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Simple Summary: Lactic acidosis is a prominent feature of the tumour microenvironment and a key
player in cancer metabolism. This review is aimed at combining the mechanisms through which
lactic acidosis alters the metabolism of cancer cells, and determining how this effect could bring
valuable contribution to the current understanding of the metabolism of whole tumours. This work
also highlights the therapeutic perspectives that advances in lactic acidosis understanding open up.

Abstract: Lactic acidosis, a hallmark of solid tumour microenvironment, originates from lactate
hyperproduction and its co-secretion with protons by cancer cells displaying the Warburg effect.
Long considered a side effect of cancer metabolism, lactic acidosis is now known to play a major
role in tumour physiology, aggressiveness and treatment efficiency. Growing evidence shows that
it promotes cancer cell resistance to glucose deprivation, a common feature of tumours. Here we
review the current understanding of how extracellular lactate and acidosis, acting as a combination
of enzymatic inhibitors, signal, and nutrient, switch cancer cell metabolism from the Warburg effect
to an oxidative metabolic phenotype, which allows cancer cells to withstand glucose deprivation,
and makes lactic acidosis a promising anticancer target. We also discuss how the evidence about
lactic acidosis’ effect could be integrated in the understanding of the whole-tumour metabolism and
what perspectives it opens up for future research.

Keywords: lactic acidosis; glucose deprivation; tumour heterogeneity; metabolic symbiosis; War-
burg effect

1. Introduction

Lactic acidosis is a hallmark of the tumour microenvironment, one that has been shown
to promote cancer resistance to chemotherapy [1]. It results from the intensive secretion
of lactate and protons in the presence of glucose by cells displaying the Warburg effect,
a characteristic anomaly of proliferating, and, particularly, cancer cells. Cells harbouring
the Warburg effect perform high-rate glycolysis, lactic fermentation, and co-excretion of
lactate and protons [2]. This enables them to proliferate at a high rate in the presence of
glucose, which they consume avidly. However, the rapid consumption of glucose leads to
its exhaustion, and an energetic dead-end and paradox. Interestingly, lactic acidosis has
been shown to help cancer cells withstand glucose deprivation [3]. In media conditioned
with high lactate concentration and acidity, cancer cell lines avoid apoptosis and survive
10 times longer in the absence of glucose. Further studies have demonstrated that cancer
cells resist glucose starvation by reprogramming their metabolism [4,5]. In this review, we
focus on the essential literature addressing how lactic acidosis affects energy metabolism
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and preserves homeostasis in glucose-deprived cancer cells, and what therapeutic prospects
it opens up. We then discuss how this effect at the cellular scale could help understand the
metabolism of whole tumours.

2. Defining the Experimental Conditions of the Presented Studies

In this work, we review a series of studies relevant to address how lactic acidosis
helps cells resist glucose deficiency. These studies are performed in varying conditions
(Table 1). In order to clarify the various experimental conditions, we emphasise the fol-
lowing definitions [3]. “Lactosis” refers to an in vitro condition in which extracellular
lactate concentration exceeds 15 mM. It must be noted that most presented studies were
performed with culture media containing 10% foetal bovine serum, which brings ~1.5 mM
lactate to the medium [6]. At pH 6.7, >15 mM added lactate helps cancer cells resist glucose
deprivation [3]. “Acidosis” refers to an extracellular pH of 5.8–6.7. Under pH 6.7 normal
cells suffer from acidosis, and tumour pH can drop down to 5.8 [4]. ”Lactic acidosis” refers
to the combination of both lactosis and acidosis. Lactic acidosis and acidosis are frequently
encountered in tumours [7]. Both originate from the co-secretion of lactate and protons,
and acidosis is also caused by the mitochondrial production of CO2 and its dissociation
into HCO3

− and H+ [8]. Lactosis is a condition virtually absent in vivo, but one that can be
achieved easily in vitro to study the effect of lactate independently from acidification by
adding buffered sodium lactate to the medium.

“Glucose deprivation” or “depletion” refers to conditions where glucose is scarce, but
not necessarily absent from the milieu. Intratumoral glucose concentration can drop to
0.1–0.4 mM, while its level in healthy tissues is ~1 mM [9]. In vitro studies recreate glucose
deprivation with culture media that contain, initially, up to 3 mM glucose, the amount that
cancer cells typically deplete in one day [3,6].

