Repurposing Atovaquone as a Therapeutic against Acute Myeloid Leukemia (AML): Combination with Conventional Chemotherapy Is Feasible and Well Tolerated
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Trial Design
2.2. Patients
2.3. Adverse Events
2.4. Atovaquone Plasma Concentration Measurement
2.5. Cell Lines
2.6. Reagents
2.7. Annexin V and Phosphoflow Assays
2.8. The Oxygen Consumption Rate
2.9. Xenograft Model
2.10. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Atovaquone Plasma Concentrations Varied among Pediatric AML Patients
3.3. Ease of Atovaquone Administration Did Not Correlate with Plasma Concentrations Achieved
3.4. Adverse Events Did Not Correlate with Atovaquone Plasma Concentrations
3.5. AQ Induced Apoptosis in the Majority of Patient Samples Tested Ex Vivo
3.6. Single-Agent AQ Delayed Disease Progression and Prolonged Mice Survival In Vivo
3.7. AQ Dramatically Suppressed Oxygen Consumption in Primary AML Blasts
3.8. Phosphoflow Demonstrated Minimal Effects of AQ on pY-STAT3 and p-S6
3.9. Evaluation of Characteristics of Responders vs. Non-Responders
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rubnitz, J.E.; Gibson, B.; Smith, F.O. Acute myeloid leukemia. Hematol. Oncol. Clin. North Am. 2010, 24, 35–63. [Google Scholar] [CrossRef] [PubMed]
- Creutzig, U.; Kutny, M.A.; Barr, R.; Schlenk, R.F.; Ribeiro, R.C. Acute myelogenous leukemia in adolescents and young adults. Pediatr. Blood Cancer 2018, 65, e27089. [Google Scholar] [CrossRef] [PubMed]
- Elgarten, C.W.; Wood, A.C.; Li, Y.; Alonzo, T.A.; Brodersen, L.E.; Gerbing, R.B.; Getz, K.D.; Huang, Y.V.; Loken, M.; Meshinchi, S.; et al. Outcomes of intensification of induction chemotherapy for children with high-risk acute myeloid leukemia: A report from the Children’s Oncology Group. Pediatr. Blood Cancer 2021, 68, e29281. [Google Scholar] [CrossRef] [PubMed]
- Getz, K.D.; Alonzo, T.A.; Sung, L.; Meshinchi, S.; Gerbing, R.B.; Raimondi, S.; Hirsch, B.; Loken, M.; Brodersen, L.E.; Kahwash, S.; et al. Cytarabine dose reduction in patients with low-risk acute myeloid leukemia: A report from the Children’s Oncology Group. Pediatr. Blood Cancer 2022, 69, e29313. [Google Scholar] [CrossRef]
- Hou, D.; Wang, B.; You, R.; Wang, X.; Liu, J.; Zhan, W.; Chen, P.; Qin, T.; Zhang, X.; Huang, H. Stromal cells promote chemoresistance of acute myeloid leukemia cells via activation of the IL-6/STAT3/OXPHOS axis. Ann. Transl. Med. 2020, 8, 1346. [Google Scholar] [CrossRef]
- Baccelli, I.; Gareau, Y.; Lehnertz, B.; Gingras, S.; Spinella, J.F.; Corneau, S.; Mayotte, N.; Girard, S.; Frechette, M.; Blouin-Chagnon, V.; et al. Mubritinib Targets the Electron Transport Chain Complex I and Reveals the Landscape of OXPHOS Dependency in Acute Myeloid Leukemia. Cancer Cell 2019, 36, 84–99.e88. [Google Scholar] [CrossRef]
- Farge, T.; Saland, E.; de Toni, F.; Aroua, N.; Hosseini, M.; Perry, R.; Bosc, C.; Sugita, M.; Stuani, L.; Fraisse, M.; et al. Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism. Cancer Discov. 2017, 7, 716–735. [Google Scholar] [CrossRef] [Green Version]
- Fiorillo, M.; Lamb, R.; Tanowitz, H.B.; Mutti, L.; Krstic-Demonacos, M.; Cappello, A.R.; Martinez-Outschoorn, U.E.; Sotgia, F.; Lisanti, M.P. Repurposing atovaquone: Targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells. Oncotarget 2016, 7, 34084–34099. [Google Scholar] [CrossRef] [Green Version]
