Novel Agents as Main Drivers for Continued Improvement in Survival in Multiple Myeloma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Impact of the Introduction of Novel Agents on Outcomes
3.2. Long-Term Survivors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mateos, M.-V.; Nooka, A.K.; Larson, S.M. Moving Toward a Cure for Myeloma. Am. Soc. Clin. Oncol. Educ. Book 2022, 42, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Barlogie, B.; Alexanian, R.; Dicke, K.A.; Zagars, G.; Spitzer, G.; Jagannath, S.; Horwitz, L. High-dose chemoradiotherapy and autologous bone marrow transplantation for resistant multiple myeloma. Blood 1987, 70, 869–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barlogie, B.; Gahrton, G. Bone marrow transplantation in multiple myeloma. Bone Marrow Transplant. 1991, 7, 71–79. [Google Scholar] [PubMed]
- Kumar, S.K.; Rajkumar, S.V.; Dispenzieri, A.; Lacy, M.Q.; Hayman, S.R.; Buadi, F.K.; Zeldenrust, S.R.; Dingli, D.; Russell, S.J.; Lust, J.A.; et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008, 111, 2516–2520. [Google Scholar] [CrossRef] [Green Version]
- Kastritis, E.; Zervas, K.; Symeonidis, A.; Terpos, E.; Delimbassi, S.; Anagnostopoulos, N.; Michali, E.; Zomas, A.; Katodritou, E.; Gika, D.; et al. Improved survival of patients with multiple myeloma after the introduction of novel agents and the applicability of the International Staging System (ISS): An analysis of the Greek Myeloma Study Group (GMSG). Leukemia 2009, 23, 1152–1157. [Google Scholar] [CrossRef]
- Turesson, I.; Velez, R.; Kristinsson, S.Y.; Landgren, O. Patterns of Improved Survival in Patients with Multiple Myeloma in the Twenty-First Century: A Population-Based Study. J. Clin. Oncol. 2010, 28, 830–834. [Google Scholar] [CrossRef] [Green Version]
- Liwing, J.; Uttervall, K.; Lund, J.; Aldrin, A.; Blimark, C.; Carlson, K.; Enestig, J.; Flogegård, M.; Forsberg, K.; Gruber, A.; et al. Improved survival in myeloma patients: Starting to close in on the gap between elderly patients and a matched normal population. Br. J. Haematol. 2014, 164, 684–693. [Google Scholar] [CrossRef]
- Kumar, S.K.; Dispenzieri, A.; Lacy, M.Q.; Gertz, M.A.; Buadi, F.K.; Pandey, S.C.; Kapoor, P.; Dingli, D.; Hayman, S.R.; Leung, N.; et al. Continued improvement in survival in multiple myeloma: Changes in early mortality and outcomes in older patients. Leukemia 2014, 28, 1122–1128. [Google Scholar] [CrossRef] [Green Version]
- Ríos-Tamayo, R.; Sánchez, M.J.; Puerta, J.M.; Sáinz, J.; Chang-Chan, D.Y.-L.; Rodríguez, T.; López, P.; de Pablos, J.M.; Navarro, P.; de Veas, J.L.G.; et al. Trends in survival of multiple myeloma: A thirty-year population-based study in a single institution. Cancer Epidemiol. 2015, 39, 693–699. [Google Scholar] [CrossRef]
- Blimark, C.H.; Turesson, I.; Genell, A.; Ahlberg, L.; Björkstrand, B.; Carlson, K.; Forsberg, K.; Juliusson, G.; Linder, O.; Mellqvist, U.-H.; et al. Outcome and survival of myeloma patients diagnosed 2008–2015. Real-world data on 4904 patients from the Swedish Myeloma Registry. Haematologica 2018, 103, 506–513. [Google Scholar] [CrossRef]