Table 1. The presented studies addressing lactic acidosis’ impact on cell energy metabolism are
performed under various conditions. For each reference, the tested cell line or cancer type and
medium conditions (glucose concentration, lactate concentration, and pH) are specified. When
unspecified, the pH value was assumed to equal 7.4.

Reference Glucose
Concentration (mM)

Lactate Concentration
(mM) pH Cell Lines or Tumour Origin

[3] 3 20 6.7 4T1, Bcap37, RKO, SGC7901
[10] Unspecified 25 6 to 6.7 HMEC, DU145, SiHa, WiDr
[4] 10 10 6.5 MCF-7, MDA-MB-468, MDA-MB-231, SkBr3
[11] 5 and 25 5 to 30 6.7 U251 and glioblastoma
[12] Unspecified 10 or 20 7.4 A549, H1299
[13] 10 5 to 30 7.4 A549, H1299
[14] Unspecified 10 or 30 7.4 SiHa and mouse xenograft
[5] 6 25 6.5 4T1, Bcap37, HeLa, A549
[15] Unspecified 4 to 40 5 to 8 MCF7, T47D
[16] Unspecified 5 or 10 7.4 A549, H1299, BEAS-2B
[17] 10 3 to 40 6.2 A549, A427, MCF7, MRC5
[18] Unspecified 0 6.5 A549, H1299, MRC5
[19] 5 10 7.4 SiHa, HeLa

[20] 10 10 or 25 6.7 MCF-7, ZR-75-1, T47D, MDA-MB-231,
MDA-MB-157

[21] 5.6 10 or 20 6.7 LS174T, HCT116, MCT4
[22] Unspecified 20 7.4 MCF7
[23] Unspecified 10 7.4 MDA-MB-231
[24] 0 28 6.2 A549, A427
[25] Unspecified 20 7.4 U87-MG, A172, U251
[1] Unspecified 20 7.4 92.1
[26] 0 10 7.4 MDA436 and mouse xenograft
[27] 10 2 to 20 7.4 Human myeloid cell lines
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Table 1. Cont.

Reference Glucose
Concentration (mM)

Lactate Concentration
(mM) pH Cell Lines or Tumour Origin

[28] 0.175 4 7.4 glioma stem cells
[29] 2.5 or 25 10 7.4 Colo205, Ls174T, Mosers, HT29
[30] 1 to 2.5 25 7.4 MCF-7
[31] Unspecified 20 7.4 Huh-7, Hep3B
[32] 0 20 6.8 A549
[33] 0 20 6.7 4T1, HeLa, NCI–H460
[34] Unspecified 0 6.5 PANC-1, SW1990
[35] Unspecified 12 6.8 PaTu-8902, HeLa, HepG2, HDF

3. Lactic Acidosis Seen by Cancer Research: A Brief History

In the 2000s, cancer research took a renewed interest in the Warburg effect, a hallmark
of cancer discovered a century ago [2,36,37]. As a consequence, views on lactic acidosis
changed drastically.

Acidosis had been known to promote tumour aggressiveness by exerting a selec-
tive pressure. Some cancer cells had been shown to survive acidosis by maintaining an
alkaline intracellular pH, while other cells—cancerous or healthy—underwent hydroly-
sis and death [38–40]. The proliferation of those selected cells, which are more resistant
to unfavourable environments, had been known to increase tumour malignancy [41,42].
As for lactate, it had been considered more of a by-product of glycolysis until the 1980s,
when its use as a nutrient in non-cancerous tissues was discovered [43,44]. The role of
extracellular lactate in cancer was investigated only later, in the 2000s [45,46], when it
was found to correlate with tumour malignancy [47–50]. Two explanations for this were
initially proposed. First, lactate promotes relaxation of the tissue surrounding the tumour,
which would make room for its development and metastasis [48]. Second, lactate makes
the cellular environment hostile, as does acidosis [38], which promotes angiogenesis [47].

