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Simple Summary: For automated cancer diagnosis on medical imaging, explainable artificial intel-
ligence technology uses advanced image analysis methods like deep learning to make a diagnosis
and analyze medical images, as well as provide a clear explanation for how it arrived at its diagnosis.
The objective of XAI is to provide patients and doctors with a better understanding of the system’s
decision-making process and to increase transparency and trust in the diagnosis method. The manual
classification of cancer using medical images is a tedious and tiresome process, which necessitates
the design of automated tools for the decision-making process. In this study, we explored the signifi-
cant application of explainable artificial intelligence and an ensemble of deep-learning models for
automated cancer diagnosis. To demonstrate the enhanced performance of the proposed model, a
widespread comparison study is made with recent models, and the results exhibit the significance
of the proposed model on benchmark test images. Therefore, the proposed model has the potential
as an automated, accurate, and rapid tool for supporting the detection and classification process of
cancer.

Abstract: Explainable Artificial Intelligence (XAI) is a branch of AI that mainly focuses on developing
systems that provide understandable and clear explanations for their decisions. In the context of
cancer diagnoses on medical imaging, an XAI technology uses advanced image analysis methods
like deep learning (DL) to make a diagnosis and analyze medical images, as well as provide a
clear explanation for how it arrived at its diagnoses. This includes highlighting specific areas of
the image that the system recognized as indicative of cancer while also providing data on the
fundamental AI algorithm and decision-making process used. The objective of XAI is to provide
patients and doctors with a better understanding of the system’s decision-making process and to
increase transparency and trust in the diagnosis method. Therefore, this study develops an Adaptive
Aquila Optimizer with Explainable Artificial Intelligence Enabled Cancer Diagnosis (AAOXAI-CD)
technique on Medical Imaging. The proposed AAOXAI-CD technique intends to accomplish the
effectual colorectal and osteosarcoma cancer classification process. To achieve this, the AAOXAI-CD
technique initially employs the Faster SqueezeNet model for feature vector generation. As well, the
hyperparameter tuning of the Faster SqueezeNet model takes place with the use of the AAO algorithm.
For cancer classification, the majority weighted voting ensemble model with three DL classifiers,
namely recurrent neural network (RNN), gated recurrent unit (GRU), and bidirectional long short-
term memory (BiLSTM). Furthermore, the AAOXAI-CD technique combines the XAI approach LIME
for better understanding and explainability of the black-box method for accurate cancer detection.
The simulation evaluation of the AAOXAI-CD methodology can be tested on medical cancer imaging
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databases, and the outcomes ensured the auspicious outcome of the AAOXAI-CD methodology than
other current approaches.

Keywords: cancer diagnosis; explainable artificial intelligence; ensemble learning; Adaptive Aquila
Optimizer; deep learning

1. Introduction

Diagnosis of cancer is an indispensable problem in the medical sector. Initial identi-
fication of cancer is vital for better chances of treatment and the best course of action [1].
Therefore, cancer can be considered as one major topic where numerous authors carried
out various research to attain higher performance in treatment prevention and diagnosis.
Initial identification of tumors can increase treatment options and chances of survival of
patients. Medical images like Magnetic Resonance Imaging, mammograms, microscopic
images, and ultrasound were the typical technique for diagnosing cancer [2].

In recent times, computer-aided diagnosis (CAD) mechanism was utilized to help
doctors in diagnosing tumors so that the accuracy level of diagnosis gets enhanced. CAD
helps in reducing missed cancer lesions because of medical practitioner fatigue, minimiz-
ing data overloading and work pressure, and reducing the variability of intra-and-inter
readers of imageries [3]. Problems like technical reasons are relevant to imaging quality,
and errors caused by humans have augmented the misdiagnosis of breast cancer in the
interpretation of radiologists. To solve these limitations, CAD mechanisms were advanced
to automate breast cancer diagnosis and categorize malignant and benign lesions [4]. The
CAD mechanism enhances the performance of radiologists in discriminating and finding
abnormal and normal tissues. Such a process can be executed only as a double reader, but
decisions are made by radiologists [5]. Figure 1 represents the structure of explainable
artificial intelligence.
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Figure 1. Structure of XAI.

Recent advancements in the resolution of medical imaging modalities have enhanced
diagnostic accuracy [6]. Effective use of imaging data for enhancing the diagnosis becomes
significant. Currently, computer-aided diagnosis systems (CAD) have advanced a novel
context in radiology to make use of data that should be implemented in the diagnosis of dif-
ferent diseases and different imaging modalities [7–10]. The efficacy of radiologists’ analysis
can be enhanced in the context of consistency and accuracy in diagnosis or detection, while
production can be enhanced by minimizing the hours needed to read the imageries. The
results can be extracted through several methods in computer vision (CV) for presenting



Cancers 2023, 15, 1492 3 of 20

certain important variables like the likelihood of malignancy and the location of suspicious
lesions of the detected lesions [11]. Then, DL technology has now significantly advanced,
increasing expectations for the likelihood of computer software relevant to tumor screening
again. Deep learning (DL) is a type of neural network (NNs). This NN has an output layer,
an input layer, and a hidden layer. DL can be a NN with a lot of hidden layers. In the past,
DL had more achievements, i.e., incredible performance improvements, particularly in
speech recognition and image classification [12]. Recently, DL has been utilized in various
areas. As they can solve complicated issues, DNNs are now common in the healthcare field.
However, decision-making by these methods was fundamentally a black-box procedure
making it problematic for doctors to determine whether choices were dependable. The
usage of explainable artificial intelligence (XAI) can be recommended as the key to this
issue [13].

