (21.8) 57 (22.8) 52 (20.9)
4–10 years 320 (64.1) 163 (65.2) 157 (63.0)
11–13 years 70 (14.0) 30 (12.0) 40 (16.1)

Gender
Males 323 (64.7) 148 (59.2) 175 (70.3)
Females 173 (34.7) 99 (39.6) 74 (29.7)
Missing 3 (0.6) 3 (1.2) 0 (0.0)

Molecular subgroups
WNT 40 (8.0) 27 (10.8) 13 (5.2)
SHH 112 (22.4) 58 (23.2) 54 (21.7)
Group 3 106 (21.2) 54 (21.6) 52 (20.8)
Group 4 241 (48.3) 111 (44.4) 130 (52.2)

Histology
Classic 279 (55.9) 137 (54.8) 142 (57.0)
Desmoplastic 65 (13.0) 30 (12.0) 35 (14.1)
Large cell/anaplastic 57 (11.4) 27 (10.8) 30 (12.0)
Extensive nodularity 14 (2.8) 7 (2.8) 7 (2.8)
Not available 84 (16.8) 49 (19.6) 35 (14.1)

Disease extension
Localised 304 (60.9) 149 (59.6) 155 (62.2)
Disseminated 148 (29.7) 78 (31.2) 70 (28.1)
Missing 47 (9.4) 23 (9.2) 24 (9.6)

Deaths 139 (27.9) 65 (26.0) 74 (29.7)
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Due to the heavy computational burden, a convenience sample of 1000 genes in
each database (the first ones included) was used for the analysis, as described in the
following paragraph.

3.2. The Validation Procedure

For each gene included in the validation analysis, overall survival was estimated in
the training set by selecting the optimal cut-off using a running procedure and adjusting
the HR estimate, which was obtained from the corresponding univariable Cox model, using
the method described in Section 2 and 10,000 random permutations. In the presence of no
observed deaths in either group, the HR was estimated applying Firth’s correction, which
is based on a penalized likelihood function [11].

The overestimation bias was estimated by computing the difference between the
unadjusted HRs from the training set and the corresponding HRs from the test set, expressed
on a logarithmic scale. The reduction in the overestimation bias was estimated by the
corresponding difference obtained by replacing the unadjusted HRs with the adjusted ones.
The same procedure was also performed using the median value as a cut-off. The results
of this latter analysis are expected to provide an internal referent as this approach is not
prone to an overestimation bias. All analyses were performed by separating the genes
into potentially over- and under-expressed categories (HR > 1 and HR ≤ 1, respectively)
on the basis of the corresponding coefficient of the Cox regression model, evaluating the
expression value of each gene in the entire data set.

Both the survival and permutation analyses were performed using the R programming
language [12]. The R libraries survival and coxphf were used for the survival analysis.
The R script, including the routines for the validation procedures, are available in the
Supplementary Materials (files HRValidCangelosi.R and HRValidCavalli.R) with the corre-
sponding data sets (files DataSetCangelosi_1040.RData and DataSetCavalli_1000.RData)
and the table containing the related results (files StatisticalValidationResultsCangelosi.csv
and StatisticalValidationResultsCavalli.csv). All the other analyses were carried out using
the STATA for Windows statistical package (release 13.1, Stata Corporation, College Station,
TX, USA).

3.3. Results of the Statistical Validation on Real Data Sets

Figure 1A,B show the association between the HR estimates, on a logarithmic scale, in
the training set and in the test set of the Cangelosi et al. database [9]. Unadjusted estimates
are displayed in Figure 1A, in which a gap is evident in the HR distribution around the
null as a consequence of the overestimation bias. Such a gap was no longer evident after
correction for the overestimation bias according to the procedure described in Section 2
(Figure 1B). The correlation between the estimates at the optimal cut-off in the training set
and in the test set was very high (r = 0.904, p < 0.001 for unadjusted estimates, and r = 0.847,
p < 0.001 for adjusted estimates, respectively). Similar figures were observed for the cut-offs
based on median values (r = 0.928, p < 0.001, and r = 0.865, p < 0.001, for the unadjusted
and adjusted estimates, respectively).

Figure 2A–D show the difference between the ln(HR) estimates calculated in the
training set and in the test set of the Cangelosi et al. database [9]. As expected, the
unadjusted estimates in the training set were, on average, lower than those obtained
in the validation set for HR < 1 and higher for HR > 1 (Figure 2A). In more detail, the
corresponding median values were −0.182 (interquartile range, IQR: −0.398–−0.012) and
0.173 (IQR: −0.036–0.364), respectively, corresponding to an estimation bias of −16.6% and
18.9%, respectively. Adjusted estimates (Figure 2B) provided values that slightly exceeded
zero for HR < 1 (median value: 0.100; IQR: −0.118–0.297) and were slightly negative for
HR > 1 (median value: −0.099; IQR: −0.359–0.122). Using the median value of each gene
expression as a cut-off, the corresponding unadjusted estimates were: median value: 0.026;
IQR: −0.126–0.195 for HR < 1 and median value: −0.012; IQR: −0.204–0.159 for HR > 1
(Figure 2C). The corresponding figures for the adjusted estimates were: median value:
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0.022; IQR: −0.175–0.230 for HR < 1 and median value: −0.04; IQR: −0.251–0.165 for HR >
1, respectively (Figure 2D).
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Figure 2. Difference (∆) between the hazard ratio, on a logarithmic scale, estimated in the training set
and the corresponding estimate in the test set. Data from the Cangelosi et al. data set [9]. (A) Optimal
cut-off, unadjusted values; (B) optimal cut-off, values adjusted for the overestimation bias; (C) median
cut-off, unadjusted values; and (D) median cut-off, values adjusted for the overestimation bias. Green
boxes: HR ≤ 1; red boxes: HR > 1.