- DiNardo, C.D.; Pratz, K.; Pullarkat, V.; Jonas, B.A.; Arellano, M.; Becker, P.S.; Frankfurt, O.; Konopleva, M.; Wei, A.H.; Kantarjian, H.M.; et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood 2019, 133, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Karol, S.E.; Alexander, T.B.; Budhraja, A.; Pounds, S.B.; Canavera, K.; Wang, L.; Wolf, J.; Klco, J.M.; Mead, P.E.; Das Gupta, S.; et al. Venetoclax in combination with cytarabine with or without idarubicin in children with relapsed or refractory acute myeloid leukaemia: A phase 1, dose-escalation study. Lancet Oncol. 2020, 21, 551–560. [Google Scholar] [CrossRef]
- Pollyea, D.A.; Stevens, B.M.; Jones, C.L.; Winters, A.; Pei, S.; Minhajuddin, M.; D’Alessandro, A.; Culp-Hill, R.; Riemondy, K.A.; Gillen, A.E.; et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nat. Med. 2018, 24, 1859–1866. [Google Scholar] [CrossRef]
- Roca-Portoles, A.; Rodriguez-Blanco, G.; Sumpton, D.; Cloix, C.; Mullin, M.; Mackay, G.M.; O’Neill, K.; Lemgruber, L.; Luo, X.; Tait, S.W.G. Venetoclax causes metabolic reprogramming independent of BCL-2 inhibition. Cell Death Dis. 2020, 11, 616. [Google Scholar] [CrossRef]
- Sharon, D.; Cathelin, S.; Mirali, S.; Di Trani, J.M.; Yanofsky, D.J.; Keon, K.A.; Rubinstein, J.L.; Schimmer, A.D.; Ketela, T.; Chan, S.M. Inhibition of mitochondrial translation overcomes venetoclax resistance in AML through activation of the integrated stress response. Sci. Transl. Med. 2019, 11, eaax2863. [Google Scholar] [CrossRef]
- Winters, A.C.; Gutman, J.A.; Purev, E.; Nakic, M.; Tobin, J.; Chase, S.; Kaiser, J.; Lyle, L.; Boggs, C.; Halsema, K.; et al. Real-world experience of venetoclax with azacitidine for untreated patients with acute myeloid leukemia. Blood Adv. 2019, 3, 2911–2919. [Google Scholar] [CrossRef] [Green Version]
- Bosc, C.; Saland, E.; Bousard, A.; Gadaud, N.; Sabatier, M.; Cognet, G.; Farge, T.; Boet, E.; Gotanègre, M.; Aroua, N.; et al. Mitochondrial inhibitors circumvent adaptive resistance to venetoclax and cytarabine combination therapy in acute myeloid leukemia. Nat. Cancer 2021, 2, 1204–1223. [Google Scholar] [CrossRef]
- Stevens, A.M.; Xiang, M.; Heppler, L.N.; Tosic, I.; Jiang, K.; Munoz, J.O.; Gaikwad, A.S.; Horton, T.M.; Long, X.; Narayanan, P.; et al. Atovaquone is active against AML by upregulating the integrated stress pathway and suppressing oxidative phosphorylation. Blood Adv. 2019, 3, 4215–4227. [Google Scholar] [CrossRef]
- Classen, A.Y.; Henze, L.; von Lilienfeld-Toal, M.; Maschmeyer, G.; Sandherr, M.; Graeff, L.D.; Alakel, N.; Christopeit, M.; Krause, S.W.; Mayer, K.; et al. Primary prophylaxis of bacterial infections and Pneumocystis jirovecii pneumonia in patients with hematologic malignancies and solid tumors: 2020 updated guidelines of the Infectious Diseases Working Party of the German Society of Hematology and Medical Oncology (AGIHO/DGHO). Ann. Hematol. 2021, 100, 1603–1620. [Google Scholar]
- Rainchwar, S.; Halder, R.; Singh, R.; Mehta, P.; Verma, M.; Agrawal, N.; Ahmed, R.; Bhurani, D.; Bansal, N. Pneumocystis jirovecii pneumonia [PJP]: An unrecognized concern in AML patients on Venetoclax. Leuk. Res. 2022, 121, 106926. [Google Scholar] [CrossRef]
- Cheng, G.; Hardy, M.; Topchyan, P.; Zander, R.; Volberding, P.; Cui, W.; Kalyanaraman, B. Potent inhibition of tumour cell proliferation and immunoregulatory function by mitochondria-targeted atovaquone. Sci. Rep. 2020, 10, 17872. [Google Scholar] [CrossRef]