1.1. Related Works

Van der Velden et al. [14] presented an outline of explainable AI (XAI) utilized in DL-
related medical image analysis. A structure of XAI criteria can be presented for classifying
DL-related medical image analysis techniques. As per the structure and anatomical location,
studies on the XAI mechanism in medical image analysis were categorized and surveyed.
Esmaeili et al. [15] intend to assess the performance of selective DL methods on localizing
cancer lesions and differentiating lesions from healthier areas in MRI contrasts. Despite an
important correlation between lesion localization accuracy and classification, the familiar
AI techniques inspected in this study categorize certain cancer brains dependent upon
other non-related attributes. The outcomes advocate that the abovementioned AI methods
can formulate an intuition for method interpretability and play a significant role in the
performance assessment of DL methods.

In [16], a new automatic classification system by merging several DL methods was
devised for identifying prostate cancer from MRI and ultrasound (US) imageries. To enrich
the performance of the model, particularly on the MRI data, the fusion model can be
advanced by integrating the optimal pretrained method as feature extractors with shallow
ML techniques (e.g., K-NN, SVM, RF, and Adaboost). At last, the fusion model can be
inspected by explainable AI to identify the fact why it finds samples as Malignant or Benign
Stage in prostate tumors. Kobylińska et al. [17] modeled selective techniques from the
XAI domain in the instance of methods implemented for assessing lung cancer risk in the
screening process of lung cancer using low-dose CT. The usage of such methods offers a
good understanding of differences and similarities among the three typically used methods
in screening lung cancer they are LCART, BACH, and PLCOm2012.

In [18], an explainable AI (XAI) structure was devised in this study for presenting the
local and global analysis of auxiliary identification of hepatitis while maintaining good
predictive outcomes. Firstly, a public hepatitis classifier benchmark from UCI was utilized
for testing the structure feasibility. Afterward, the transparent and black-box ML methods
were used to predict the deterioration of hepatitis. Transparent methods like KNN, LR,
and DT were selected. While the black-box method like the RF, XGBoost, and SVM were
selected. Watson and Al Moubayed [19] devised a method agnostic explainability-related
technique for the precise identification of adversarial instances on two datasets with various
properties and complexity: chest X-ray (CXR) data and Electronic Health Record (EHR).
In [20], the XAI tool can be applied to the breast cancer (BC) dataset and offers a graphical
analysis. The medical implication and molecular processes behind circulating adiponectin,
HOMA, leptin, and BC resistance were sightseen, and XAI techniques were utilized for
constructing methods for the diagnosis of new BC biomarkers.

1.2. Paper Contributions

This study develops an Adaptive Aquila Optimizer with Explainable Artificial In-
telligence Enabled Cancer Diagnosis (AAOXAI-CD) technique on Medical Imaging. The
proposed AAOXAI-CD technique uses the Faster SqueezeNet model for feature vector gen-
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eration. As well as the execution of hyperparameter tuning of the Faster SqueezeNet model
done with the AAO algorithm. For cancer classification, the majority weighted voting
ensemble model with three DL classifiers, namely recurrent neural network (RNN), gated
recurrent unit (GRU), and bidirectional long short-term memory (BiLSTM). Furthermore,
the AAOXAI-CD technique combines the XAI approach LIME for better understanding
and explainability of the black-box method for accurate cancer detection. The simulation
evaluation of the AAOXAI-CD technique is tested on medical cancer imaging databases.

2. Materials and Methods

In this article, we have developed an automated cancer diagnosis approach using the
AAOXAI-CD approach on medical images. The proposed AAOXAI-CD system attained the
effectual colorectal and osteosarcoma cancer classification process. It encompasses Faster
SqueezeNet-based feature vector generation, AAO-based parameter tuning, ensemble
classification, and XAI modeling. Figure 2 defines the overall flow of the AAOXAI-CD
approach. The overall process involved in the proposed model is given in Algorithm 1.
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Algorithm 1: Process Involved in AAOXAI-CD Technique

Step 1: Input Dataset (Training Images)
Step 2: Image Pre-Processing
Step 3: Feature Extraction Using Faster SqueezeNet Model
Step 4: Parameter Tuning Process

Step 4.1: Initialize the Population and Its Parameters
Step 4.2: Calculate the Fitness Values
Step 4.3: Exploration Process and Exploitation Process
Step 4.4: Update the Fitness Values
Step 4.5: Obtain Best Solution