- Facon, T.; Kumar, S.; Plesner, T.; Orlowski, R.Z.; Moreau, P.; Bahlis, N.; Basu, S.; Nahi, H.; Hulin, C.; Quach, H.; et al. Daratumumab plus Lenalidomide and Dexamethasone for Untreated Myeloma. N. Engl. J. Med. 2019, 380, 2104–2115. [Google Scholar] [CrossRef]
- Mateos, M.-V.; Cavo, M.; Blade, J.; Dimopoulos, M.A.; Suzuki, K.; Jakubowiak, A.; Knop, S.; Doyen, C.; Lucio, P.; Nagy, Z.; et al. Overall survival with daratumumab, bortezomib, melphalan, and prednisone in newly diagnosed multiple myeloma (ALCYONE): A randomised, open-label, phase 3 trial. Lancet 2020, 395, 132–141. [Google Scholar] [CrossRef]
- Attal, M.; Lauwers-Cances, V.; Hulin, C.; Leleu, X.; Caillot, D.; Escoffre, M.; Arnulf, B.; Macro, M.; Belhadj, K.; Garderet, L.; et al. Lenalidomide, Bortezomib, and Dexamethasone with Transplantation for Myeloma. N. Engl. J. Med. 2017, 376, 1311–1320. [Google Scholar] [CrossRef]
- Rosiñol, L.; Oriol, A.; Rios, R.; Sureda, A.; Blanchard, M.J.; Hernández, M.T.; Martínez-Martínez, R.; Moraleda, J.M.; Jarque, I.; Bargay, J.; et al. Bortezomib, lenalidomide, and dexamethasone as induction therapy prior to autologous transplant in multiple myeloma. Blood 2019, 134, 1337–1345. [Google Scholar] [CrossRef] [Green Version]
- Richardson, P.G.; Jacobus, S.J.; Weller, E.A.; Hassoun, H.; Lonial, S.; Raje, N.S.; Medvedova, E.; McCarthy, P.L.; Libby, E.N.; Voorhees, P.M.; et al. Triplet Therapy, Transplantation, and Maintenance until Progression in Myeloma. N. Engl. J. Med. 2022, 387, 132–147. [Google Scholar] [CrossRef]
- Moreau, P.; Attal, M.; Hulin, C.; Arnulf, B.; Belhadj, K.; Benboubker, L.; Béné, M.C.; Broijl, A.; Caillon, H.; Caillot, D.; et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): A randomised, open-label, phase 3 study. Lancet 2019, 394, 29–38. [Google Scholar] [CrossRef]
- Voorhees, P.M.; Kaufman, J.L.; Laubach, J.P.; Sborov, D.W.; Reeves, B.; Rodriguez, C.; Chari, A.; Silbermann, R.; Costa, L.J.; Anderson, L.D., Jr.; et al. Daratumumab, lenalidomide, bortezomib, and dexamethasone for transplant-eligible newly diagnosed multiple myeloma: The GRIFFIN trial. Blood 2020, 136, 936–945. [Google Scholar] [CrossRef] [PubMed]
- Greipp, P.R.; Miguel, J.S.; Durie, B.G.; Crowley, J.J.; Barlogie, B.; Bladé, J.; Boccadoro, M.; Child, J.A.; Avet-Loiseau, H.; Kyle, R.A.; et al. International Staging System for Multiple Myeloma. J. Clin. Oncol. 2005, 23, 3412–3420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.K.; Rajkumar, S.V. The multiple myelomas—Current concepts in cytogenetic classification and therapy. Nat. Rev. Clin. Oncol. 2018, 15, 409–421. [Google Scholar] [CrossRef]
- Usmani, S.Z.; Hoering, A.; Cavo, M.; Miguel, J.S.; Goldschimdt, H.; Hajek, R.; Turesson, I.; Lahuerta, J.J.; Attal, M.; Barlogie, B.; et al. Clinical predictors of long-term survival in newly diagnosed transplant eligible multiple myeloma—An IMWG Research Project. Blood Cancer J. 2018, 8, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gay, F.; Larocca, A.; Wijermans, P.; Cavallo, F.; Rossi, D.; Schaafsma, R.; Genuardi, M.; Romano, A.; Liberati, A.M.; Siniscalchi, A.; et al. Complete response correlates with long-term progression-free and overall survival in elderly myeloma treated with novel agents: Analysis of 1175 patients. Blood 2011, 117, 3025–3031. [Google Scholar] [CrossRef]