The metabolic importance of extracellular lactate and lactic acidosis was first evidenced
in 2008. Lactic acidosis was shown to alter the expression of metabolism genes [10] and,
more importantly, lactate was proven to be, per se, a key source of energy for cancer
cells [51]. In 2009, the term “reverse Warburg effect” was first used to describe cancer cells
not showing the Warburg effect, but instead inducing it in neighbouring stromal fibroblasts
and consuming the lactate produced by them [52]. These discoveries reappraised the
paradigm of the Warburg effect, showing that it wasn’t compulsory in cancer since lactate
could be metabolised rather than only produced. Following these works, in 2012, Wu
et al., demonstrated that lactic acidosis allows cells to avoid glucose starvation [3]. Lactic
acidosis rescues glucose-deprived cancer cells, but importantly, acidosis or lactosis alone
have much more limited effects. After this pioneering work, lactic acidosis was further
shown to reprogram cell metabolism [5]. Nowadays, extracellular lactate and acidosis are
viewed as central players in cancer cell metabolism [53–55].

4. Lactic Acidosis’ Effect on Energy Metabolism

Lactic acidosis was shown to impact numerous aspects of energy metabolism. We
focus here on nutrient import, glycolysis, the tricarboxylic acid (TCA) cycle, oxidative
phosphorylation (OxPhos), and pathways generating reduced coenzymes (Figure 1).
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Figure 1. Lactic acidosis rewires energy metabolism and maintains cellular homeostasis. Lactic
acidosis enhances the uptake of folate, long-chain fatty acids, glutamine, and lactate. It represses
glucose import, glycolysis (by inhibiting HK and PFK, its rate-limiting enzymes) and lactic fermen-
tation. It enhances lactate conversion to pyruvate, routing of pyruvate and glutamine towards the
TCA cycle, ATP generation by OxPhos, and coenzyme reduction by IDH1 and the oxidative PPP. It
also upregulates CA IX expression, which basifies intracellular pH. Abbreviations: ASCT2: Alanine,
Serine, Cysteine Transporter 2; CA IX: carbonate anhydrase 1; GLUT1: glucose transporter 1; HK:
hexokinase; IDH1: isocitrate dehydrogenase 1; MCT1: monocarboxylate transporter 1; OxPhos:
oxidative phosphorylation; PFK1: phosphofructokinase 1; PPP: pentose phosphate pathway; TCA:
tricarboxylic acid.

4.1. Lactic Acidosis and Exchanges at the Plasma Membrane

In glucose deprivation, the capacity of cancer cells to uptake and metabolise alternative
nutrients is key to their survival [56]. Extracellular acidosis and lactosis were shown to
increase such capacity.

4.1.1. Acidosis Sustains the Activity of Proton-Nutrient Symporters

Extracellular acidosis has a direct impact on exchanges at the plasma membrane [57].
In healthy tissues, protons are more concentrated inside the cell than outside. In tumours,
the contrary is true [58,59]. Extracellular acidosis inverts the transmembrane proton gradi-
ent in tumour cells, which may positively impact proton-nutrient symports. Of interest,
lactate is imported in cancer cells via the monocarboxylate transporters (MCTs) [51]. Since
MCTs co-transport lactate with a proton, lactate import should be sensitive to the proton
gradient and facilitated under acidosis. This mechanism is expected to explain why cancer
cells respond differently to lactosis and lactic acidosis [3], since a rise in extracellular lactate
only increases intracellular lactate levels in acidic conditions [60]. The co-transport of extra-
cellular lactate and protons probably underlies the synergy of their effects on intracellular
metabolism (Figure 1).
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Of note, protons are also co-imported with several other nutrients, such as Fe2+, folates,
amino acids and peptides. Brown & Ganapathy suggested that acidosis may affect their
uptake (Figure 1), but this hypothesis remains to be confirmed [61].

4.1.2. Lactate and Acidosis Indirectly Enhance Nutrient Uptake

Extracellular lactic acidosis indirectly promotes the uptake of several nutrients
(Figure 1). The import of lactate itself is increased in lactic acidosis, in part due to MCT1
overexpression [11], which is a response to an extracellular lactate signal [62] that is po-
tentiated by extracellular acidity [12]. Extracellular lactate induces MCT1 and MCT4 via
the G-protein-coupled receptor 81 (GPR81) transduction pathway [62]. In acidosis, ex-
tracellular lactate can also induce GPR81 expression [12,13]. Extracellular lactate signal
enhancing MCT-mediated lactate import is necessary to cancer cell survival in absence of
glucose, glutamine and pyruvate [62]. This supports the idea that ‘lactate induces its own
metabolism’, which doesn’t exclude other regulations of MCT expression [63].