Step 5: Ensemble of Classifier (RNN, GRU, and Bi-LSTM)
Step 6: Classification Output

2.1. Feature Extraction Using Faster SqueezeNet

Primarily, the AAOXAI-CD technique employed the Faster SqueezeNet method for
feature vector generation. Fast SqueezeNet was proposed to enrich the real-time per-
formance and accuracy of cancer classification [21]. We added BatchNorm and residual
structure to prevent overfitting. Simultaneously, like DenseNet, concat is employed to
interconnect dissimilar layers to increase the expressiveness of the first few layers in the
network. Figure 3 represents the architecture of the Faster SqueezeNet method.

Cancers 2023, 15, x FOR PEER REVIEW 5 of 20 
 

 

Algorithm 1: Process Involved in AAOXAI-CD Technique 
Step 1: Input Dataset (Training Images) 
Step 2: Image Pre-Processing 
Step 3: Feature Extraction Using Faster SqueezeNet Model 
Step 4: Parameter Tuning Process 

Step 4.1: Initialize the Population and Its Parameters 
Step 4.2: Calculate the Fitness Values 
Step 4.3: Exploration Process and Exploitation Process 
Step 4.4: Update the Fitness Values 
Step 4.5: Obtain Best Solution 

Step 5: Ensemble of Classifier (RNN, GRU, and Bi-LSTM) 
Step 6: Classification Output 

2.1. Feature Extraction Using Faster SqueezeNet 
Primarily, the AAOXAI-CD technique employed the Faster SqueezeNet method for 

feature vector generation. Fast SqueezeNet was proposed to enrich the real-time perfor-
mance and accuracy of cancer classification [21]. We added BatchNorm and residual struc-
ture to prevent overfitting. Simultaneously, like DenseNet, concat is employed to inter-
connect dissimilar layers to increase the expressiveness of the first few layers in the net-
work. Figure 3 represents the architecture of the Faster SqueezeNet method. 

 
Figure 3. Architecture of Faster SqueezeNet. 

Fast SqueezeNet comprises a global average pooling layer, 1 BatchNorm layer, 3 
block layers, and 4 convolutional layers. In the following ways, Fast SqueezeNet can be 
improved: 

(1) To further enrich the information flow among layers DenseNet is imitated, and a 
distinct connection mode is devised. This covers a fire module and pooling layer, and 
lastly, 2 concat layers are interconnected to the following convolution layer. 

Figure 3. Architecture of Faster SqueezeNet.

Fast SqueezeNet comprises a global average pooling layer, 1 BatchNorm layer, 3
block layers, and 4 convolutional layers. In the following ways, Fast SqueezeNet can be
improved:

(1) To further enrich the information flow among layers DenseNet is imitated, and a
distinct connection mode is devised. This covers a fire module and pooling layer, and lastly,
2 concat layers are interconnected to the following convolution layer.

The present layer receives each feature map of the previous layer, and we apply
x0, . . . , xl−1 as input; then, xl is expressed as

xl = Hl([x0, x1, . . . , xl−1]), (1)



Cancers 2023, 15, 1492 6 of 20

where [x0, x1, . . . , xl−1] represent the connection of feature graphs produced in layers
0, 1, . . . , l − 1 and Hl(·) concatenated more than one input data. Now, characterizes
the max pooling layer, x1 designates Fire layers, and xl indicates the concat layer.

Initially, the performance of the network is improved without excessively raising the
number of network variables, and simultaneously, any two-layer network could directly
transmit data.

(2) We learned from the ResNet structure and suggested constituent elements, which
comprise a fire module and pooling layer, to ensure improved network convergence. Lastly,
afterward, two layers were summed, and it was interconnected to the next convolution
layers.

In ResNet, shortcut connection employs identity mapping that implies input of a
convolutional stack will be added directly to the resultant of the convolutional stack.
Formally, the underlying mapping can be represented as H (x), considering the stacked non-
linear layer fits another mapping of F(x) := H(x)− x. The original mapping is rewritten
into F(x) + x. F(x) + x is comprehended by the structure named shortcut connection in
the encrypting process.

In this work, the hyperparameter tuning of the Faster SqueezeNet method occurs by
employing the AAO algorithm. This abovementioned algorithm is based on the distinct
hunting strategies of Aquila for different prey [22]. For faster-moving prey, the Aquila needs
to obtain the prey in a precise and faster manner, where the global exploration capability
of the model was reflected. The optimizer technique was characterized by mimicking
4 behaviors of Aquila hunting. Firstly, the population needs to arbitrarily generate in-
between the lower bound (LB) and upper bound (UB) dependent upon the problem, as
given in Equation (2). The approximate optimum solution at the time of the iteration can
be defined as the optimum solution. The present set of candidate solutions X was made at
random by using the following expression:

X =

 χ1’1 . . . x1’D
...