Figure 3A,B show the association between estimates of the logarithm of the HRs in
the training set and in the test set of the Cavalli et al. database [10]. In Figure 3A, a gap is
evident between the distribution of the unadjusted HR around the null as a consequence
of the overestimation bias. Such a gap disappeared after correction for the overestimation
bias (Figure 3B). The correlation between the estimates at the optimal cut-off in the training
set and in the test set was quite low (r = 0.402, p < 0.001, unadjusted estimates, and
r = 0.399, p < 0.001, adjusted estimates). Similar estimates were observed for cut-offs based
on median values (r = 0.465, p < 0.001, unadjusted estimates; and r = 0.446, p < 0.001,
adjusted estimates).
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Figure 3. Association between the hazard ratio estimates, obtained from the training set and the
test set, on a logarithmic scale. Data from the Cavalli et al. data set [10]. (A) Unadjusted values
and (B) values adjusted for the overestimation bias. The double red arrow in panel A highlights
the gap between unadjusted estimates in the training set around the null as a consequence of the
overestimation bias.

Figure 4A–D show the difference between the ln(HR) estimates calculated in the
training set and in the test set. Median values of the optimal, unadjusted estimates in the
training set were lower than those in the validation set for HR < 1 and higher for HR > 1
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(Figure 4A). In more detail, the corresponding median values were −0.467 (interquartile
range, IQR:−0.792–0.126) and 0.507 (IQR: 0.111–0.911), respectively, which corresponded to
an estimation bias of −37.3% and 66.0%, respectively. The adjusted estimates at an optimal
cut-off (Figure 2B) showed values close to zero for both HR ≤ 1 (median value: −0.064;
IQR: −0.332–0.286) and for HR > 1 (median value: 0.092; IQR: −0.192–0.459). Using the
median value as a cut-off, the corresponding estimates for unadjusted values were: median
value: −0.051; IQR: −0.240–0.192 for HR <1 and median value: 0.043; IQR: −0.189–0.252
for HR > 1 (Figure 1C). For the adjusted values, the corresponding estimates were: median
value: −0.051; IQR: −0.249–0.193 for HR < 1 and median value: 0.050; IQR: −0.221–0.216
for HR > 1 (Figure 1D).
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Figure 4. Difference (∆) between the hazard ratio, on a logarithmic scale, estimated in the training set
and the corresponding estimate in the test set. Data from the Cavalli et al. database [10]. (A) Optimal
cut-off, unadjusted values; (B) optimal cut-off, values adjusted for the overestimation bias; (C) median
cut-off, unadjusted values; and (D) median cut-off, values adjusted for the overestimation bias. Green
boxes: HR ≤ 1; red boxes: HR > 1.

4. Statistical Validation Using Simulated Sets of Randomly Generated Data
4.1. The Data Sets

A preliminary analysis under the null hypothesis of no association between gene
expression profiles and patient survival was carried out using a simplified model. Five arti-
ficial data sets, each including 1000 randomly simulated expression values (corresponding
to hypothetical “genes”), were randomly extracted from a normal distribution, arbitrarily
setting the mean to four and the variance to one. The sample size varied from 20 to 100
(step 20), and a further sample of 200 statistical units (the “patients”) was also generated.
Each sample was associated with a follow-up time randomly generated under the assump-
tion of an exponential model for the survival probability, setting the event rate (lambda) to
0.1 arbitrary units. The follow-up time was right-truncated at 10 units to generate censored
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observations. The simulation process was entirely repeated after changing the lambda
parameter to 0.3, thus obtaining, on the whole, 12,000 independent gene expression profiles.
Adjusted ln(HR) estimates were obtained by 2000 random permutations for each simulated
gene expression.

The overestimation bias was estimated by the average absolute difference between
each ln(HR) estimate at the optimal cut-off and its expected value under the null, calculating
the corresponding standard error (SE). The reduction of the overestimation bias by the
proposed method was assessed by performing the same analysis on the adjusted ln(HR).
The corresponding estimates, obtained using the median values as a cut-off, were also
calculated to obtain a referent distribution. The overfitting related to the running method
for the selection of an optimal cut-off was assessed, estimating the corresponding Type I
error by the proportion of statistical significances of the likelihood ratio test associated with
the HR estimates in the univariable Cox regression model. The usual nominal alpha level
of 0.05 was assumed.

In order to obtain a preliminary estimate of the potential impact of sample size and
event rates on the adjusted HR estimates, a set of simulated databases was also gener-
ated under the hypothesis of an association between gene expression level and patient
survival. In each data set, two hidden balanced groups of patients were assumed, each
associated with a different constant event rate (namely, lambda = 0.1 for the first group
and lambda = 0.3 for the second group; arbitrary units). Gene expression levels for the
two hidden groups were generated, assuming a normal distribution with mean = 0 for the
first group and mean = 1 for the second group and setting both variances to 1. Thus, two
partially overlapped distributions were obtained. All the analyses were repeated and a
mean = 5.0 was set for the second group, corresponding to a nearly completely separated
distribution. Assuming such a binormal model for the gene expression distribution allowed
us to easily obtain both the value of the best expected cut-off, which corresponded to the
average between the means of the two hidden classes (optimal discriminant threshold,
ODT), and the corresponding “true” HR expected at the optimal cut-off according to the
following equation, the demonstration for which is reported in the Supplemental Materials
(Supplemental Figure S1, file DemonstrationEquation4.pdf):

HRopt =
λ0 + λ1

λ0Φ
(

ODT−µ0
σ0

)
+ λ1Φ

(
ODT−µ1

σ1

) − 1 (4)

where λ0 and λ1 represent the event rates in the two hidden groups, respectively, µ0
and µ1 the means of the two corresponding distributions, respectively, σ0 and σ1 the
corresponding standard deviations, respectively, and Φ is the standard normal cumulative
distribution function.

