Systematic Review of the Short-Term versus Long-Term Duration of Antibiotic Management for Neutropenic Fever in Patients with Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Objectives
2.2. Sources and Searches
2.3. Selection of Studies
2.4. Outcomes
2.5. Data Extraction
2.6. Risk of Bias Assessment
- Low risk of bias (adequate allocation concealment);
- Unclear bias (uncertainty regarding allocation concealment);
- High risk of bias (inadequate allocation concealment).
2.7. Statistical Analyses
2.8. Certainty of Evidence
2.9. Sensitivity Analysis
3. Results
3.1. Characteristics of Studies
3.2. Selection Bias
3.3. Risk of Bias Assessment, GRADE, and Meta-Analyses
3.4. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Freifeld, A.G.; Bow, E.J.; Sepkowitz, K.A.; Boeckh, M.J.; Ito, J.I.; Mullen, C.A.; Raad, I.I.; Rolston, K.V.; Young, J.-A.H.; Wingard, J.R. Clinical Practice Guideline for the Use of Antimicrobial Agents in Neutropenic Patients with Cancer: 2010 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2011, 52, e56–e93. [Google Scholar] [CrossRef] [Green Version]
- Averbuch, D.; Orasch, C.; Cordonnier, C.; Livermore, D.M.; Mikulska, M.; Viscoli, C.; Gyssens, I.C.; Kern, W.V.; Klyasova, G.; Marchetti, O.; et al. European guidelines for empirical antibacterial therapy for febrile neutropenic patients in the era of growing resistance: Summary of the 2011 4th European Conference on Infections in Leukemia. Haematologica 2013, 98, 1826–1835. [Google Scholar] [CrossRef] [Green Version]
- Klastersky, J.; de Naurois, J.; Rolston, K.; Rapoport, B.; Maschmeyer, G.; Aapro, M.; Herrstedt, J.; ESMO Guidelines Committee. Management of febrile neutropaenia: ESMO Clinical Practice Guidelines. Ann. Oncol. 2016, 27, v111–v118. [Google Scholar] [CrossRef]
- Sanz, M.A.; López, J.; Lahuerta, J.J.; Rovira, M.; Batlle, M.; Pérez, C.; Vázquez, L.; Julià, A.; Palau, J.; Gutiérrez, M.; et al. Cefepime plus amikacin versus piperacillin tazobactam plus amikacin for initial antibiotic therapy in haematology patients with febrile neutropenia: Results of an open, randomized, multicentre trial. J. Antimicrob. Chemother. 2002, 50, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Walsh, T.J.; Teppler, H.; Donowitz, G.R.; Maertens, J.A.; Baden, L.R.; Dmoszynska, A.; Cornely, O.A.; Bourque, M.R.; Lupinacci, R.J.; Sable, C.A.; et al. Caspofungin versus liposomal amphotericin B for empirical antifungal therapy in patients with persistent fever and neutropenia. N. Engl. J. Med. 2004, 351, 1391–1402. [Google Scholar] [CrossRef]
- Spellberg, B. The new antibiotic mantra—“Shorter is better”. JAMA Intern. Med. 2016, 176, 1254–1255. [Google Scholar] [CrossRef] [PubMed]
- Nesher, L.; Rolston, K.V. The current spectrum of infection in cancer patients with chemotherapy related neutropenia. Infection 2014, 42, 5–13. [Google Scholar] [CrossRef]
- Tanaka, J.S.; Young, R.R.; Heston, S.M.; Jenkins, K.; Spees, L.P.; Sung, A.D.; Corbet, K.; Thompson, J.C.; Bohannon, L.; Martin, P.L.; et al. Anaerobic antibiotics and the risk of graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2020, 26, 2053–2060. [Google Scholar] [CrossRef]
- Hayase, E.; Hayase, T.; Jamal, M.A.; Miyama, T.; Chang, C.C.; Ortega, M.R.; Ahmed, S.S.; Karmouch, J.L.; Sanchez, C.A.; Brown, A.N.; et al. Mucus-degrading bacteroides link carbapenems to aggravated graft-versus-host disease. Cell 2022, 185, 3705–3719.e14. [Google Scholar] [CrossRef] [PubMed]