- Coates, J.T.T.; Rodriguez-Berriguete, G.; Puliyadi, R.; Ashton, T.; Prevo, R.; Wing, A.; Granata, G.; Pirovano, G.; McKenna, G.W.; Higgins, G.S. The anti-malarial drug atovaquone potentiates platinum-mediated cancer cell death by increasing oxidative stress. Cell Death Discov. 2020, 6, 110. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, B.; Fu, B.; Zhu, H. Atovaquone at clinically relevant concentration overcomes chemoresistance in ovarian cancer via inhibiting mitochondrial respiration. Pathol. Res. Pract. 2021, 224, 153529. [Google Scholar] [CrossRef] [PubMed]
- Karjalainen, R.; Pemovska, T.; Popa, M.; Liu, M.; Javarappa, K.K.; Majumder, M.M.; Yadav, B.; Tamborero, D.; Tang, J.; Bychkov, D.; et al. JAK1/2 and BCL2 inhibitors synergize to counteract bone marrow stromal cell-induced protection of AML. Blood 2017, 130, 789–802. [Google Scholar] [CrossRef] [PubMed]
- Long, X.; Yu, Y.; Perlaky, L.; Man, T.K.; Redell, M.S. Stromal CYR61 Confers Resistance to Mitoxantrone via Spleen Tyrosine Kinase Activation in Human Acute Myeloid Leukaemia. Br. J. Haematol. 2015, 170, 704–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maertens, J.; Cesaro, S.; Maschmeyer, G.; Einsele, H.; Donnelly, J.P.; Alanio, A.; Hauser, P.M.; Lagrou, K.; Melchers, W.J.; Helweg-Larsen, J.; et al. ECIL guidelines for preventing Pneumocystis jirovecii pneumonia in patients with haematological malignancies and stem cell transplant recipients. J. Antimicrob. Chemother. 2016, 71, 2397–2404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, M.; Kim, H.; Ho, V.T.; Walker, S.R.; Bar-Natan, M.; Anahtar, M.; Liu, S.; Toniolo, P.A.; Kroll, Y.; Jones, N.; et al. Gene expression-based discovery of atovaquone as a STAT3 inhibitor and anticancer agent. Blood 2016, 128, 1845–1853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, W.; Dorenbaum, A.; Yogev, R.; Beauchamp, B.; Xu, J.; McNamara, J.; Moye, J.; Purdue, L.; van Dyke, R.; Rogers, M.; et al. Phase I safety and pharmacokinetics study of micronized atovaquone in human immunodeficiency virus-infected infants and children. Pediatric AIDS Clinical Trials Group. Antimicrob. Agents Chemother. 1998, 42, 1315–1318. [Google Scholar] [CrossRef] [Green Version]
- Hughes, W.; Leoung, G.; Kramer, F.; Bozzette, S.A.; Safrin, S.; Frame, P.; Clumeck, N.; Masur, H.; Lancaster, D.; Chan, C.; et al. Comparison of atovaquone (566C80) with trimethoprim-sulfamethoxazole to treat Pneumocystis carinii pneumonia in patients with AIDS. N. Engl. J. Med. 1993, 328, 1521–1527. [Google Scholar] [CrossRef]
- Hughes, W.T.; Kennedy, W.; Shenep, J.L.; Flynn, P.M.; Hetherington, S.V.; Fullen, G.; Lancaster, D.J.; Stein, D.S.; Palte, S.; Rosenbaum, D.; et al. Safety and pharmacokinetics of 566C80, a hydroxynaphthoquinone with anti-Pneumocystis carinii activity: A phase I study in human immunodeficiency virus (HIV)-infected men. J. Infect. Dis. 1991, 163, 843–848. [Google Scholar] [CrossRef]
- Horvath, T.D.; Poventud-Fuentes, I.; Olayinka, L.; James, A.; Haidacher, S.J.; Hoch, K.M.; Stevens, A.M.; Haag, A.M.; Devaraj, S. Validation of atovaquone plasma levels by liquid chromatography-tandem mass spectrometry for therapeutic drug monitoring in pediatric patients. J. Mass Spectrom. Adv. Clin. Lab. 2022, 26, 23–27. [Google Scholar] [CrossRef]