. . .
...

xn’1 . . . xn’D

 (2)

Xi,j = rand×
(
UBj − LBj

)
+ LBj, i = 1, 2, . . . , Nj = 1, 2, . . . D (3)

where n signifies the overall amount of candidate solutions, D indicates the dimensionality
of problems, and xn, D represents the location of n-th solutions in d dimensional space.
Rand denotes a randomly generated value, and UBj and LBj signify the j-th dimensional
upper and lower boundary of the problem.

Initially, choose search spaces by hovering above in vertical bends. Aquila hovers
above to identify the prey area and rapidly choose the better prey region as follows:

X1(t + 1) = Xbesi(t)×
(

1− t
T

)
+ (XM(t)− Xbesi(t))× rand (4)

XM(t) =
1
N

N

∑
i=1

Xi(t), ∀j = 1, 2, . . . , D (5)

where X1(t + 1) symbolizes the location of the individual at t+ 1 time , Xbesi(t + 1) signifies
the present global optimum site at the t-th iteration, T and t symbolize the maximal
amount of iterations and the present amount of iterations, correspondingly, X(t) represents
the average location of the individual at the existing iteration, and Rand represents the
randomly generated value within [0, 1] in Gaussian distribution. The next strategy was a
short gliding attack in isometric flight. Aquila flies over the targeted prey to prepare for
assault while they find prey region from a higher altitude. This can be formulated as

X2(t + 1) = Xbest(t)× levy(D) + XR(t) + (y− x)× rand (6)
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levy (D) = s× u× σ

|v|
1
β

(7)

σ =

 Γ(1 + β)× sin
(

πβ
2

)
Γ
(

1+β
2

)
× β× 2(

β−1
2 )

 (8)

where X2(t + 1) denotes the new solution for the following iteration of t, D means spatial
dimensions, levy (D) denotes Lévy flight distribution functions, X(t) indicates the arbitrary
location of Aquila in [1, N], s take the values of 1.5, y and χ presents the spiral situations in
search region as follows:

y = r× cos (θ) (9)

x = r× sin (θ) (10)

r = r1 + 0.00565× D1 (11)

θ = −0.005× D1 +
3× π

2
(12)

where r1 takes the fixed index between 1 and 20, D1 denotes the integers from 1 to the
length of the search region. The third strategy was a slow-descent attack and low-flying.
The Aquila locks onto a hunting target in the hunting region and, with attack ready, makes
the initial attacks in the vertical descent, thereby testing prey response. These behaviors are
given as follows:

X3(t + 1) = (Xbesi(t)− XM(t))× α− rand + ((UB− LB)× rand + LB)× δ (13)

where X3(t + 1) denotes the solution of the following iteration of t, δ, and α denotes the
mining adjustment parameter within (0, 1), LB and UB represent the lower and upper
boundaries of the issue. The fourth strategy was grabbing and walking prey. Once the
Aquila approaches the prey, it starts to attack prey based on arbitrary movements of prey.
These behaviors can be described as follows

X4(t + 1) = QF× Xbest(t)− (G1 × X(t)× rand)− G2 × levy(D) (14)

QF(t) = t
2×rand−1
(1−T)2 (15)

G1 = 2× rand− 1 (16)

G1 = 2×
(

1− t
T

)
(17)

where X4(t + 1) denotes the new solution for the following iteration of t, QF represents
the mass function leveraged for balancing the search process, and F ∈ (0, 1) G1 represents
various strategies utilized by the Aquila for prey escape; G2 signifies slope value from
the initial location to the final location at the chase time of Aquila’s prey, which takes
values from 2 to 0, · Rand denotes the random number within [0,1] in Gaussian distribution;
and T and t denotes the maximal amount of iterations and existing amount of iterations,
correspondingly. Niche thought is from biology in which microhabitats represent roles or
functions of the organization in a specific environment, and organizations with general
features are named species. In the AAO algorithm, Niche thought is used, which applies
a sharing model for comparing the distance among individuals in a habitat. A specific
threshold was set to increase the fitness of an individual with the highest fitness, ensuring
that the individual state is optimal. For an individual with the lowest fitness, a penalty was
presented to make them update and further find the optimum value in another region to
guarantee the diversity of the population at the iteration and attain the optimum solution.
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Here, the distance among individuals of the smallest habitat population was evaluated as
follows:

dij =
∣∣Xi − Xj

∣∣ (18)

The data exchange function among Xi and Xj individuals is given below

sh
(
dij
)
=

{
1− di i

ρ , dij < ρ

0, dij > ρ
(19)

where ρ denotes the radius of data sharing in microhabitats and dij < ρ guarantees that
individuals live in the microhabitat environments. After sharing the data, the optimum
adaptation can be adjusted in time, as follows.