- Shono, Y.; Docampo, M.D.; Peled, J.U.; Perobelli, S.M.; Velardi, E.; Tsai, J.J.; Slingerland, A.E.; Smith, O.M.; Young, L.F.; Gupta, J.; et al. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci. Transl. Med. 2016, 8, 339ra71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gyssens, I.C.; Kern, W.V.; Livermore, D.M. The role of antibiotic stewardship in limiting antibacterial resistance among hematology patients. Haematologica 2013, 98, 1821–1825. [Google Scholar] [CrossRef] [Green Version]
- de Jonge, N.A.; Sikkens, J.J.; Zweegman, S.; Beeker, A.; Ypma, P.; Herbers, A.H.; Vasmel, W.; de Kreuk, A.; Coenen, J.L.L.M.; Lissenberg-Witte, B.; et al. Short versus extended treatment with a carbapenem in patients with high-risk fever of unknown origin during neutropenia: A non-inferiority, open-label, multicentre, randomised trial. Lancet Haematol. 2022, 9, e563–e572. [Google Scholar] [CrossRef]
- Stern, A.; Carrara, E.; Bitterman, R.; Yahav, D.; Leibovici, L.; Paul, M. Early discontinuation of antibiotics for febrile neutropenia versus continuation until neutropenia resolution in people with cancer. Cochrane Database Syst. Rev. 2019, 1, CD012184. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Br. Med. J. 2009, 339, b2535. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomized trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [Green Version]
- Schulz, K.F.; Chalmers, I.; Hayes, R.J.; Altman, D.G. Empirical evidence of bias. Dimensions of methodological quality associated with estimates of treatment effects in controlled trials. JAMA 1995, 273, 408–412. [Google Scholar] [CrossRef]
- Guyatt, G.; Oxman, A.D.; Akl, E.A.; Kunz, R.; Vist, G.; Brozek, J.; Norris, S.; Falck-Ytter, Y.; Glasziou, P.; DeBeer, H.; et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J. Clin. Epidemiol. 2011, 64, 383–394. [Google Scholar] [CrossRef] [PubMed]
- GRADE Handbook. 2013. Available online: https://gdt.gradepro.org/app/handbook/handbook.html (accessed on 28 February 2023).
- Aguilar-Guisado, M.; Espigado, I.; Martín-Peña, A.; Gudiol, C.; Royo-Cebrecos, C.; Falantes, J.; Vázquez-López, L.; Montero, M.I.; Rosso-Fernández, C.; de la Luz Martino, M.; et al. Optimisation of Empirical Antimicrobial Therapy in Patients with Haematological Malignancies and Febrile Neutropenia (How Long Study): An open-label, randomised, controlled phase 4 trial. Lancet Haematol. 2017, 4, e573–e583. [Google Scholar] [CrossRef]
- Björnsson, S.; Preisler, H.; Henderson, E.S. A study of antibiotic therapy in fever of unknown origin in neutropenic cancer patients. Med. Pediatr. Oncol. 1977, 3, 379–385. [Google Scholar] [CrossRef]
- Klaassen, R.J.; Allen, U.; Doyle, J.J. Randomized placebo-controlled trial of oral antibiotics in pediatric oncology patients at low-risk with fever and neutropenia. J. Pediatr. Hematol. Oncol. 2000, 22, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Biswas, B.; Chopra, A.; Kapil, A.; Vishnubhatla, S.; Bakhshi, S. Early discontinuation versus continuation of antimicrobial therapy in low risk pediatric cancer patients with febrile neutropenia, before recovery of counts: A randomized controlled trial (DALFEN Study). Indian J. Pediatr. 2020, 88, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Pizzo, P.A.; Robichaud, K.J.; Gill, F.A.; Witebsky, F.G. Empiric antibiotic and antifungal therapy for cancer patients with prolonged fever and granulocytopenia. Am. J. Med. 1982, 72, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Pizzo, P.A.; Robichaud, K.J.; Gill, F.A.; Witebsky, F.G.; Levine, A.S.; Deisseroth, A.B.; Glaubiger, D.L.; MacLowry, J.D.; Magrath, I.T.; Poplack, D.G.; et al. Duration of empiric antibiotic therapy in granulocytopenic patients with cancer. Am. J. Med. 1979, 67, 194–200. [Google Scholar] [CrossRef]