Glutamine uptake is increased by extracellular lactate or acidosis, as both conditions
increase the expression of the glutamine transporter ASCT2 (alanine, serine and cysteine
transporter 2) [14,64]. Fatty acid uptake is enhanced by acidosis [65], and folate import is
intensified by 10 mM extracellular lactic acid [15].

Finally, and importantly, lactic acidosis seems to minimise glucose uptake, but not in
all cell lines and cancers. Lactic acidosis decreases glucose uptake in various cell lines [5], as
lactate in lung cancer cell lines [16]. On the opposite, 10 mM lactate has no effect on glucose
uptake in the T47D breast cancer cell line [15]. The expression of the glucose transporters
GLUT1 and GLUT4 are decreased by 2 mM lactate and acidosis in lung and breast cancer
cell lines [17], and by acidosis in cervix, pharynx and colon cancer cell lines [64] but not in
lung cancer cell lines [18].

4.1.3. Lactic Acidosis and pH Homeostasis

Cell exposure to lactic acidosis is associated with a drop in intracellular pH from 7.3
to ~6.9 [5]. Behind this acidification, several probable effects may be discerned. On the
one hand, as discussed earlier, acidosis enhances proton-nutrient co-import, which could
contribute to cellular acidification. On the other hand, lactate as a signal can mitigate the
drop in pH by favouring alkalinization. A level of 10 mM extracellular lactate induces
Carbonic Anhydrase IX (CA IX) [19], a transmembrane enzyme supporting proton export
and a key regulator of cell pH [66] (Figure 1).

4.2. Lactic Acidosis, Glycolysis, and Lactic Fermentation

Unlike cells showing the Warburg effect, in which glycolysis and lactate dehydroge-
nase (LDH)-catalysed lactic fermentation are known to be hyperactive, cells exposed to
lactic acidosis show a reduction in these pathways’ activity.

In glucose abundance, acidosis and lactic acidosis lower glucose consumption and
lactate secretion [4,5,20], which indicates that glycolysis and lactic fermentation are down-
regulated. More interestingly, lactic acidosis decreases cancer cell dependency on glucose
catabolism [1]. Thus, in glucose sufficiency, lactic acidosis minimises glucose catabolism
activity and its importance in cell survival (Figure 1).

Glycolysis and lactic fermentation are likely downregulated at the level of both gene
expression and enzyme activity. The expression of glycolysis enzymes is reduced by lactic
acidosis in breast cancer cell lines [10], and by extracellular lactate in lung cancer cell
lines [16], but it is maintained by extracellular lactate in breast cancer cell lines [21,22].
The activity of glycolysis enzymes, especially the rate-limiting hexokinase and phospho-
fructokinase [67], is directly decreased by intracellular acidification [4] (Figure 1). In line,
intracellular acidification has been predicted in silico to hinder the Warburg effect [68]. Intra-
cellular lactate accumulation, in parallel, directly inhibits lactic fermentation [5] (Figure 1).
The interconversion of lactate and pyruvate through LDH follows the mass action law,
therefore a rise in lactate concentration inhibits its production from pyruvate and favours



Cancers 2023, 15, 1417 6 of 14

the reverse reaction. This thermodynamic effect leads to a complete stop of lactic fermenta-
tion at ~25 mM intracellular lactate [5]. This concentration is within the range resulting
from lactic acidosis.

4.3. Lactic Acidosis and Mitochondrial Catabolism
4.3.1. Lactic Acidosis Intensifies Mitochondrial Catabolism

Lactic acidosis enhances mitochondrial metabolic activity, in particular the TCA cycle
and OxPhos. Both lactic acidosis and lactosis enhance mitochondrial biogenesis [23,24]
and the expression of the enzymes of the TCA cycle and OxPhos [11,25], which potentiates
mitochondrial catabolism and ATP production. The reactivation of those pathways allows
the maintenance of the cellular ATP concentration in glucose deprivation and increases
resistance to starvation [11].