Fi−best =
Fi
sh

, i = 1, 2, . . . , N (20)

where Fi means optimum adaptation after sharing, and Fj denotes original adaptation.
The AAO method not only derived a fitness function from attaining superior classifi-

cation performance as well describes positive values to symbolize the enhanced outcome of
the candidate solutions. The reduction of classification error rates was treated as the fitness
function.

f itness(xi) = Classi f ierErrorRate(xi)

= number o f misclassi f ied samples
Total number o f samples × 100

(21)

2.2. Ensemble Learning-Based Classification

In this work, the DL paradigm is integrated, and the best outcome is selected by the
weighted voting method. Assumed the D base classification model and amount of classes
as n for voting, predictive class ck of weighted voting for every instance as follows

ck = arg max
j

D

∑
i=1

(
∆ji × wi

)
, (22)

where ∆ji signifies binary parameter. As soon as ith base classification classifies the k
instances into jth classes, then ∆ji = 1; or else, ∆ji = 0. wi represents the weight of ith base
classification in the ensemble.

Acc =
∑k{1|ckis the true class of instance k}

Size of test instances
× 100%. (23)

2.2.1. RNN Model

Initially, Elman recommended the recurrent unit as its essential block (1990). If they
are used to exceedingly long sequences, the elementary RNN cell has common problems of
expanding gradient and disappearing gradient [23]. It is a fact that the elementary RNN
cell could not hold long-term dependence eventually. Hence it demonstrates that this
cell has shortcomings. The backpropagated gradient tends to reduce once the sequence is
particularly long, which prevents the effective updating of the weight. However, once the
gradient is substantial, they might explode across a longer sequence, which renders the
weight matrix unstable. The above two difficulties stem from the intractable nature of the
gradient, which has made it more difficult for RNN cells to identify and be accountable for
a long-term relationship. Equations (24) and (25) demonstrate the mathematical expression
for RNN architecture.

ht−1 = σ(Ph × ht−1 + Px × xt + Ba) (24)

yt = tan h (Po × ht + Bo) (25)

where ht denotes the hidden state, and it was the only type of memory in the RNN cell. Ph
and Px epitomize the weight matrix for the hidden state and Po bias vector for cell output



Cancers 2023, 15, 1492 9 of 20

correspondingly, xt and yt characterize the inputs and outputs of the cell at the t time step,
correspondingly, Ba and Bo represent the bias vector for the hidden state and cell outputs,
correspondingly.

The latter hidden state is conditioned on the hidden state of the previous time step and
the existing inputs. The cellular feedback loop connects the current state to the succeeding
one. This bond is crucial to consider prior data while adjusting the present cell state. In
such cases, the hyperbolic tangent function, represented by Tanh, turned on the overt state,
and the sigmoid function was applied, represented by, to turn on the latent state.

2.2.2. GRU Model

The RNN is a kind of ANN model with a cyclic structure and is appropriate for data
processing in sequence. The gradient is lost, and learning ability is greatly reduced once
the time interval is large [24]. Hochreiter and Schmidhuber resolved these problems and
developed the LSTM. The LSTM was extensively applied in time-series data, and its basic
concept is that the cell state was interconnected as a conveyor belt. In that regard, the
gradient propagates although distance among the states rises. In LSTM cells, the cell state
can be controlled by using three gating functions forget, input, and output gates. In 2014,
the GRU was developed as a network that enhanced the learning accuracy of LSTM by
adjusting the LSTM model. Different from LSTM, the GRU has a fast-learning speed and
is encompassed two gating functions. Furthermore, parameters are smaller than LSTM
since the hidden and cell states are incorporated into a single hidden state. Accordingly,
the GRU shows outstanding performance for long-term dependency in time-series data
processing and takes lesser computational time when compared to the LSTM. The GRU
equations to determine the hidden state are shown below:

rt = σ(Wrxt + Urht−1 + br) (26)

zt = σ(Wzxt + Uzht−1 + bz) (27)

ht = (1− zt)� ht−1 + zt � tan h (Whxt + Uh(rtE� ht−1) + bh) (28)

From the expression, rt denotes the reset gate and zt indicates the update gate at time t.
xt represents input value at t time, W and U indicate weights, and b refers to bias. ht denotes
the hidden state at time t. � shows the component-wise (Hadamard) multiplication.

2.2.3. BiLSTM Model

RNN has the structural feature of the node connected in a loop, making them ap-
propriate for data processing; however, it is frequently confronted with the problem of
vanishing gradient [25]. The GRU and long and short-term memory (LSTM) improved
on RNN by adding several threshold gates to mitigate gradient vanishing problems and
enhance classification accuracy. Meanwhile, the LSTM method has a memory unit that
prevents the network from facing gradient vanishing problems.