- Ram, R.; Amit, O.; Adler, A.; Bar-On, Y.; Beyar-Katz, O.; Avivi, I.; Shasha, D.; Ben-Ami, R. Antibiotic stewardship in patients after cellular therapy with febrile neutropenia—A single center prospective unblinded randomized trial. Blood 2021, 138, 747. [Google Scholar] [CrossRef]
- Rodriguez, V.; Burgess, M.; Bodey, G.P. Management of fever of unknown origin in patients with neoplasms and neutropenia. Cancer 1973, 32, 1007–1012. [Google Scholar] [CrossRef] [PubMed]
- Santolaya, M.E.; Alvarez, A.M.; Acuña, M.; Avilés, C.L.; Salgado, C.; Tordecilla, J.; Varas, M.; Venegas, M.; Villarroel, M.; Zubieta, M.; et al. Efficacy and safety of withholding antimicrobial treatment in children with cancer, fever and neutropenia, with a demonstrated viral respiratory infection: A randomized clinical trial. Clin. Microbiol. Infect. 2017, 23, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Santolaya, M.E.; Villarroel, M.; Avendano, L.F.; Cofre, J. Discontinuation of antimicrobial therapy for febrile, neutropenic children with cancer: A prospective study. Clin. Infect. Dis. 1997, 25, 92–97. [Google Scholar] [CrossRef]
- Satlin, M.J.; Cohen, N.; Ma, K.C.; Gedrimaite, Z.; Soave, R.; Askin, G.; Chen, L.; Kreiswirth, B.K.; Walsh, T.J.; Seo, S.K. Bacteremia due to carbapenem-resistant Enterobacteriaceae in neutropenic patients with hematologic malignancies. J. Infect. 2016, 73, 336–345. [Google Scholar] [CrossRef] [Green Version]
- Nanayakkara, A.K.; Boucher, H.W.; Fowler, V.G., Jr.; Jezek, A.; Outterson, K.; Greenberg, D.E. Antibiotic resistance in the patient with cancer: Escalating challenges and paths forward. CA Cancer J. Clin. 2021, 71, 488–504. [Google Scholar] [CrossRef]
- Benamu, E.; Gajurel, K.; Anderson, J.N.; Lieb, T.; Gomez, C.A.; Seng, H.; Aquino, R.; Hollemon, D.; Hong, D.K.; Blauwkamp, T.A.; et al. Plasma microbial cell-free DNA next-generation sequencing in the diagnosis and management of febrile neutropenia. Clin. Infect. Dis. 2021, 74, 1659–1668. [Google Scholar] [CrossRef]
- Tatarelli, P.; Mikulska, M. Multidrug-resistant bacteria in hematology patients: Emerging threats. Future Microbiol. 2016, 11, 767–780. [Google Scholar] [CrossRef] [PubMed]
- Ram, R.; Halavy, Y.; Amit, O.; Paran, Y.; Katchman, E.; Yachini, B.; Kor, S.; Avivi, I.; Ben-Ami, R. Extended vs. bolus infusion of broad-spectrum β-lactams for febrile neutropenia: An unblinded, randomized trial. Clin. Infect. Dis. 2018, 67, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Albasanz-Puig, A.; Gudiol, C.; Puerta-Alcalde, P.; Ayaz, C.M.; Machado, M.; Herrera, F.; Martín-Dávila, P.; Laporte-Amargós, J.; Cardozo, C.; Akova, M.; et al. Impact of the Inclusion of an Aminoglycoside to the Initial Empirical Antibiotic Therapy for Gram-Negative Bloodstream Infections in Hematological Neutropenic Patients: A Propensity-Matched Cohort Study (AMINOLACTAM Study). Antimicrob. Agents Chemother. 2021, 65, e0004521. [Google Scholar] [CrossRef] [PubMed]