4.3.2. Lactic Acidosis Shapes TCA Cycle Alternative Fueling

In addition to glucose-derived pyruvate, the TCA cycle can be supplied with various
substrates. This flexibility is particularly true of cancer cells [69]. In challenging nutritional
contexts such as glucose deprivation, the TCA cycle of cancer cells can be sustained
by alternative nutrients. Lactate and glutamine are its main substrate suppliers after
glucose [70]. The use of both is promoted by lactic acidosis.

The pyruvate generated from lactate can directly sustain the TCA cycle [26–31,71]
(Figure 1). This pathway depends on upstream lactate import by MCTs, whose enhance-
ment in lactic acidosis is discussed in Section 4.1.2. In line, extracellular lactate increases the
mitochondrial membrane potential, and hence ATP production efficiency in OxPhos [21,72],
and could even be necessary to pro-tumoural cell proliferation [32]. In more detail, the
routing of lactate to mitochondria is debated. In the classical view, lactate is converted to
pyruvate in the cytosol, then pyruvate is shuttled to mitochondria [73,74]. In addition to
this classical way, Brooks et al. proposed an alternative model in which lactate would be
shuttled to mitochondria via the mitochondrial lactate oxidation complex (mLOC), that in-
cludes MCT1 [75]. The controversy raised by this model has been well-reviewed in [76,77],
that summarized the evidence for and against it in non-cancer cells. In cancer cells supplied
with sufficient glucose, lactate’s contribution to the TCA cycle over glucose remains under
debate: some studies suggest that lactate shuttled to mitochondria is preferred [71], while
others question this [78]. Either way, under glucose deprivation, we can hypothesise that
lactate’s contribution to the TCA cycle is of significant importance.

Glutamine is a major nutrient for cancer cells. It undergoes oxidative glutaminolysis
in mitochondria, where it is processed by glutaminase 1 or 2 (GLS1/2) and then glutamate
dehydrogenase 1 (GDH1) to sustain the TCA cycle. Lactic acidosis [20], acidosis [20,64],
and lactate [14] upregulate GLS1 and GLS2 and stimulate oxidative glutaminolysis. Lac-
tic acidosis, however, doesn’t necessarily promote glutamine consumption compared to
lactosis [23]. In summary, either extracellular lactate, acidosis or lactic acidosis enhance
glutamine utilisation by inducing glutaminase expression (Figure 1).

4.4. Lactic Acidosis and Redox Homeostasis

Cell survival requires redox homeostasis, i.e., controlled levels of reactive oxygen
species (ROS) and redox coenzymes. The former lead to cell death when they accumulate,
and the latter support the entire metabolism and cellular antioxidant defences.

Particularly, a high NADPH/NADP+ ratio kinetically favours anabolic reactions and
helps keep ROS levels low. In cancer cells this ratio is abnormally high and sustains hyper-
active anabolism [70]. High NADPH levels are supported by the oxidation of nutrients,
such as lactate and glutamine via the TCA cycle and then oxidation of glutamine- and
lactate-derived malate and isocitrate by the malic enzyme 1 (ME1) and Isocitrate Dehydro-
genase 1 (IDH1), and mainly glucose via the pentose phosphate pathway (PPP). Redox
homeostasis in cancer cells is therefore particularly sensitive to nutritional stress such as
glucose deprivation.
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In this condition, lactic acidosis helps stabilise the NADPH/NADP+ ratio at ~50% of
its level in glucose sufficiency [3]. Likely, the gatekeepers of the NADPH/NADP+ ratio in
glucose abundance have reduced efficiency under glucose deprivation and lactic acidosis,
whereas new control mechanisms gain importance. On the one hand, glutamine use via
ME1 is not necessary to the maintenance of the NADPH/NADP+ ratio under lactic acido-
sis [33]. Glutamine would indeed be completely degraded in mitochondrial catabolism
instead of sustaining ME1 activity [20]. On the other hand, the glucose directed away from
glycolysis towards the PPP would prevail more in NADPH/NADP+ maintenance under
lactic acidosis. Lactic acidosis [20] and acidosis [34] respectively increase the expression
and activity of glucose-6-phosphate dehydrogenase (G6PD), the first enzyme of the PPP,
and lactic acidosis makes G6PD activity necessary to NADPH/NADP+ ratio maintenance
and cell survival [20] in glucose sufficiency. However in glucose deprivation, the PPP alone
cannot maintain redox balance [33]. Alternatively, lactate would become a key player in
NADPH/NADP+ ratio maintenance, via the TCA cycle [35], and IDH1 [33].