Non-valid estimates of the adjusted HR were identified in each analysis. These
corresponded to values more biased than the unadjusted ones (i.e., higher values of adjusted
estimates when the unadjusted HR was higher than 1, and lower values of adjusted
estimates when the unadjusted HR was lower than 1). Outliers were defined as HRs
estimated at the optimal cut-off more than three times higher than the expected value
calculated according to Equation (4). The overestimation bias and its reduction by the
proposed method were estimated by comparing the adjusted and unadjusted HR estimates
with the corresponding expected HR. Finally, a statistical power at the alpha nominal level
of 0.05 was also estimated.

The sample size was allowed to vary from 20 to 160, and the number of simulated
gene expressions was set to 2000 for each data set. The adjusted p-values for the HR at the
optimal cut-off were obtained by 5000 random permutations.

All simulation analyses were carried out by ad hoc developed scripts in the R program-
ming language [12] (files SimulAdjHRH0.R and SimulAdjRH1.R, Supplemental Materials),
and analysed by the STATA for Windows statistical package (release 13.1, Stata Corporation,
College Station, TX, USA).
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4.2. Results of Analysis of Simulated Data Sets under the Null Hypothesis

Figure 5 shows the distribution of the ln(HR) estimates for the pool of the 12,000 sim-
ulated gene expressions, obtained: (a) at an optimal cut-off, without adjustment for the
overestimation bias (panel A); (b) at an optimal cut-off, adjusting for the overestimation
bias (panel B); and (c) using the median value as an a priori selected cut-off (panel C). The
unadjusted optimal ln(HR) is clustered into two groups above and below the expected
value under the null (zero) as a consequence of the overestimation bias (Figure 5A). The
adjustment using the proposed method strongly reduced the bias (Figure 5B), producing a
histogram that was very similar to the histogram obtained using the median expression
level as a cut-off (Figure 5C). However, this latter figure shows a slightly smaller variance,
indicating that some residual bias remained after the adjustment procedure.
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Figure 5. Histograms of the distribution of the hazard ratio estimates, on a logarithmic scale, obtained
at an optimal cut-off on a simulated data set of 12,000 gene expressions under the null hypothesis of
no association between survival and expression levels. (A) Unadjusted values and (B) values adjusted
for the overestimation bias. (C) Values obtained using the median as a cut-off. The double red arrow
in panel A highlights the gap between unadjusted estimates around the null as a consequence of the
overestimation bias.

The results of the analysis by event rate and sample size are reported in Table 3. The
Type I error associated with unadjusted HR estimates was very large, indicating a strong
overfitting (0.371 and 0.376 for the pool of the data for lambda = 0.1 and lambda = 0.3,
respectively). Such a bias was positively associated with the sample size and seemed
to be unrelated to the event rate. Estimates adjusted by permutation analysis produced
values very close to the nominal alpha level (0.05) for both the pool of samples and for each
considered sample size, indicating a very good control of the overfitting. Such estimates
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were consistent with those obtained using the median value as a cut-off. An analysis
of the corresponding standard errors, reported in the right part of Table 3, indicated a
strong reduction of the overestimation bias by the newly proposed method. For instance,
for the pool of the data, the SE was 0.777 for the unadjusted estimates and 0.489 for the
adjusted estimates for lambda = 0.1, and 0.644 and 0.374, respectively, for lambda = 0.3.
An analysis by the number of subjects in each sample indicated, as expected, an inverse
association between the SE and the sample size for both adjusted and unadjusted estimates.
The corresponding SE estimates, obtained using the median value as cut-off, were lower
than those for the adjusted estimates for each considered group, indicating the presence of
some residual bias, which seemed positevely associated with the sample size and inversely
associated with the event rate.

Table 3. Results of the analysis of 12,000 simulated gene expression profiles under the null hypothesis
of no association between gene expression and patient survival.

Type I Error * Standard Error of ln(HR)

Sample Size Unadjusted
HR Estimates

Adjusted HR
Estimates

HR Estimates on
Median Value

Unadjusted
HR Estimates

Adjusted HR
Estimates

HR Estimates on
Median Value

Event rate = 0.1 u−1

20 0.127 0.048 0.042 0.842 0.659 0.591
40 0.311 0.044 0.037 0.849 0.520 0.394
60 0.358 0.055 0.056 0.795 0.463 0.328
80 0.408 0.049 0.046 0.754 0.432 0.279

100 0.459 0.049 0.047 0.722 0.397 0.255
200 0.564 0.056 0.052 0.688 0.411 0.188

Pooled 0.371 0.050 0.047 0.777 0.489 0.363

Event rate = 0.3 u−1

20 0.136 0.046 0.058 0.747 0.564 0.537
40 0.303 0.056 0.052 0.704 0.404 0.347
60 0.388 0.046 0.053 0.651 0.338 0.277
80 0.436 0.051 0.045 0.613 0.312 0.237

100 0.436 0.047 0.044 0.583 0.278 0.203
200 0.554 0.062 0.055 0.544 0.261 0.147

Pooled 0.376 0.051 0.051 0.644 0.374 0.317

U = arbitrary time units. * Estimated at the nominal alpha value of 0.05.