- A’Hern, R.P. Sample size tables for exact single-stage phase II designs. Stat. Med. 2001, 20, 859–866. [Google Scholar] [CrossRef]
- Vardiman, J.W.; Thiele, J.; Arber, D.A.; Brunning, R.D.; Borowitz, M.J.; Porwit, A.; Harris, N.L.; Le Beau, M.M.; Hellstrom-Lindberg, E.; Tefferi, A.; et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: Rationale and important changes. Blood 2009, 114, 937–951. [Google Scholar] [CrossRef] [Green Version]
- Le-Rademacher, J.G.; Hillman, S.; Storrick, E.; Mahoney, M.R.; Thall, P.F.; Jatoi, A.; Mandrekar, S.J. Adverse Event Burden Score-A Versatile Summary Measure for Cancer Clinical Trials. Cancers 2020, 12, 3251. [Google Scholar] [CrossRef]
- Redell, M.S.; Ruiz, M.J.; Alonzo, T.A.; Gerbing, R.B.; Tweardy, D.J. Stat3 signaling in acute myeloid leukemia: Ligand-dependent and -independent activation and induction of apoptosis by a novel small-molecule Stat3 inhibitor. Blood 2011, 117, 5701–5709. [Google Scholar] [CrossRef]
- Warnes, G.R.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Huber, W.; Liaw, A.; Lumley, T.; Maechler, M.; Magnusson, A.; Moeller, S.; et al. R Package Version 3.1.1. Gplots: Various R Programming Tools for Plotting Data. 2020. Available online: https://www.scienceopen.com/book?vid=b9235964-279a-4a6d-8d29-6abcc8276ced (accessed on 18 January 2023).
- Madden, R.M.; Pui, C.H.; Hughes, W.T.; Flynn, P.M.; Leung, W. Prophylaxis of Pneumocystis carinii pneumonia with atovaquone in children with leukemia. Cancer 2007, 109, 1654–1658. [Google Scholar] [CrossRef]
- Robin, C.; Lê, M.P.; Melica, G.; Massias, L.; Redjoul, R.; Khoudour, N.; Leclerc, M.; Beckerich, F.; Maury, S.; Hulin, A.; et al. Plasma concentrations of atovaquone given to immunocompromised patients to prevent Pneumocystis jirovecii. J. Antimicrob. Chemother. 2017, 72, 2602–2606. [Google Scholar] [CrossRef]
- Chan, C.; Montaner, J.; Lefebvre, E.A.; Morey, G.; Dohn, M.; McIvor, R.A.; Scott, J.; Marina, R.; Caldwell, P. Atovaquone suspension compared with aerosolized pentamidine for prevention of Pneumocystis carinii pneumonia in human immunodeficiency virus-infected subjects intolerant of trimethoprim or sulfonamides. J. Infect. Dis. 1999, 180, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Colby, C.; McAfee, S.; Sackstein, R.; Finkelstein, D.; Fishman, J.; Spitzer, T. A prospective randomized trial comparing the toxicity and safety of atovaquone with trimethoprim/sulfamethoxazole as Pneumocystis carinii pneumonia prophylaxis following autologous peripheral blood stem cell transplantation. Bone Marrow Transplant. 1999, 24, 897–902. [Google Scholar] [CrossRef] [Green Version]
- El-Sadr, W.M.; Murphy, R.L.; Yurik, T.M.; Luskin-Hawk, R.; Cheung, T.W.; Balfour, H.H., Jr.; Eng, R.; Hooton, T.M.; Kerkering, T.M.; Schutz, M.; et al. Atovaquone compared with dapsone for the prevention of Pneumocystis carinii pneumonia in patients with HIV infection who cannot tolerate trimethoprim, sulfonamides, or both. Community Program for Clinical Research on AIDS and the AIDS Clinical Trials Group. N. Engl. J. Med. 1998, 339, 1889–1895. [Google Scholar] [CrossRef]
- Gabardi, S.; Millen, P.; Hurwitz, S.; Martin, S.; Roberts, K.; Chandraker, A. Atovaquone versus trimethoprim-sulfamethoxazole as Pneumocystis jirovecii pneumonia prophylaxis following renal transplantation. Clin. Transplant. 2012, 26, E184–E190. [Google Scholar] [CrossRef]