Whether, in glucose abundance, such reprogramming strengthens cell defences against
ROS level increase is uncertain. Acidosis increases ROS levels [35] and cell sensitivity to
oxidative stress, but cell adaptation to acidosis decreases them [34]. Lactate import through
MCT1 is key to maintain low ROS levels [79]. Lactic acidosis was found to either increase
ROS levels, as does acidosis [20], or to rescue acidosis’ negative effect [35]. At any rate,
in glucose deprivation, lactic acidosis mainly prevents increased ROS levels by providing
IDH1 with its substrate [33].

A high NADH/NAD+ ratio supports ATP production. Lactic acidosis impact on the
NADH/NAD+ ratio has not been directly investigated. However lactate use by the TCA
cycle increases the NADH/NAD+ ratio in glucose deprivation [30]. This increase could
contribute to the inhibition of glycolysis by lactic acidosis: a high NADH/NAD+ ratio
would inhibit glycolysis according to the mass action law. Yet this hypothesis remains to be
tested.

4.5. Section Summary

In the energy metabolism of cancer cells, acidosis and extracellular lactate act as
enzymatic inhibitors, and lactate as a signal and a nutrient. They mostly curb glycolysis
and lactic fermentation and enhance the TCA cycle and OxPhos (Figure 1). Acidification
and lactate accumulation in the tumour microenvironment would promote and sustain an
oxidative phenotype, which is fitter than the fermenting phenotype in glucose deprivation,
an adverse nutritional context that is common in tumours.

5. Therapeutic Strategies Targeting Lactic Acidosis

Nowadays, lactic acidosis per se is targeted in therapies directed against cancer. Of
note, it is also a major target in the treatment of type 2 diabetes [80,81]. Neutralising
acidosis in tumours has been proposed as a way to restore sensitivity of cancer cells to
glucose starvation and increase the efficacy of regular treatments. The proof of principle of
this approach has been established by combining transarterial chemoembolization (TACE)
with the infusion of bicarbonate, a basifying agent that turns neoplastic lactic acidosis into
lactosis [82,83]. Compared to TACE alone, TILA-TACE (Targeting-Intratumoural-Lactic-
Acidosis TACE) presented a very significantly enhanced anticancer activity for patients with
hepatocellular carcinoma. The mechanisms underlying this activity have been evaluated in
detail by Ying et al. [84].

Modulating extracellular lactate availability in tumours by nanomedicine is another
promising therapeutic strategy. The delivery by nanoparticles of a cocktail of lactate oxi-
dases and catalases to colon carcinoma cells in vitro suppresses tumoural lactosis and stops
cell proliferation [85]. The delivery by nanoparticles of a glucose catalase combined with a
MCT1 inhibitor, that together prevent the use of both glucose and lactate by tumour cells,
inhibits the proliferation of SiHa cell line xenografts in mice [86]. Conversely, lactate-loaded
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nanoparticles induce an overload of lactate and cytotoxicity in orthotopic glioblastoma
models, although only in normoxic conditions and not in hypoxia [87].

Understanding the effects of lactic acidosis also helps reappraise the potential of
already-existing targets. In particular, the lactate transporter MCT1 was formerly targeted
to inhibit lactate secretion in cells showing the Warburg effect, and is now targeted to
hamper lactate uptake [27,88–91]. Similarly the strategies targeting LDH isoforms were
aimed historically at inhibiting lactate production from pyruvate. The LDHA isoform,
that has a higher affinity for pyruvate than for lactate and catalyses preferentially lactate
production, is a historical target that still attracts much attention [92]. However, with
the discovery of lactic acidosis effect, the LDHB isoform that catalyses preferentially the
conversion of lactate to pyruvate now rises as an alternative target [32].