4.3. Results of Analysis of Simulated Data Sets under the Alternative Hypothesis

Supplemental Table S2 shows the proportion of non-valid estimates of the adjusted
HR by sample and the proportion of the observed outliers. When the difference between
the two hidden subgroups was small (mean difference ∆µ = 1 arbitrary unit, corresponding
to a true HR at the optimal cut-off of 1.47), the proportion of the non-valid, adjusted HR
was low in all considered groups. A higher proportion (8.2%) was observed for a very
small sample size (n = 20), corresponding to a lower overlap between the two hidden
distributions (∆µ = 5, corresponding to a true HR of 2.95). For a higher sample size, the
proportion was very small and rapidly decreased with rising the number of samples. The
occurrence of outliers was higher in the first group (n = 20, 7.7% for ∆µ = 1 and 10.1%
for ∆µ = 5, respectively) and decreased with the increasing sample size, more rapidly in
correspondence with the highest separation between the two hidden classes (∆µ = 5).

Supplemental Table S3 shows the comparison between the adjusted and unadjusted
HR estimates by sample size. A strong reduction in the overestimation bias was evident in
all analyses. Corresponding to a small difference between the two hidden classes (∆µ = 1),
the adjusted HR estimates remained slightly higher than the corresponding expected true
values. This indicated a small residual bias which did not seem related to the sample
size. In the presence of a higher separation between the two hidden classes (∆µ = 5), the
correction for overfitting was excellent for n < 80 and quite good for n = 80 but tended to
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be overconservative for a higher number of samples, producing estimates lower than the
expected (2.24 vs. 2.95 for 120 samples and 2.02 vs. 2.95 for 160 samples, respectively).

The statistical power of the permutation test for the inference for the HR estimates is
reported in Supplementary Table S4, which also shows the corresponding estimates for the
unadjusted HR values. The power of the permutation test was very low in the presence of
a small separation between the two hidden classes (∆µ = 1), ranging from 11.0% for n = 20
to 58.5% for n = 160. In correspondence with a smaller overlap between the two classes
(∆µ = 5), the statistical power was still low for n = 20 (45.8%) and rapidly increased with an
increase in the sample size (from 73.8% for n = 40 to 100% for n = 160).

5. Application to a Real Data Set for the Evaluation of Potential Prognostic Markers in
Patients with Stage 4S Neuroblastoma
5.1. The Data Set

Stage 4S NB (S stands for “special”) is a metastatic disease occurring in the first year
of life. It is characterized by metastasis that is limited to liver, skin, or bone marrow, with
an infiltration of less than 10% of [13,14]. In general, Stage 4S NB has a good prognosis
and a high rate of spontaneous regression. However, 10–20% of cases are still destined to
demonstrate disease progression and eventual death [13,14].

In recent years, many genes have been investigated in relation to NB progression,
including Stage 4S disease [14,15]. For instance, Parodi et al. [6] analysed the association
between the expression of three genes belonging to the E2F family (namely, E2F1, E2F2, and
E2F3) and the event-free survival (EFS) of 134 Stage 4S NB patients. Data were drawn from
three publicly available databases, stored in the on-line data bank R2 Genomics Analysis
and Visualization Platform (http://r2.amc.nl, accessed on 17 December 2019): namely,
Kocak-649, Oberthuer-251, and SEQC-RPM [16–18]. For each data set, patients were split
into two groups of approximately equal size using the median value of each gene expression
considered. The related HR estimates were calculated using the Cox regression model,
applying the Firth correction in the case of no events in either group [11]. For each gene, a
common meta-analysis estimate of the HR (mHR) across the three databases considered was
obtained by the random effect model proposed by DerSimonian and Laird [19]. Previously
published results identified an association between EFS and high expression levels of
E2F3 (mHR = 3.9, 95%CI: 1.7–9.1), but not of E2F1 (mHR = 1.6, 95%CI: 0.80–3.3) or E2F2
(mHR = 1.4, 95%CI: 0.70–2.9) [6]).

In this investigation, we performed a reanalysis of these data, splitting the patients
on the basis of an optimal cut-off identified using a running analysis instead of the me-
dian value, as described above, to show the utility of the proposed method in practice.
An estimate of the HR, adjusted for the overestimation bias, was produced according to
Equation (3), and the corresponding mHR was obtained by applying the method of DerSi-
monian and Laird [19]. Original cut-offs corresponding to the median value of each gene
expression, the related interquartile range (IQR), and the newly selected optimal cut-offs
are reported in Table 4. The data sets and the R script used for the analyses are available in
the Supplementary Materials (files NB4S.csv and SurvNB4S.R, respectively).

http://r2.amc.nl
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Table 4. Median, inter-quartile range (IQR) and optimal cut-off of the studied markers in each
data set.

Marker Data Set Median IQR Optimal
Cut-Off

E2F1
Kocak 10.2 9.3–11.3 9.5
Oberthuer −0.250 −0.354–0.079 −0.026
SEQC 4.8 4.0–5.6 4.092

E2F2
Kocak 11.7 10.8–12.7 11.0
Oberthuer −0.010 −0.048–0.109 0.099
SEQC 4.2 3.5–4.8 3.5

E2F3
Kocak 11.5 10.9–12.1 11.8
Oberthuer −0.132 −0.347–0.079 0.035
SEQC 4.0 3.6–4.5 4.1

5.2. Results of the Application of the Proposed Method

The results of the analysis of the association between E2F1 expression, evaluated at
the optimal cut-off, and the EFS of the patients in the three studied cohorts are presented in
Table 5. The corresponding Kaplan–Meier survival curves are displayed in Figure 6A–C.
An association between E2F1 expression and EFS was found using the optimal cut-off
as a threshold (unadjusted mHR = 5.3, 95%CI: 1.9–15.0). After the adjustment of the
overestimation bias, the association was reduced but remained statistically significant, with
an adjusted mHR = 3.1 (95%CI: 1.1–8.9) that was approximately twice that obtained by the
previous analysis, which was based on the median value of the gene expression (mHR = 1.6,
Table 5).