The LSTM could enhance the deficiencies of RNN; generally, the resultant of the
present time was relevant to the state information of the past time, as well as state informa-
tion of future time. The Bi-LSTM network was established concerning the problem that
was integrating historical and future data by interconnecting two LSTMs. The architecture
of the BiLSTM network comprises the back-to-forth and front-to-back LSTM layers. The
forward and backward layers calculate the input dataset, and lastly, the architecture of two
layers is integrated to obtain the output of the BiLSTM network as follows:

ot = g(ω1it + ω20t−1)o
′
t = g

(
ω3it + ω50

′
t−1

)
, yt = f (ω40t + ω60t) (29)

In Equation (29), ω denotes weighted parameters in the BiLSTM network, it shows
input at t time , 0t indicates the results of the forward hidden layer at t time, 0

′
t represents
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the output of the backward hidden layer at t time and yt represents the last resultant of the
network.

2.3. Modeling of XAI Using LIMA Approach

The AAOXAI-CD technique combines the XAI approach LIME for a better under-
standing and explainability of the black-box method for accurate cancer detection [26].
Local interpretable model-agnostic explanation (LIME) describes various ML approaches
for regression prediction, using the featured value change of the data sample to transform
the featured values into the contribution of the predictor. The explainer gives a local in-
terpretation of the data samples. For example, the interpretable model in LIME often uses
linear regression (LR) or decision trees (DTs) and are trained by the smaller perturbation
(removing specific words, hiding part of the image, and adding random noise) in the model.
The quality of these models seems to be increasing and was used to resolve the best part of
the business victimization dataset. Similarly, there were persistent tradeoffs between model
accuracy and interpretability. Generally, the performance can be improved and enhanced
by applying sophisticated techniques such as call trees, random forest, material, boosting,
and SVM, which are “blackbox” techniques. The LIME provides a clear explanation of
the problems with the blackbox classifiers. The LIME is a way of understanding an ML
BlackBox method by perturbing the input dataset and seeing how prediction changes. The
LIME is used for any ML black-box models. The fundamental steps are shown as follows:

A TabularExplainer is initialized by the data used for the data training about the
features and various class names.

In the class explain_instance, a technique called explain_instance accepts the reference
to the instance where the explanation is essential, plus the number of features to be added
in the explanation and the trained model’s prediction technique.

3. Results and Discussion

The proposed model is simulated using Python 3.6.5 tool on PC i5-8600k, GeForce
1050 Ti 4 GB, 16 GB RAM, 250 GB SSD, and 1 TB HDD. The parameter settings are given
as follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and activation:
ReLU. In this section, the simulation values of the AAOXAI-CD technique can be tested
utilizing dual datasets: the colorectal cancer dataset (dataset 1) and the osteosarcoma dataset
(dataset 2). Figure 4 defines the sample images of Colorectal Cancer. For experimental
validation, 70:30 and 80:20 of the training set (TRS) and testing set (TSS) is used. Dataset
1 (Warwick-QU dataset) [27] comprises 165 images with 91 malignant tumors and 74
benign tumor images. The data were collected using the Zeiss MIRAX MIDI Scanner by
implementing an image data weight range of 1.187 kilobytes, 716 kilobytes, and an image
data resolution range of 567 × 430 pixels to 775 × 522 pixels with all pixels having a
distance of 0.6 µm from the actual distance. Next, dataset 2 [28] contains 1144 images under
3 classes. It covers 536 images under Non-Tumor (NT) class, 345 images under viable tumor
(VT), and 263 images under non-Viable Tumor (NVT). Figure 5 defines the sample images
of osteosarcoma.
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In Figure 6, the cancer classifier outcomes of the AAOXAI-CD method in terms of
classification performance under dataset-1. The outcomes demonstrate that the AAOXAI-
CD system has identified benign and malignant samples.

Cancers 2023, 15, x FOR PEER REVIEW 12 of 20 
 

 

In Figure 6, the cancer classifier outcomes of the AAOXAI-CD method in terms of 
classification performance under dataset-1. The outcomes demonstrate that the AAOXAI-
CD system has identified benign and malignant samples. 

 
Figure 6. Confusion matrices of the AAOXAI-CD system on dataset-1 (a,b) TRS/TSS of 80:20 and 
(c,d) TRS/TSS of 70:30. 

In Table 1, the overall classifier results of the AAOXAI-CD method on dataset-1. The 
results demonstrate that the AAOXAI-CD method has identified benign and malignant 
samples. For instance, with 80% of TRS, the AAOXAI-CD technique reaches an average 𝑎𝑐𝑐𝑢௬ of 98.65%, 𝑝𝑟𝑒𝑐 of 98.33%, 𝑟𝑒𝑐𝑎  of 98.65%, 𝑠𝑝𝑒𝑐௬ of 98.65%, 𝐹௦ of 98.47%, 
and MCC of 96.98%. Meanwhile, with 20% of TSS, the AAOXAI-CD system reaches an 
average 𝑎𝑐𝑐𝑢௬ of 97.06%, 𝑝𝑟𝑒𝑐 of 97.06%, 𝑟𝑒𝑐𝑎 of 97.06%, 𝑠𝑝𝑒𝑐௬ of 97.06%, 𝐹௦ of 
96.97%, and MCC of 94.12%. Furthermore, with 70% of TRS, the AAOXAI-CD algorithm 
reaches an average 𝑎𝑐𝑐𝑢௬ of 99%, 𝑝𝑟𝑒𝑐 of 99.24%, 𝑟𝑒𝑐𝑎 of 99%, 𝑠𝑝𝑒𝑐௬ of 99%, 𝐹௦ 
of 99.11%, and MCC of 98.24%. 