- Martín-Mateos, M.-L.; Oriol, A.; Martinez-Lopez, J.; Teruel, A.-I.; De La Guía, A.L.; López, J.; Bengoechea, E.; Pérez, M.; Martínez, R.; Palomera, L.; et al. GEM2005 trial update comparing VMP/VTP as induction in elderly multiple myeloma patients: Do we still need alkylators? Blood 2014, 124, 1887–1893. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Otero, P.; Mateos, M.V.; Martínez-López, J.; Hernández, M.-T.; Ocio, E.M.; Rosiñol, L.; Martínez, R.; Teruel, A.-I.; Gutiérrez, N.C.; Bargay, J.; et al. Predicting long-term disease control in transplant-ineligible patients with multiple myeloma: Impact of an MGUS-like signature. Blood Cancer J. 2019, 9, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez, N.C.; Castellanos, M.V.; Martín, M.L.; Mateos, M.V.; Hernández, J.M.; Fernández, M.; Carrera, D.; Rosiñol, L.; Ribera, J.M.; Ojanguren, J.M.; et al. Prognostic and biological implications of genetic abnormalities in multiple myeloma undergoing autologous stem cell transplantation: T(4;14) is the most relevant adverse prognostic factor, whereas RB deletion as a unique abnormality is not associated with adverse prognosis. Leukemia 2007, 21, 143–150. [Google Scholar] [CrossRef] [Green Version]
- López-Corral, L.; Gutiérrez, N.C.; Vidriales, M.B.; Mateos, M.V.; Rasillo, A.; García-Sanz, R.; Paiva, B.; Miguel, J.F.S. The Progression from MGUS to Smoldering Myeloma and Eventually to Multiple Myeloma Involves a Clonal Expansion of Genetically Abnormal Plasma Cells. Clin. Cancer Res. 2011, 17, 1692–1700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, F.M.; Avet-Loiseau, H.; Ameye, G.; Gutiérrez, N.C.; Liebisch, P.; O’Connor, S.; Dalva, K.; Fabris, S.; Testi, A.M.; Jarosova, M.; et al. Report from the European Myeloma Network on interphase FISH in multiple myeloma and related disorders. Haematologica 2012, 97, 1272–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonseca, R.; Bergsagel, P.L.; Drach, J.; Shaughnessy, J.; Gutierrez, N.; Stewart, A.K.; Morgan, G.; Van Ness, B.; Chesi, M.; Minvielle, S.; et al. International Myeloma Working Group molecular classification of multiple myeloma: Spotlight review. Leukemia 2009, 23, 2210–2221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Paiva, B.; Anderson, K.C.; Durie, B.; Landgren, O.; Moreau, P.; Munshi, N.; Lonial, S.; Bladé, J.; Mateos, M.-V.; et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016, 17, e328–e346. [Google Scholar] [CrossRef]
- Ozaki, S.; Harada, T.; Saitoh, T.; Shimazaki, C.; Itagaki, M.; Asaoku, H.; Kuroda, Y.; Chou, T.; Yoshiki, Y.; Suzuki, K.; et al. Survival of Multiple Myeloma Patients Aged 65-70 Years in the Era of Novel Agents and Autologous Stem Cell Transplantation. Acta Haematol. 2014, 132, 211–219. [Google Scholar] [CrossRef]