Table 5. Hazard ratios for the association between event-free survival of patients with Stage 4S
neuroblastoma and E2F1 gene expression, categorized on the basis of the median expression value
and on the optimal cut-off.

Cut-Off on Median Value Optimal Cut-Off Optimal Cut-Off (Adjusted) *

Databases N/E HR 95%CI HR 95%CI HR 95%CI

Kocak 56/13 1.9 0.61–5.7 6.0 0.79–46.5 3.8 0.50–29.3
Oberthuer 30/7 1.3 0.30–6.0 4.6 1.0–20.8 2.6 0.58–11.6
SEQC 48/12 1.6 0.50–5.0 5.9 0.76–45.4 3.7 0.48–28.7
Combined 134/32 1.6 0.80–3.3 5.3 1.9–15.0 3.1 1.1–8.9

N/E = amount of samples/events; HR = hazard ratio; 95%CI = 95% confidence interval; combined = combined
estimates by the DerSimonian and Laird meta-analysis method. * Estimates adjusted by the overfitting bias,
according to Equation (3).

Table 6 shows the estimates of the association between E2F2 expression and EFS, while
the corresponding Kaplan–Meier survival curves are displayed in Figure 7A–C. Higher
levels of gene expression were associated with a poorer EFS (unadjusted mHR = 3.9, 95%CI:
1.4–10.9). However, after correcting for the overestimation bias the association was reduced
and no longer significant (adjusted mHR = 2.2, 95%CI: 0.79–6.3).
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Figure 6. Kaplan–Meier event-free survival curves for the evaluation of E2F1 gene expression as a
prognostic marker in Stage 4S neuroblastoma patients at the optimal cut-off. Data extracted from
three public databases: (A) Kocak; (B) Oberthuer; and (C) SEQC. p* = p-value adjusted for the
overestimation bias by permutation analysis. Five-year EFS estimates and the related 95% confidence
intervals are shown.

Table 6. Hazard ratios for the association between event-free survival of patients with Stage 4S
neuroblastoma and E2F2 gene expression, categorized on the basis of the median expression value
and on the optimal cut-off.

Cut-Off on Median Value Optimal Cut-Off Optimal Cut-Off (Adj) *

Databases N/E HR 95%CI HR 95%CI HR 95%CI

Kocak 56/13 2.0 0.64–6.0 6.7 0.87–51.8 4.5 0.61–36.2
Oberthuer 30/7 1.4 0.31–6.1 2.4 0.54–10.9 1.3 0.28–5.7
SEQC 48/12 1.0 0.34–3.2 5.2 0.68–40.7 3.0 0.39–23.3
Combined 134/32 1.4 0.70–2.9 3.9 1.4–10.9 2.2 0.79–6.3

N/E = amount of samples/events; HR = hazard ratio; 95%CI = 95% confidence interval; combined = combined
estimates by the De Simmonian and Leird meta-analysis method. * Estimates adjusted by the overfitting bias
according to Equation (3).
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Figure 7. Kaplan–Meier event-free survival curves for the evaluation of E2F2 gene expression as a
prognostic marker in Stage 4S neuroblastoma patients at the optimal cut-off. Data extracted from
three public databases: (A) Kocak; (B) Oberthuer; and (C) SEQC. p* = p-value adjusted for the
overestimation bias. Five-year EFS estimates and the related 95% confidence intervals are shown.

Table 7 shows the association between E2F3 expression and EFS in the three studied
cohorts. The related Kaplan–Meier survival curves are displayed in Figure 8A–C. Higher
values of E2F3 were associated with a poorer outcome both in the original analysis, based on
the median value cut-off, and in the new analyses, based on the optimal cut-off. In particular,
the meta-analysis estimates of association were similar after adjusting the overestimation
bias (original mHR = 3.9, 95%CI: 1.7–9.1; adjusted mHR at the optimal cut-off: 3.8, 95%CI:
1.8–8.2).
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Table 7. Hazard ratios for the association between event-free survival of patients with Stage 4S
neuroblastoma and E2F3 gene expression, categorized on the basis of the median expression value
and on the optimal cut-off.

Cut-Off on Median Value Optimal Cut-Off Optimal Cut-Off (Adj) *

Databases N/E HR 95%CI HR 95%CI HR 95%CI

Kocak 56/13 3.8 1.0–13.7 4.8 1.5–15.0 3.0 0.97–9.5
Oberthuer 30/7 6.8 0.81–56.2 10.0 1.9–52.5 7.9 1.5–41.7
SEQC 48/12 3.3 0.89–2.5 4.9 1.3–18.2 3.4 0.91–12.6
Combined 134/32 3.9 1.7–9.1 5.7 2.6–12.1 3.8 1.8–8.2

N/E = amount of samples/events; HR = hazard ratio; 95%CI = 95% confidence interval; combined = combined
estimates by the De Simmonian and Leird meta-analysis method. * Estimates adjusted by the overfitting bias
according to Equation (3).
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Figure 8. Kaplan–Meier event-free survival curves for the evaluation of E2F3 gene expression as a
prognostic marker in Stage 4S neuroblastoma patients at the optimal cut-off. Data extracted from
three public databases: (A) Kocak; (B) Oberthuer; and (C) SEQC. p* = p-value adjusted for the
overestimation bias. Five-year EFS estimates and the related 95% confidence intervals are shown.
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6. Validation on an Independent Cohort of the Results Described in the
Previous Section
6.1. Patients and Methods

An immunofluorescence assay was performed to evaluate the expression level of the
transcription factor E2F1 using formalin-fixed, paraffin-embedded, NB primary samples
(4-µm thick) from an independent cohort of 38 patients with Stage 4S NB.