  

Figure 6. Confusion matrices of the AAOXAI-CD system on dataset-1 (a,b) TRS/TSS of 80:20 and
(c,d) TRS/TSS of 70:30.

In Table 1, the overall classifier results of the AAOXAI-CD method on dataset-1. The
results demonstrate that the AAOXAI-CD method has identified benign and malignant
samples. For instance, with 80% of TRS, the AAOXAI-CD technique reaches an average
accuy of 98.65%, precn of 98.33%, recal of 98.65%, specy of 98.65%, Fscore of 98.47%, and MCC
of 96.98%. Meanwhile, with 20% of TSS, the AAOXAI-CD system reaches an average accuy
of 97.06%, precn of 97.06%, recal of 97.06%, specy of 97.06%, Fscore of 96.97%, and MCC of
94.12%. Furthermore, with 70% of TRS, the AAOXAI-CD algorithm reaches an average
accuy of 99%, precn of 99.24%, recal of 99%, specy of 99%, Fscore of 99.11%, and MCC of
98.24%.
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Table 1. Classifier outcome of the AAOXAI-CD approach on dataset-1.

Classes Accuy Precn Recal Specy Fscore MCC

Training Phase (80%)

Benign 100.00 96.67 100.00 97.30 98.31 96.98

Malignant 97.30 100.00 97.30 100.00 98.63 96.98

Average 98.65 98.33 98.65 98.65 98.47 96.98

Testing Phase (20%)

Benign 100.00 94.12 100.00 94.12 96.97 94.12

Malignant 94.12 100.00 94.12 100.00 96.97 94.12

Average 97.06 97.06 97.06 97.06 96.97 94.12

Classes Accuracy Precision Recall Specificity F-Score MCC

Training Phase (70%)

Benign 98.00 100.00 98.00 100.00 98.99 98.24

Malignant 100.00 98.48 100.00 98.00 99.24 98.24

Average 99.00 99.24 99.00 99.00 99.11 98.24

Testing Phase (30%)

Benign 95.83 100.00 95.83 100.00 97.87 96.06

Malignant 100.00 96.30 100.00 95.83 98.11 96.06

Average 97.92 98.15 97.92 97.92 97.99 96.06

The TACY and VACY of the AAOXAI-CD model on dataset-1 are defined in Figure 7. The figure exhibited that
the AAOXAI-CD method has improvised performance with augmented values of TACY and VACY. Visibly, the
AAOXAI-CD model has maximum TACY outcomes.
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The TLOS and VLOS of the AAOXAI-CD model on dataset-1 are defined in Figure 8.
The figure inferred that the AAOXAI-CD approach has superior performance with minimal
values of TLOS and VLOS. Notably, the AAOXAI-CD model has minimal VLOS outcomes.
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In Table 2 and Figure 9, the comparative interpretation of the AAOXAI-CD system
with recent methods on dataset-1 [29–31]. The figures represented that the ResNet-18(60–
40), ResNet-50 (60–40), and CP-CNN models resulted in the least performance. Although
the AAI-CCDC technique results in moderately improved outcomes, the AAOXAI-CD
technique accomplishes maximum performance with precn of 99.24%, recal of 99%, and
accuy of 99%.

Table 2. Analysis outcome of AAOXAI-CD method with other systems on dataset-1.

Methods Precision Recall Accuracy

ResNet-18 (60–40) 82.00 63.00 72.00

ResNet-18 (80–20) 86.00 82.00 84.00

ResNet-50 (60–40) 91.00 59.00 76.00

ResNet-50 (80–20) 82.00 92.00 87.00

SC-CNN Model 80.00 82.00 81.00

CP-CNN Model 71.00 68.00 69.00

AAI-CCDC Model 96.00 98.00 97.00

AAOXAI-CD 99.24 99.00 99.00
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In Figure 10, the cancer classification outcomes of the AAOXAI-CD system in terms of
classification performance under dataset-2. The results demonstrate that the AAOXAI-CD
technique has identified benign and malignant samples.
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In Table 3, the overall classifier results of the AAOXAI-CD system on dataset-2. The
results demonstrate that the AAOXAI-CD method has identified benign and malignant
samples. For instance, with 80% of TRS, the AAOXAI-CD technique reaches an average
accuy of 98.11%, precn of 97.60%, recal of 96.77%, specy of 98.37%, Fscore of 97.16%, and MCC
of 95.66%. Meanwhile, with 20% of TSS, the AAOXAI-CD algorithm reaches an average
accuy of 99.42%, precn of 99.16%, recal of 98.61%, specy of 99.49%, Fscore of 98.87%, and
MCC of 98.44%. Furthermore, with 70% of TRS, the AAOXAI-CD technique reaches an
average accuy of 98.67%, precn of 97.70%, recal of 97.26%, specy of 99.07%, Fscore of 97.42%,
and MCC of 96.56%.