- Sant, M.; Minicozzi, P.; Mounier, M.; A Anderson, L.; Brenner, H.; Holleczek, B.; Marcos-Gragera, R.; Maynadié, M.; Monnereau, A.; Osca-Gelis, G.; et al. Survival for haematological malignancies in Europe between 1997 and 2008 by region and age: Results of EUROCARE-5, a population-based study. Lancet Oncol. 2014, 15, 931–942. [Google Scholar] [CrossRef]
- Brenner, H.; Gondos, A.; Pulte, D. Recent major improvement in long-term survival of younger patients with multiple myeloma. Blood 2008, 111, 2521–2526. [Google Scholar] [CrossRef]
- Pulte, D.; Gondos, A.; Brenner, H. Improvement in Survival of Older Adults with Multiple Myeloma: Results of an Updated Period Analysis of SEER Data. Oncologist 2011, 16, 1600–1603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristinsson, S.Y.; Anderson, W.F.; Landgren, O. Improved long-term survival in multiple myeloma up to the age of 80 years. Leukemia 2014, 28, 1346–1348. [Google Scholar] [CrossRef] [PubMed]
- Thorsteinsdottir, S.; Dickman, P.W.; Landgren, O.; Blimark, C.; Hultcrantz, M.; Turesson, I.; Björkholm, M.; Kristinsson, S.Y. Dramatically improved survival in multiple myeloma patients in the recent decade: Results from a Swedish population-based study. Haematologica 2018, 103, e412–e415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Lobato, L.G.; Pereira, A.; de Larrea, C.F.; Cibeira, M.T.; Tovar, N.; Jiménez-Segura, R.; Moreno, D.F.; Oliver-Caldés, A.; Rosiñol, L.; Bladé, J. Real-world data on survival improvement in patients with multiple myeloma treated at a single institution over a 45-year period. Br. J. Haematol. 2022, 196, 649–659. [Google Scholar] [CrossRef]
- Pozzi, S.; Marcheselli, L.; Bari, A.; Liardo, E.V.; Marcheselli, R.; Luminari, S.; Quaresima, M.; Cirilli, C.; Ferri, P.; Federico, M.; et al. Survival of multiple myeloma patients in the era of novel therapies confirms the improvement in patients younger than 75 years: A population-based analysis. Br. J. Haematol. 2013, 163, 40–46. [Google Scholar] [CrossRef]
- Langseth, O.; Myklebust, T.A.; Johannesen, T.B.; Hjertner, Ø.; Waage, A. Incidence and survival of multiple myeloma: A population-based study of 10 524 patients diagnosed 1982–2017. Br. J. Haematol. 2020, 191, 418–425. [Google Scholar] [CrossRef]
- Palumbo, A.; Bringhen, S.; Mateos, M.-V.; Larocca, A.; Facon, T.; Kumar, S.; Offidani, M.; McCarthy, P.; Evangelista, A.; Lonial, S.; et al. Geriatric assessment predicts survival and toxicities in elderly myeloma patients: An International Myeloma Working Group report. Blood 2015, 125, 2068–2074. [Google Scholar] [CrossRef]
- Bonanad, S.; De la Rubia, J.; Gironella, M.; Persona, E.P.; González, B.; Lago, C.F.; Arnan, M.; Zudaire, M.; Rivas, J.H.; Soler, A.; et al. Development and psychometric validation of a brief comprehensive health status assessment scale in older patients with hematological malignancies: The GAH Scale. J. Geriatr. Oncol. 2015, 6, 353–361. [Google Scholar] [CrossRef]
- Martinez-Lopez, J.; Blade, J.; Mateos, M.-V.; Grande, C.; Alegre, A.; García-Laraña, J.; Sureda, A.; de la Rubia, J.; Conde, E.; Martinez, R.; et al. Long-term prognostic significance of response in multiple myeloma after stem cell transplantation. Blood 2011, 118, 529–534. [Google Scholar] [CrossRef] [Green Version]