Patients belonged to a multi-institution, retrospective series of primary NB tissue
sections with Stage 4S disease, diagnosed between December 2000 and October 2011 in
27 centres of the Italian Association of Paediatric Haematology and Oncology (AIEOP) [14].
The tumour tissue specimens were stored in the BIT-Gaslini Biobank of the IRCCS Istituto
Giannina Gaslini, Genova, Italy. The patient data were downloaded from the Italian
Neuroblastoma Registry (INBR) of AIEOP. The clinical characteristics of NB patients were
collected in pseudo-anonymized manner and stored in a secure system in a database located
at the Italian Inter-University Consortium CINECA headquarters in Italy, which received
the ISO 9001:2015 Quality Management System certification and the ISO/IEC 27,001:2013
Information Security Management System certification. Medical records were abstracted
at each institution, and clinical data, including age at diagnosis, sex, stage, MYCN status,
DNA index, histology, and outcome, were collected. The patients were staged according to
the International Neuroblastoma Staging System [20].

The studied cohort included 38 patients aged <12 months; 34 of them had a normal
MYCN status and all were treated in accordance with the therapeutic guidelines of an
ad hoc SIOPEN (International Society of Paediatric Oncology Europe Neuroblastoma)
protocol [21]. Fourteen of them experienced tumour relapse (1 local and 13 metastatic)
(Supplemental Table S1).

An immunofluorescence assay was carried out as previously described [22] using
the mouse monoclonal antibody E2F-1 (KH95, sc-251) (Santa Cruz Biotechnology, Dallas,
TX, USA) and isotype-matched, non-binding mAbs in all antibody staining experiments
to avoid nonspecific reactivity. Counterstaining of the nuclei was performed with DAPI
(4′,6-diamidino-2-phenylindole) (Vector Laboratories, Peterborough, UK). The results were
photographically documented using fluorescence microscope Axio Imager M2 equipped
with ApoTome System (Carl Zeiss, Oberkochen, Germany). Each tumour area tested
by immunofluorescence contained more than 60% NB cells, as assessed by histological
examination. The evaluation of immunofluorescence-positive tumour cells was performed
on serial tissue sections, thus allowing quantification in tumour areas selected by the
pathologist. The proportion of immunofluorescence-positive cells counted was at least
100–1000 cells and was reported as percentage for the subsequent statistical analysis.

6.2. E2F1 Protein Expression in Primary Neuroblastoma Tissue Samples

The analysis highlighted various percentages of brilliant green nuclear staining for
E2F1 in the 38 analysed specimens (Figure 9 and Supplemental Table S1). The percentage of
positive nuclei ranged from 2% to 78%. All relapsed patients showed many E2F1-positive
nuclei in their tumour tissues, while NB in complete remission expressed a lower amount
of E2F1 positive nuclei (p < 0.001, Mann–Whitney U test). In more detail, the median value
was 6.55 among the not-relapsed patients (IQR: 4.0–9.5) and 67.5 among the relapsed ones
(IQR: 69.0–75.0, Figure 10).
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Figure 9. Expression of E2F1 protein in Stage 4S primary NB tissues. Immunofluorescence assay was
performed using the anti-E2F1 antibody (green). Images are representative of various percentages of
brilliant green nuclear staining for E2F1 on six tissues among the 38 patients examined, displaying
high (cases 25 and 35), medium (cases 4 and 8), and low (cases 16 and 31) numbers of positive nuclei.
Cells were counterstained with DAPI to visualize nuclei (blue). Three independent experiments were
performed. Scale bar: 10 µm.
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Figure 10. Relative E2F1 expression levels in not relapsed and relapsed patients. Green box: not
relapsed patients; red box: relapsed patients.

7. Discussion

Running tests are frequently applied in early studies to evaluate the association
between potential tumour markers and patient survival. The overestimation bias, i.e., the
production of an “overoptimistic” estimate of association, is a well-known limitation of
such investigations. Many algorithms are available for obtaining adjusted p-values to test
the hypothesis of no association (e.g., H0: HR = 1), ranging from the very conservative
Bonferroni’s correction to resampling procedures that include permutation analysis [5,7].
Exploiting the log-normal asymptotic distribution of the HR under the null hypothesis, we
developed a very simple, test-based method to remove the overestimation bias, beginning
with an adjusted estimate of the corresponding p-value obtained from a set of random
permutations [23]. A statistical validation of our method, using both real and simulated
data, indicated that the overestimation bias was largely removed from the HR estimates.
However, simulated data revealed some residual overestimation bias under the null that
was larger in correspondence to either a lower event rate or a smaller sample size. Estimates
of the associated alpha value indicated that such a residual bias was not associated to an
inflation of the type I error, which, conversely, was very high for the unadjusted HR
estimates. On the contrary, the bias correction under H1, when estimates far from the
null are more likely to be observed, could provide an over-conservative adjustment; this
conclusion emerged from the analyses of both real and simulated data set. For instance, the
shape of the plot in Figure 1B, obtained from the analysis of the Cangelosi et al. [9] data
set, seems consistent with this hypothesis in that it shows a “shrinkage” in the adjusted
values at the extreme of the ln(HR) distribution. A similar pattern was also observed when
analysing the Cavalli et al. data set [10] (Figure 3B), even if the picture was affected by a high
variability, as is also indicated by the low correlation between estimates from the training
set and the test set. Interestingly, a strong reduction in the overestimation bias by the new,
proposed method was clearly also observed in the analysis of the Cavalli et al. [10] database.
Unfortunately, the heavy computational burden of the running analysis prevented us
from performing a more complete statistical validation. Further investigations could
provide more precise estimates that would be useful for refining the proposed method,
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evaluating the effect of different sample size, marker distributions, association between
marker values and survival probability, different survival functions, and the distribution of
the time censoring.