- Schauwvlieghe, A.; Dunbar, A.; Storme, E.; Vlak, A.; Aerts, R.; Maertens, J.; Sciot, B.; Van Der Wel, T.; Papageorgiou, G.; Moors, I.; et al. Stopping antibiotic therapy after 72 h in patients with febrile neutropenia following intensive chemotherapy for AML/MDS (safe study): A retrospective comparative cohort study. eClinicalMedicine 2021, 35, 100855. [Google Scholar] [CrossRef]
- Le Clech, L.; Talarmin, J.P.; Couturier, M.A.; Ianotto, J.C.; Nicol, C.; Le Calloch, R.; Dos Santos, S.; Hutin, P.; Tandé, D.; Cogulet, V.; et al. Early discontinuation of empirical antibacterial therapy in febrile neutropenia: The ANTIBIOSTOP study. Infect. Dis. 2018, 50, 539–549. [Google Scholar] [CrossRef]
- la Martire, G.; Robin, C.; Oubaya, N.; Lepeule, R.; Beckerich, F.; Leclerc, M.; Barhoumi, W.; Toma, A.; Pautas, C.; Maury, S.; et al. De-escalation and discontinuation strategies in high-risk neutropenic patients: An interrupted time series analyses of antimicrobial consumption and impact on outcome. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1931–1940. [Google Scholar] [CrossRef]
- Niessen, F.A.; van Mourik, M.S.M.; Bruns, A.H.W.; Raijmakers, R.A.P.; de Groot, M.C.H.; van der Bruggen, T. Early discontinuation of empirical antibiotic treatment in neutropenic patients with acute myeloid leukaemia and high-risk myelodysplastic syndrome. Antimicrob. Resist. Infect. Control 2020, 9, 74. [Google Scholar] [CrossRef] [PubMed]
Articles, Published Year | Published Country | Study Design/Patient Age | Study Period | Patient Characteristics, High- or Low-Risk Febrile Neutropenia/Prophylaxis in Cases of Neutropenia | Type of Beta-Lactam Antibiotics/Intervention | Number of Patients in Each Arm/Definition of Treatment Failure | Follow-Up Period |
---|---|---|---|---|---|---|---|
De Jonge 2022 [12] | The Netherlands | RCT, open label trial, multicenter study/median age-59 years (IQR, 52 to 65) | December 2014–July 2019 | hematologic malignancy or SCT, high-risk FN/yes |
| short therapy arm (n = 144), long-therapy arm (n = 137) Occurrence of either a microbiologically documented or clinically suspected carbapenem-sensitive infection; recurrence of fever from days 4–9 of empirical antibiotic treatment; or septic shock, respiratory insufficiency, or death due to any cause from day 4 until neutrophil recovery (≥0·5 × 109/L) | 30 days after neutrophil recovery |
Ram 2021 [25] | Israel | RCT, open label trial, single center study/mean age (SD)-antibiotic stewardship strategy (intervention group, 61.2 (±12.5), standard therapy (control group), 60.6 years (±8.3) | January 2020– March 2021 | HCT, CAR-T, high-risk FN/yes |
| antibiotic stewardship strategy (n = 59), standard therapy (n = 51)/ definition of treatment success: successful response to treatment, defined as the combination of continued clinical improvement on day 5 after initiation of antibiotics, no reoccurrence of bacteremia/fever/clinical infection signs on day 5, and no need for additional therapy on days 4–5 after starting antibiotics | Not appliable |
Kumar [22] 2020 | India | RCT, open label trial, single center study/ mean age (SD) Arm A- 7.0 (4.0), Arm B- 8.9 (4.7) | January 2017– December 2018 | all pediatric patients, aged 3–18 y with solid tumors and lymphoma leukemia/no |
| Arm A (n = 38), Arm B (n = 37)/ Reoccurrence of fever | until resolution of neutropenia |