- Barlogie, B.; Mitchell, A.; Van Rhee, F.; Epstein, J.; Morgan, G.; Crowley, J. Curing myeloma at last: Defining criteria and providing the evidence. Blood 2014, 124, 3043–3051. [Google Scholar] [CrossRef] [PubMed]
- van de Velde, H.J.; Liu, X.; Chen, G.; Cakana, A.; Deraedt, W.; Bayssas, M. Complete response correlates with long-term survival and progression-free survival in high-dose therapy in multiple myeloma. Haematologica 2007, 92, 1399–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yong, K.; Delforge, M.; Driessen, C.; Fink, L.; Flinois, A.; Gonzalez-McQuire, S.; Safaei, R.; Karlin, L.; Mateos, M.; Raab, M.S.; et al. Multiple myeloma: Patient outcomes in real-world practice. Br. J. Haematol. 2016, 175, 252–264. [Google Scholar] [CrossRef] [PubMed]
All Patients (n = 1001) | Group 1 (1980–1990) (n = 93) | Group 2 (1991–2000) (n = 178) | Group 3 (2001–2010) (n = 314) | Group 4 (2011–2020) (n = 416) | p Value | |
---|---|---|---|---|---|---|
Follow-up in months, median (range) | 65.1 (2.4–382.1) | 121.3 (3.0–121.7) | 119.0 (15.0–382.1) | 157.8 (10.3–263.8) | 51.4 (2.4–142.9) | |
Age at diagnosis, median (range) a | 64 (28–93) | 68 (38–86) | 64 (31–88) | 63 (28–89) | 65 (30–93) | 0.153 |
Age at diagnosis ≤70, n (%) Older than 70, n (%) | 662 (69.0) 297 (31.0) | 49 (66.2) 25 (26.9) | 114 (72.6) 43 (27.4) | 215 (68.9) 97 (31.1) | 284 (68.3) 132 (31.7) | 0.722 |
Gender, male, n (%) | 567 (56.6) | 44 (47.3) | 96 (53.9) | 173 (55.1) | 254 (61.1) | 0.059 |
Ig isotype, n (%) b IgG IgA IgM IgD Light chains only Non-secretory | 557 (56.6) 252 (25.6) 2 (0.2) 7 (0.7) 145 (14.7) 21 (2.1) | 45 (49.5) 33 (36.3) 0 (0.0) 0 (0.0) 13 (14.3) 0 (0.0) | 87 (49.7) 54 (30.9) 0 (0.0) 7 (4.0) 27 (15.4) 0 (0.0) | 187 (59.9) 72 (23.1) 1 (0.3) 0 (0.0) 37 (11.9) 15 (4.8) | 238 (58.6) 93 (22.9) 1 (0.2) 0 (0.0) 68 (16.7) 6 (1.5) | 0.061 0.014 - - 0.328 - |
Light chain isotype Kappa, n (%) c | 575 (59.1) | 39 (46.4) | 100 (57.8) | 187 (60.9) | 249 (60.9) | 0.026 |
ECOG PS 0–1, n (%) d | 497 (64.0) | 27 (34.6) | 53 (44.5) | 132 (64.7) | 285 (75.8) | 0.000 |
Hb ≤ 10 g/dL, n (%) e | 366 (39.6) | 51 (56.0) | 75 (46.9) | 113 (38.6) | 127 (33.3) | 0.000 |
Cr ≥ 2 mg/dL, n (%) f | 185 (19.6) | 25 (27.8) | 33 (20.4) | 50 (16.9) | 77 (19.4) | 0.157 |
Ca ≥ 11 mg/dL, n (%) g | 144 (16.2) | 27 (30.7) | 25 (16.4) | 36 (13.2) | 56 (14.8) | 0.001 |
Lytic lesions, n (%) h | 617 (69.2) | 68 (76.4) | 106 (66.3) | 164 (59.9) | 279 (75.8) | 0.000 |
Elevated LDH, n (%) i | 230 (43.5) | No data | 24 (72.7) | 136 (72.0) | 70 (22.8) | 0.000 |
Albumin, g/dL, mean (SD) | 3.6 (±0.7) | 3.6 (±0.7) | 3.7 (±0.7) | 3.5 (±0.7) | 3.6 (±0.7) | 0.476 |
β2 microglobulin, mg/dL, mean (SD) | 5.8 (±5.4) | 5.5 (±4.1) | 6.6 (±7.6) | 4.7 (±4.2) | 6.5 (±5.2) | 0.000 |
ISS, n (%) j I II III | 280 (33.5) 280 (33.5) 277 (33.0) | 15 (38.5) 10 (25.6) 14 (35.9) | 62 (42.5) 37 (25.3) 47 (32.2) | 94 (34.6) 115 (42.3) 63 (23.2) | 109 (28.7) 118 (31.1) 153 (40.3) | 0.020 0.001 0.000 |
High-risk cytogenetic k,*, n (%) | 116 (18.3) | No data | 4 (25.0) | 39 (16.0) | 73 (19.8) | 0.396 |