Our method is not intended to replace validation procedures that remain the gold
standard for assessing the generalizability of observed results. On the contrary, it should
be applied when neither an external cohort is available, or when internal validation is unre-
liable due to an insufficient sample size. In the latter situation, the application of standard
methods of internal validation for classification tasks, such as the k-fold cross-validation or
the leave-one-out cross-validation, have sometimes been applied. However, they can be
prone to confounding bias in a survival analysis since they can only be performed ignor-
ing the follow-up time and limiting the permutation procedure to the outcome variable
(dead/alive, relapsed/not relapsed, etc.). Sometimes they represent a quite forced choice
when information on the follow-up time is not available, a situation often occurring in the
retrospective analysis of published data. Nevertheless, these approaches should provide
reliable results only in the absence of censoring, i.e., in the analysis of closed cohorts [24], or
when the outcome of interest is not dependant on the length of the follow-up (for example,
in the evaluation of the response of cancer patients to some therapeutic approach) [4].

In order to illustrate our method in an actual framework, we chose the data set
previously included in the study by Parodi et al. [6]. Analysing the data using a standard
procedure, they provided some ambiguous results about the potential prognostic role of
E2F1 gene expression in patients with Stage 4S NB. For instance, HRs estimates from cut-
offs selected a priori could not clearly assess the association between a patient’s survival
and the gene expression, while a mere running approach, without adjustment for the
overfitting, would have provided a biased, meta-analytic estimate of the corresponding HR.
Our proposed method, coupled with the standard meta-analysis technique by DerSimonian
and Laird [19], allowed for the identification of E2F1 as a new gene with potential oncogenic
activity in NB 4S, though it had escaped previous standard methods of analysis in the
original study [6]. Using our new proposed method, we verified even the previous finding
of an inverse association between E2F3 expression and NB patient survival. Both results
were confirmed by biological validation using immunofluorescence analysis, in the present
study with regard to the expression of E2F1, and in the original investigation for E2F3 [6].
E2F1 and E2F3 are members of the E2F family, which plays an important role in regulating
gene transcription, cell cycle, proliferation, and apoptosis [25]. Interestingly, the role of E2F1
in NB prognosis has recently been demonstrated in a large investigation by Wang et al. [26],
who reported an association between the gene expression and both MYCN amplification
and a higher age at diagnosis, two major indicators of poor prognosis in NB patients.
The authors also reported that E2F1 and E2F3 shared similar downstream transcriptional
features, and that the high expression of both genes was significantly enriched in the cell
cycle signalling pathway [26]. Even if these findings support our observations, it should
be noted that Stage 4S NB is a malignancy with very peculiar characteristics, including
the tendency to regress spontaneously [14]. Accordingly, the potential prognostic role of
E2F1 in Stage 4S patients, highlighted by the results of this study, needs to be validated in
independent cohorts.

A limitation of our method is the absence of a control for potential confounders, such
as the clinical and demographic characteristics of the patients. A confounding bias was
unlikely in the reanalysis of the dataset of patients affected by Stage 4S neuroblastoma
because the analysed patients were quite homogeneous for the major known prognostic
factors, including age at diagnosis, stage, and amplification of the MYCN proto-oncogene.
In a more general framework, in the early stage of selection of new potential markers for
diagnostic or prognostic purposes, only simple, univariable analyses are usually carried
out [27,28]. However, further studies aimed at applying the proposed method in the
presence of external variables could be desirable. For instance, residual models represent
a simple procedure to obtain marker distributions, including gene expression profiles,
adjusted by the effects of one or more potential confounders [29]. Additional studies could
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evaluate the application of our method to the confounding-adjusted distribution of newly
proposed tumour markers. Another limitation of the proposed method is that it is applied
to binary splitting only. Stratification into two groups is the most natural choice in clinical
framework, where most decisions are naturally binary (e.g., treatment or no treatment) [1].
However, in some instances, a classification based on three or, less frequently, more than
three cut-offs is advisable. The possibility to extend the proposed method to multi-class
analyses could then be explored. Finally, our method was applied to two real, in silico
data sets, ignoring the assumptions of the Cox regression model that provided the HR
estimates [2]—in particular, the proportional hazard assumption. However, even if severe
violations of this assumption occur, the HR remains an estimator of an average relative risk
across the whole follow-up time. Such an estimate can be useless or hardly interpretable
from a clinical point of view, but it would not invalidate the statistical validity of the
estimates obtained by our approach.

In conclusion, the results of our study, even if they are partially still preliminary,
indicate that the proposed simple, test-based method is a new, useful tool for supporting
the identification of new potential tumour markers for prognostic purposes.

8. Conclusions

In this paper we describe a simple, test-based method to control the overestimation
bias in the estimate of the HR by a running procedure. A preliminary statistical validation
indicated that our method is able to remove such a bias and, accordingly, it could be useful
for many applications in oncology studies.

Combining the method with a standard meta-analysis approach allowed for the
identification of E2F1 as a new, potential oncogene for paediatric patients affected by Stage
4S NB. This finding was confirmed by an immunofluorescence analysis.