6. Implications of Lactic Acidosis in the Whole-Tumour Metabolism

Deciphering how lactic acidosis impacts cancer cells enlightens important aspects
of the metabolism of the whole tumour, and raises new perspectives to complement its
understanding.

From the belief that cancer cells have a unique metabolic signature, i.e., the Warburg
effect, research has progressively recognized intratumoural heterogeneity as the metabolic
hallmark of cancer [55]. The main metabolic heterogeneity in tumours is now suggested
to be mitochondrial activity [93,94], that is promoted and sustained by lactic acidosis. To
describe this heterogeneity, tumours have traditionally been modelled as the coexistence of
two metabolic populations: oxidative cells relying on OxPhos and fermenting cells showing
the Warburg effect and relying on glycolysis and lactic fermentation [17,28,51,91,95,96]. Ox-
idative cells would be located in normoxic regions, in perivascular compartments [7,11,97],
and fermenting cells in hypoxic regions farther from blood vessels [11,51,97] (Figure 2).
Each population would thrive on different energy sources, fermenting cells glucose and
oxidative ones lactate, and lactate would be transferred from fermenting to oxidative
cells [95]. This model is supported by the coexistence in tumours of cells overexpressing
MCT4, a preferential lactate exporter, and cells overexpressing MCT1, a preferential lactate
importer [11,51,95,98]. Interestingly, a possible lactate transport via gap junctions has been
evidenced recently [99–101]. This lactate transfer supports the idea of a metabolic symbiosis
between both populations within tumours [17,28,46,51,61,91,95,96,101–103]. In this model,
a central question is how the metabolic phenotypes of both populations are determined [46].
Hypoxia is thought to be the major promoter of the fermenting phenotype [102,104]. Lactic
acidosis, according to the evidence presented in this work, is likely the promoter of the
oxidative phenotype [5,11].

However this hypothetical scenario raises a paradox: the oxidative phenotype, that
derives from lactic acidosis, i.e., from the fermenting phenotype that is promoted by
hypoxia, cannot thrive in hypoxic conditions. Two hypotheses could solve this paradox.
In the first hypothesis, fermenting cells would induce the oxidative phenotype in their
neighbours, located in better-perfused regions. However lactic acidosis intensity, maximal
around secretory cells, decreases with the distance [51,105], which raises the question of
the minimal level of lactic acidosis necessary to promote the oxidative phenotype. In the
second hypothesis, lactic acidosis would feedback the Warburg effect in fermenting cells
by switching them to an oxidative phenotype, which questions the minimal oxygen level
necessary for the oxidative phenotype to survive. A possible answer to this question is
that in the meantime, lactic acidosis could promote angiogenesis [38,47,61]. This questions
the timeline of lactic acidosis action, in the promotion of both oxidative phenotype and
angiogenesis. A third perspective to answer the paradox is to address how, earlier, hypoxia
and lactic acidosis may interplay in the promotion of metabolic phenotypes, which has
caught little attention until now [18,20,23,106].
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Figure 2. Lactic acidosis would contribute to a metabolic symbiosis between fermenting and oxida-
tive cells within tumours. In this model, two populations coexist in tumours: fermenting cells in
hypoxic regions, and oxidative cells in normoxic regions where lactic acidosis would exert its effect.
Fermenting cells would consume the glucose spared by oxidative cells and generate the lactate fueling
them, both being in a metabolic symbiosis. Lactic acidosis promotes the switch from a fermenting to
an oxidative phenotype.

7. Conclusions

Lactic acidosis associated with tumour progression allows cancer cells to survive in
unfavourable environments. In the last decade, the influence of neoplastic lactic acidosis on
the energy metabolism of cancer cells has been deciphered. Lactic reduces glycolysis and
lactic fermentation, stimulates the TCA cycle and OxPhos, and promotes the use of alterna-
tive nutrients. All in all, it contributes to cell resistance to glucose deprivation. Cancelling
lactic acidosis’ effect is therefore a relevant anticancer strategy that restores cancer cell sen-
sitivity to glucose deprivation, a common feature of the tumour microenvironment. In the
future, clarifying how lactic acidosis action is integrated in the whole-tumour metabolism
would be of high interest.
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