- Jinno, S.; Akashi, K.; Onishi, A.; Nose, Y.; Yamashita, M.; Saegusa, J. Comparative effectiveness of trimethoprim-sulfamethoxazole versus atovaquone for the prophylaxis of pneumocystis pneumonia in patients with connective tissue diseases receiving prolonged high-dose glucocorticoids. Rheumatol. Int. 2022, 42, 1403–1409. [Google Scholar] [CrossRef]
- Rodriguez, M.; Sifri, C.D.; Fishman, J.A. Failure of low-dose atovaquone prophylaxis against Pneumocystis jiroveci infection in transplant recipients. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2004, 38, e76–e78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic, n(%) | All Patients (n = 26) | |
---|---|---|
Age, y | Median (range) | 12 (0.6–19.7) |
+Blast BM, % | Median (range) | 68.5 (0–97) |
Sex | Female | 12 (46) |
Male | 14 (54) | |
Race | White | 21 (81) |
Black or African American | 4 (15) | |
Asian | 1 (4) | |
Ethnicity | Hispanic | 8 (31) |
None-Hispanic | 18 (69) | |
French-American-British Classification | M1/M2 | 11 (42) |
M4/M5 | 9 (35) | |
M4eo | 1 (4) | |
M7 | 4 (15) | |
NA | 1 (4) | |
CNS Disease | Yes | 15 (58) |
Relapse | Yes | 10 (38) |
EOI1_MRD | Positive | 9 (35) |
Negative | 17 (65) | |
Clinical Outcome | Alive | 19 (23) |
Death from disease | 4 (15) | |
Treatment related mortality | 3 (12) | |
High Risk by 1831 | Yes | 12 (46) |
KMT2A rearranged | Yes | 5 (19) |
FLT3-ITD (allelic ratio≥0.1) | Yes | 6 (23) |
IDH1 or IDH2 mutaion | Yes | 5 (19) |
Annexin | Yes | 20 (77) |
In Vitro AQ Response | Responder | 16 (80) |
Non-Responder | 4 (20) | |
Oxygen Consumption Rate Evaluation | Yes | 17 (65) |
Phosphoflow and Surface Flow Cytometry Evaluation | Yes | 18 (69) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stevens, A.M.; Schafer, E.S.; Li, M.; Terrell, M.; Rashid, R.; Paek, H.; Bernhardt, M.B.; Weisnicht, A.; Smith, W.T.; Keogh, N.J.; et al. Repurposing Atovaquone as a Therapeutic against Acute Myeloid Leukemia (AML): Combination with Conventional Chemotherapy Is Feasible and Well Tolerated. Cancers 2023, 15, 1344. https://doi.org/10.3390/cancers15041344
Stevens AM, Schafer ES, Li M, Terrell M, Rashid R, Paek H, Bernhardt MB, Weisnicht A, Smith WT, Keogh NJ, et al. Repurposing Atovaquone as a Therapeutic against Acute Myeloid Leukemia (AML): Combination with Conventional Chemotherapy Is Feasible and Well Tolerated. Cancers. 2023; 15(4):1344. https://doi.org/10.3390/cancers15041344
Chicago/Turabian StyleStevens, Alexandra McLean, Eric S. Schafer, Minhua Li, Maci Terrell, Raushan Rashid, Hana Paek, Melanie B. Bernhardt, Allison Weisnicht, Wesley T. Smith, Noah J. Keogh, and et al. 2023. "Repurposing Atovaquone as a Therapeutic against Acute Myeloid Leukemia (AML): Combination with Conventional Chemotherapy Is Feasible and Well Tolerated" Cancers 15, no. 4: 1344. https://doi.org/10.3390/cancers15041344
APA StyleStevens, A. M., Schafer, E. S., Li, M., Terrell, M., Rashid, R., Paek, H., Bernhardt, M. B., Weisnicht, A., Smith, W. T., Keogh, N. J., Alozie, M. C., Oviedo, H. H., Gonzalez, A. K., Ilangovan, T., Mangubat-Medina, A., Wang, H., Jo, E., Rabik, C. A., Bocchini, C., ... Redell, M. S. (2023). Repurposing Atovaquone as a Therapeutic against Acute Myeloid Leukemia (AML): Combination with Conventional Chemotherapy Is Feasible and Well Tolerated. Cancers, 15(4), 1344. https://doi.org/10.3390/cancers15041344