Table 3. Classifier outcome of AAOXAI-CD approach on dataset-2.

Classes Accuy Precn Recal Specy Fscore MCC

Training Phase (80%)

VT 98.69 98.94 96.88 99.52 97.89 96.95

NVT 98.47 98.55 94.88 99.57 96.68 95.72

NT 97.16 95.31 98.54 96.02 96.90 94.32

Average 98.11 97.60 96.77 98.37 97.16 95.66

Testing Phase (20%)

VT 99.56 98.28 100.00 99.42 99.13 98.85

NVT 99.13 100.00 95.83 100.00 97.87 97.36

NT 99.56 99.20 100.00 99.05 99.60 99.12

Average 99.42 99.16 98.61 99.49 98.87 98.44

Classes Accuy Precn Recal Specy Fscore MCC

Training Phase (70%)

VT 98.12 94.24 99.57 97.54 96.83 95.57

NVT 98.00 98.85 92.47 99.67 95.56 94.35

NT 99.88 100.00 99.74 100.00 99.87 99.75

Average 98.67 97.70 97.26 99.07 97.42 96.56

Testing Phase (30%)

VT 99.71 99.14 100.00 99.56 99.57 99.35

NVT 99.13 98.68 97.40 99.63 98.04 97.48

NT 99.42 99.34 99.34 99.48 99.34 98.82

Average 99.42 99.05 98.91 99.56 98.98 98.55

The TACY and VACY of the AAOXAI-CD model on dataset-2 are defined in Figure 11. The figure highlighted
that the AAOXAI-CD method has performance with increased values of TACY and VACY. Remarkably, the
AAOXAI-CD model has higher TACY outcomes.
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The TLOS and VLOS of the AAOXAI-CD model on dataset-2 are defined in Figure 12.
The figure inferred the AAOXAI-CD system has better outcomes having minimal values of
TLOS and VLOS. Visibly the AAOXAI-CD model has minimal VLOS outcomes.
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Table 4 and Figure 13 show a brief study of the AAOXAI-CD method with the re-
cent method on dataset-2 [32,33]. The experimental values represented that the CNN-
Xception, CNN-EfficientNet, CNN-ResNet-50, and CNN-MobileNet-V2 models resulted in
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the least performance. Although the WDODTL-ODC and HBODL-AOC techniques result
in moderately improved outcomes, the AAOXAI-CD technique accomplishes maximum
performance with of precn 99.05%, of recal 98.91%, and accuy of 99.42%.

Table 4. Comparative analysis of AAOXAI-CD approach with other systems on dataset-2.

Methods Precision Recall Accuracy

AAOXAI-CD 99.05 98.91 99.42

HBODL-AOC 98.94 98.12 98.43

WDODTL-ODC 98.76 97.65 98.17

CNN-EfficientNet 97.00 97.00 97.00

CNN-Xception 94.00 96.00 96.00

CNN-ResNet-50 98.00 94.00 97.00

CNN-MobileNet-V2 98.00 98.00 98.00
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From the above-mentioned results, it is assured that the proposed model achieves
effectual classification performance over other DL models. The enhanced performance
of the proposed model is due to the inclusion of AAO-based hyperparameter tuning and
ensemble classification processes. In addition, the use of LIME helps to build an effective
predictive modeling technique in cancer diagnosis. Without transparency, it is hard to
gain the trust of healthcare professionals and employ predictive approaches in their daily
operations. XAI has received considerable interest in recent times. It enables the clients to
generate instances and comprehend how the classification model accomplishes the results.
Healthcare institutions are keenly designing predictive models for supporting operations.
The XAI can be combined to improve the transparency of healthcare predictive modeling.
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The interactions between healthcare professionals and the AI system are important for
transferring knowledge and adopting models in healthcare operations.

4. Conclusions

In this study, we have developed an automated cancer diagnosis method using the
AAOXAI-CD technique on medical images. The proposed AAOXAI-CD system attained
the effectual colorectal and osteosarcoma cancer classification process. Primarily, the
AAOXAI-CD technique utilized the Faster SqueezeNet model for feature vector generation.
Moreover, the hyperparameter tuning of the Faster SqueezeNet model takes place with the
AAO algorithm. For cancer classification, the majority-weighted voting ensemble model
with three DL classifiers, namely RNN, GRU, and BiLSTM. Furthermore, the AAOXAI-CD
technique combines the XAI approach LIME for better understanding and explainability of
the black-box method for accurate cancer detection. The experimental evaluation of the
AAOXAI-CD approach was tested on medical cancer imaging databases, and the outcomes
ensured the promising outcome of the AAOXAI-CD method over other recent methods.
In the future, a feature fusion-based classification model can be designed to boost the
performance of the AAOXAI-CD technique.
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