Age ≤ 70 Years (n = 662) | Age Older than 70 Years (n = 279) | |||||||
---|---|---|---|---|---|---|---|---|
1980–1990 (n = 49) | 1991–2000 (n = 114) | 2001–2010 (n = 215) | 2011–2020 (n = 284) | 1980–1990 (n = 21) a | 1991–2000 (n = 40) b | 2001–2010 (n = 94) c | 2011–2020 (n = 124) d | |
Lines of therapy, median (range) | 1 (1–4) | 2 (1–7) | 2 (1–14) | 1 (1–9) | 1 (1–2) | 1 (1–2) | 2 (1–5) | 2 (1–8) |
Chemotherapy (CyP, MP) | 25 (51.0) | 15 (13.1) | 6 (2.8) | 2 (0.7) | 13 (61.9) | 32 (80.0) | 57 (60.6) | 18 (14.5) |
Polychemotherapy (VBCMP, VBAD, VAD) | 24 (49.0) | 97 (85.1) | 116 (54.0) | 9 (3.2) | 8 (38.1) | 8 (20.0) | 4 (4.3) | 0 (0.0) |
Novel agents in first line | 0 (0.0) | 0 (0.0) | 93 (43.2) | 273 (96.1) | 0 (0.0) | 0 (0.0) | 32 (34.0) | 105 (84.7) |
1 novel agent in first line | 0 (0.0) | 0 (0.0) | 80 (37.2) | 57 (20.1) | 0 (0.0) | 0 (0.0) | 27 (28.7) | 66 (53.2) |
≥2 novel agents in first line | 0 (0.0) | 0 (0.0) | 13 (6.0) | 216 (76.1) | 0 (0.0) | 0 (0.0) | 5 (5.3) | 39 (31.5) |
PI-based scheme (VD, VMP, VCD, PAD…) | 0 (0.0) | 0 (0.0) | 69 (32.1) | 54 (19.0) | 0 (0.0) | 0 (0.0) | 22 (23.4) | 58 (46.8) |
IMID-based scheme (TD, TCD, TAD, Rd…) | 0 (0.0) | 0 (0.0) | 11 (5.2) | 3 (1.1) | 0 (0.0) | 0 (0.0) | 5 (5.3) | 11 (8.9) |
PI plus IMID (VTD, VRD…) | 0 (0.0) | 0 (0.0) | 13 (6.0) | 195 (68.7) | 0 (0.0) | 0 (0.0) | 5 (5.3) | 10 (8.1) |
Anti-CD38-based scheme (Any combination which included anti-CD38) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 19 (6.7) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 26 (21.0) |
Others | 0 (0.0) | 2 (1.8) | 0 (0.0) | 2 (0.7) | 0 (0.0) | 0 (0.0) | 1 (1.1) | 1 (0.8) |
ASCT | 5 (10.2) | 68 (59.6) | 179 (83.3) | 237 (83.5) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 3 (2.3) |
Long Survivors (n = 132) | Early-Death (n = 252) | OR (95% CI), p Value | |
---|---|---|---|
Age at diagnosis > 65 years, n (%) | 22/132 (16.7) | 163/224 (72.8) | 13.4 (7.8–23.0), 0.000 |
Male, n (%) | 66/132 (50.0) | 136/252 (54.0) | 1.2 (0.8–1.8), 0.460 |
IgG subtype, n (%) | 82/129 (63.6) | 122/248 (49.2) | 1.8 (1.2–2.8), 0.008 |
IgA subtype, n (%) | 21/129 (16.3) | 167/248 (67.3) | 2.5 (1.5–4.3), 0.001 |
Bence-Jones subtype, n (%) | 18/129 (14.0) | 36/248 (14.5) | 1.0 (0.6–1.9), 0.882 |
Paraprotein ≥ 3 g/dL, n (%) | 57/102 (55.9) | 120/225 (53.3) | 0.9 (1.6–1.4), 0.668 |
PCs in BM ≥ 30, n (%) | 50/109 (45.9) | 134/226 (59.3) | 1.7 (1.1–2.7), 0.021 |
ECOG PS 2–4, n (%) | 12/71 (16.9) | 133/220 (60.5) | 7.5 (3.8–14.8), 0.000 |
Hb ≤ 10 g/dL, n (%) | 34/120 (28.3) | 126/244 (51.6) | 2.7 (1.7–4.3), 0.000 |
Cr ≥ 2 mg/dL, n (%) | 10/126 (7.9) | 84/244 (34.4) | 6.1 (3.0–12.2), 0.000 |
Ca ≥ 11 mg/dL, n (%) | 12/108 (11.1) | 63/240 (26.3) | 2.8 (1.5–5.5), 0.002 |
Lytic lesions, n (%) | 82/125 (65.6) | 151/223 (67.7) | 1.1 (0.7–1.8), 0.688 |
Albumine < 3.5 g/dL, n (%) | 37/112 (33.0) | 125/240 (52.1) | 2.2 (1.4–3.5), 0.001 |
β2 microglobulin ≥ 3.5 mg/dL, n (%) | 28/98 (28.6) | 144/190 (75.8) | 7.8 (4.5–13.7), 0.000 |
β2 microglobulin ≥ 5 mg/dL, n (%) | 11/98 (11.2) | 106/190 (55.8) | 10.0 (5.0–19.9), 0.000 |