Aguilar-Guisado 2017 [19] | Spain | RCT, open label trial, multicenter study/median age (IQR) short-therapy arm, 52 years (42 to 61) long-therapy arm, 54 years (39 to 63) | April 2012–May 2016 | hematologic malignancy or SCT, high-risk FN/yes |
| short-therapy arm (n = 78), long-therapy arm (n = 79)/ recurrent fever | 28 days |
Santolaya 2017 [27] | Chile | RCT, open label trial, multicenter study/mean age (SD) short therapy: 4.0 years (3 to 8) long therapy: 5.0 years (3 to 9) | July 2012–December 2015 | high and low risk FN + a positive nasopharyngeal sample for a respiratory virus/yes | CTRX for low-risk FN, CAZ + AMK +/− anti-Gram-positive beta-lactam or glycopeptide for high-risk FN
| short-therapy (n = 84), long-therapy (n = 92)/ development of sepsis, admission to PICU | until fever and ANC resolution |
Klaassen 2000 [21] | Canada | RCT, double blind placebo-controlled trial, single center study/short therapy arm, 4.3 years long therapy arm, 4.9 years | August 1996–April 1998 | low-risk FN/no |
| short therapy arm (n = 36), long therapy arm (n = 37)/ readmission with recurrent neutropenia | until ANC recovery |
Santolaya 1997 [28] | Chile | RCT, double bind placebo- controlled trial, single center study/mean age (SD) short therapy: 6.8 years (4.3) long-therapy: 5.6 years (3.8) | January 1994– January 1996 | unknown origin of FN/ regimen/no |
| short-therapy (n = 36), long-therapy (n = 39)/documented bacterial infection + probable bacterial infection | until fever and ANC resolution |
Pizzo 1982 [23] | USA | median age (range) short therapy arm: 15 years (2 to 22) long therapy arm: 16 years (2 to 25) antibacterial + amphotericin B arm: 18 years (8 to 30) | November 1975– December 1979 | children with neutropenia and fever of unknown origin/no |
| short therapy arm (n = 16) long therapy arm (n = 16) antibacterial + amphotericin B arm (n = 18)/any infectious complication | until fever and ANC resolution |
Pizzo 1979 [24] | USA | RCT, open label, single center study/median age (range) short therapy arm: 14 years (2 to 33) long therapy arm: 15 years (1 to 30) | November 1975– February 1978 | unknown origin of FN with resolving fever after 7 days of antibiotic treatment/no |
| short therapy arm (n = 17) long therapy arm (n = 16)/ recurrence of fever | 30 days after fever and ANC resolution |
Bjornsson 1977 [20] | USA | RCT, open label, single center study/mean age (SD) short therapy arm: 42.5 years (±11.8) long therapy arm: 43.45 years (±16.5) | June 1975– May 1976 | unknown origin of unresolving FN/no |
| short therapy arm (n = 6) long therapy arm (n = 11)/ | 4 weeks |
Rodriguez 1973 [26] | USA | RCT, open label, single center study/median 33 (range, 15–80) years | July 1970– December 1971 | unknown origin of FN/no | cefalotin + carindacillin short therapy: 4 days long therapy: 10 days of additional therapy (total 14 days) or 5 days after becoming afebrile, whichever was longer | short therapy non-resolving fever (n = 11), resolving fever (n = 30), long therapy: non resolving fever (n = 14) resolving fever (n = 26)/ infection is cause of fever | Not applicable |
Randomization Sequence | Concealment | Blinding of Participant and Clinician | Blinding of Outcome Assessment | Incomplete Outcome Data | Selective Reporting | Others | ||
---|---|---|---|---|---|---|---|---|
our analysis | de Jonge 2022 [12] | low | low | high | low | low | low | low |