Further studies could extend our method to clinical estimators in oncology other than
the HR and to different study designs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15041188/s1, Figure S1: Theoretical Binormal distribution
of gene expression levels assumed for the simulations under the alternative hypothesis of association
between gene expression and patients survival. First group (Class 0, red line) with mean = µ0 and
standard deviation = σ0 was associated with a constant event rate λ0; the second group (Class 1,
green line) with mean = µ1 and standard deviation = σ1 was associated with a constant event rate
λ1. ODT = Optimal decision threshold. Table S1: Diagnostic characteristics of Stage 4S NB patients
whose tumours were analysed by immunofluorescence for E2F1; Table S2: Non-valid observations
and outliers in estimates of the adjusted hazard ratio at an optimal cut-off by sample size in a
set of 2000 simulated gene expression profiles. Two hidden normal distributions with an equal
sample size were assumed with different means and equal variances. The first distribution was
associated with an event rate = 0.1 (arbitrary units) and the second with a rate = 0.3 in an exponential
survival model. Follow-up times have been right-censored at ten units; Table S3: Comparison
between unadjusted and adjusted estimates of the hazard ratio at an optimal cut-off by sample
size. Average of 2000 simulated values. Two hidden normal distributions with equal sample size
were assumed with different means and equal variances. The first distribution was associated with
an event rate = 0.1 (arbitrary units) and the second with a rate = 0.3, in an exponential survival
model. Follow-up times have been right-censored at ten units. Estimates were obtained after
exclusion of non-valid data and outliers; Table S4: Statistical power of the test associated with
unadjusted and adjusted estimates of hazard ratio at an optimal cut-off at a nominal alpha level
of 0.05 by sample size. Average of 2000 simulated values. Two hidden normal distributions with
equal sample size were assumed with different means and equal variances. The first distribution
was associated with an event rate = 0.1 (arbitrary units) and the second with a rate = 0.3, in an
exponential survival model. Follow-up times have been right-censored at ten units. Estimates were
obtained after exclusion of non-valid data and outliers, file: SupplementaryTables.pdf; Data used
for statistical validation: Cangelosi et al. data set [9] including meta data and the first 1040 genes,
file: DataSetCangelosi_1040.RData; Cavalli et al. data set [10], including meta data and the first 2000
gene expression profiles: DataSetCavalli_2000.RData; Results of statistical validation: GenesName:
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name of the gene in the original data sets; MedVal: median value in the training set; lnHRMed: Cox
regression coefficient obtained using MedVal as a cut-off in the training set; lnHRMedVar: variance
of lnHRMed; lnHRMedAdj: lnHRMed adjusted for the overestimation bias; lnHRMedValid: Cox
regression coefficient obtained using MedVal as a cut-off in the test set; OptVal: optimal cut-off value
in the training set; lnHROpt: Cox regression coefficient obtained using OptVal as a cut-off in the
training set; lnHROptVar: variance of lnHROpt; lnHROptAdj: lnHROpt adjusted for the overestimation
bias; lnHROptValid: Cox regression coefficient obtained using OptVal as a cut-off in the test set; files:
StatisticalValidationResultsCangelosi.csv and StatisticalValidationResultsCavalli.csv; R script used for
statistical validation on real datasets: HRValidCangelosi.R and HRValidCavalli.R; R scripts used for
generation and statistical validation of simulated datasets, SimulAdjHRH0.R and SimulAdjHRH1.R;
Demonstration of equation 4: DemonstrationEquation4.pdf. Data set used for the analysis described
in Paragraph 4: NB4S.csv; R script for the analyses described in Paragraph 4: SurvNB4S.R.

Author Contributions: Conceptualization, S.P.; methodology, S.P., M.O. and A.P.; software, S.P., D.C.
and R.C.; validation, S.P., D.C., R.C., A.P. and M.O.; formal analysis, S.P.; investigation, M.O., A.P.
and S.P.; resources, D.C., R.C., M.O. and S.P.; data curation, M.O., S.P. and D.C.; writing—original
draft preparation, S.P., M.O., A.P., D.C. and S.S.; writing—review and editing, S.P., M.O., A.P., R.C.,
D.C. and S.S.; visualization, M.O. and S.P.; supervision, A.P.; project administration, S.P. and A.P.;
funding acquisition, S.P., A.P. and M.O. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Compagnia San Paolo (ID ROL 20207) and by Finanziamento
Ricerca Corrente 2022, Ministero della Salute (Italian Ministry of Health), (MSALRC22).

Institutional Review Board Statement: Written informed consent was obtained from the parents
of the patients before they were included in the study. The study was conducted according to the
guidelines of the Declaration of Helsinki, and it was approved by the Italian Institutional Ethics
Committee (Measure n 270/17 related to the clinical study protocol IGG-NCA-AP-2016, approved on
15 December 2016 and renewed on 24 May 2021).

Informed Consent Statement: Informed parental consent was obtained from all subjects involved in
the study.

Data Availability Statement: The data set used for the statistical validation (Sections 3 and 4) and
the databases used for the application of the proposed method (Section 5) are both included in
Supplemental Material. They are also available on the Internet Platform AMC R2 (https://r2.amc.nl),
accessed on 17 December 2019. Data from the immunofluorescence experiments are reported in
Supplemental Table S1.

Acknowledgments: We thank the BIT-Gaslini Biobank, Tissue Section, IRCCS Istituto G. Gaslini,
Genova, Italy, for providing the NB specimens. We acknowledge the CINECA for the availabil-
ity of high-performance computing resources and the support of the ELIXIR-ITA HPC@CINECA
initiative [30] for providing HPC resources to our project.

Conflicts of Interest: The authors declare no conflict of interest.

References
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