Elevated LDH, n (%) | 27/64 (42.2) | 76/136 (55.9) | 1.7 (1.0–3.2), 0.072 |
High-risk cytogenetic *, n (%) | 11/97 (11.3) | 30/107 (28.0) | 3.0 (1.4–6.5), 0.004 |
ISS-1, n (%) | 55/106 (51.9) | 33/200 (16.5) | 5.5 (3.2–9.3), 0.000 |
ISS-2. n (%) | 40/106 (37.7) | 56/200 (28.0) | 0.6 (0.4–1.1), 0.082 |
ISS-3, n (%) | 11/106 (10.4) | 111/200 (55.5) | 10.8 (5.4–21.3), 0.000 |
Long Survivors (n = 43) | Early Death (n = 82) | OR (95% CI), p Value | |
---|---|---|---|
Age at diagnosis > 65 years, n (%) | 29/43 (67.4) | 19/82 (23.2) | 12.2 (3.6–41.5), 0.000 |
Male, n (%) | - | - | - |
IgG subtype, n (%) | - | - | - |
IgA subtype, n (%) | 5/82 (11.6) | 26/82 (31.7) | 5.3 (1.2–23.4), 0.028 |
Bence-Jones subtype, n (%) | - | - | - |
Paraprotein ≥ 3 g/dL, n (%) | - | - | - |
PCs in BM ≥ 30, n (%) | 22/43 (51.2) | 52/82 (63.2) | 1.1 (0.3–3.3); 0.904 |
ECOG PS 2–4, n (%) | 7/43 (16.3) | 39/82 (47.6) | 4.0 (1.1–14.2), 0.030 |
Hb ≤ 10 g/dL, n (%) | 11/43 (25.6) | 41/82 (50.0) | 1.5 (0.5–4.8), 0.492 |
Cr ≥ 2 mg/dL, n (%) | 2/43 (4.7) | 23/82 (28.0) | 3.5 (0.6–21.3), 0.170 |
Ca ≥ 11 mg/dL, n (%) | 2/43 (4.7) | 18/82 (22.0) | 7.1 (1.2–23.4), 0.074 |
Lytic lesions, n (%) | - | - | - |
Albumine < 3.5 g/dL, n (%) | - | - | - |
β2 microglobulin ≥ 3.5 mg/dL, n (%) | - | - | - |
β2 microglobulin ≥ 5 mg/dL, n (%) | - | - | - |
Elevated LDH, n (%) | - | - | - |
High-risk cytogenetic *, n (%) | 5/43 (11.6) | 25/82 (30.5) | 6.1 (1.2–31.0), 0.028 |
ISS-1, n (%) | 24/43 (55.8) | 8/82 (9.8) | 4.8 (1.4–16.6), 0.012 |
ISS-2. n (%) | - | - | - |
ISS-3, n (%) | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puertas, B.; González-Calle, V.; Sobejano-Fuertes, E.; Escalante, F.; Queizán, J.A.; Bárez, A.; Labrador, J.; Alonso-Alonso, J.M.; García de Coca, A.; Cantalapiedra, A.; et al. Novel Agents as Main Drivers for Continued Improvement in Survival in Multiple Myeloma. Cancers 2023, 15, 1558. https://doi.org/10.3390/cancers15051558
Puertas B, González-Calle V, Sobejano-Fuertes E, Escalante F, Queizán JA, Bárez A, Labrador J, Alonso-Alonso JM, García de Coca A, Cantalapiedra A, et al. Novel Agents as Main Drivers for Continued Improvement in Survival in Multiple Myeloma. Cancers. 2023; 15(5):1558. https://doi.org/10.3390/cancers15051558
Chicago/Turabian StylePuertas, Borja, Verónica González-Calle, Eduardo Sobejano-Fuertes, Fernando Escalante, José A. Queizán, Abelardo Bárez, Jorge Labrador, José María Alonso-Alonso, Alfonso García de Coca, Alberto Cantalapiedra, and et al. 2023. "Novel Agents as Main Drivers for Continued Improvement in Survival in Multiple Myeloma" Cancers 15, no. 5: 1558. https://doi.org/10.3390/cancers15051558
APA StylePuertas, B., González-Calle, V., Sobejano-Fuertes, E., Escalante, F., Queizán, J. A., Bárez, A., Labrador, J., Alonso-Alonso, J. M., García de Coca, A., Cantalapiedra, A., Villaescusa, T., Aguilar-Franco, C., Alejo-Alonso, E., Rey-Bua, B., López-Corral, L., García-Sanz, R., Puig, N., Gutiérrez, N. C., & Mateos, M. -V. (2023). Novel Agents as Main Drivers for Continued Improvement in Survival in Multiple Myeloma. Cancers, 15(5), 1558. https://doi.org/10.3390/cancers15051558