Kumar 2020 [22] | low | low | high | low | low | low | low | |
Ram 2021 [25] | low | low | high | unclear | low | unclear | unclear | |
Stern analysis | Aguilar-Guisado 2017 [19] | low | low | high | high | low | low | low |
Bjornsson 1977 [20] | unclear | unclear | high | high | low | high | low | |
Klaassen 2000 [21] | low | low | low | low | low | low | low | |
Pizzo 1979 [24] | unclear | unclear | high | high | low | high | unclear | |
Pizzo 1982 [23] | unclear | unclear | high | high | low | high | unclear | |
Rodriguez 1973 [26] | unclear | unclear | high | high | low | high | unclear | |
Santolaya 1997 [28] | unclear | unclear | high | high | low | high | unclear | |
Santolaya 2017 [27] | unclear | unclear | high | low | low | high | low | |
low (%) | 45.5 | 45.5 | 9.1 | 36.4 | 100.0 | 36.4 | 54.5 | |
unclear (%) | 54.5 | 54.5 | 0.0 | 9.1 | 0.0 | 9.1 | 45.5 | |
high (%) | 0.0 | 0.0 | 90.9 | 54.5 | 0.0 | 54.5 | 0.0 |
Summary of Findings | ||||||
---|---|---|---|---|---|---|
Short compared with long antibiotic therapy duration for febrile neutropenia | ||||||
Patient or population: febrile neutropenia | ||||||
Setting: | ||||||
Intervention: short | ||||||
Comparison: long | ||||||
Outcomes | Anticipated absolute effects * (95% CI) | Relative effect (95% CI) | № of participants (studies) | Certainty of the evidence (GRADE) | Comments | |
Risk with long | Risk with short | |||||
mortality | 35 per 1000 | 50 per 1000 (28 to 89) | RR 1.43 (0.81 to 2.53) | 1069 (11 RCTs) | ⊕⊕◯◯ Low a,b | |
treatment failure | 141 per 1000 | 160 per 1000 (121 to 209) | RR 1.14 (0.86 to 1.49) | 1111 (10 RCTs) | ⊕⊕◯◯ Low a,b,c | |
bacteremia | 64 per 1000 | 85 per 1000 (56 to 129) | RR 1.32 (0.87 to 2.01) | 949 (10 RCTs) | ⊕⊕◯◯ Low a,b | |
* The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI). | ||||||
CI: confidence interval; RR: risk ratio | ||||||
GRADE Working Group grades of evidence | ||||||
High certainty: we are very confident that the true effect lies close to that of the estimate of the effect. | ||||||
Moderate certainty: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different. | ||||||
Low certainty: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect. | ||||||
Very low certainty: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of the effect. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishikawa, K.; Masaki, T.; Kawai, F.; Ota, E.; Mori, N. Systematic Review of the Short-Term versus Long-Term Duration of Antibiotic Management for Neutropenic Fever in Patients with Cancer. Cancers 2023, 15, 1611. https://doi.org/10.3390/cancers15051611
Ishikawa K, Masaki T, Kawai F, Ota E, Mori N. Systematic Review of the Short-Term versus Long-Term Duration of Antibiotic Management for Neutropenic Fever in Patients with Cancer. Cancers. 2023; 15(5):1611. https://doi.org/10.3390/cancers15051611
Chicago/Turabian StyleIshikawa, Kazuhiro, Tetsuhiro Masaki, Fujimi Kawai, Erika Ota, and Nobuyoshi Mori. 2023. "Systematic Review of the Short-Term versus Long-Term Duration of Antibiotic Management for Neutropenic Fever in Patients with Cancer" Cancers 15, no. 5: 1611. https://doi.org/10.3390/cancers15051611
APA StyleIshikawa, K., Masaki, T., Kawai, F., Ota, E., & Mori, N. (2023). Systematic Review of the Short-Term versus Long-Term Duration of Antibiotic Management for Neutropenic Fever in Patients with Cancer. Cancers, 15(5), 1611. https://doi.org/10.3390/cancers15051611