Quantitative Biomarkers Derived from a Novel Contrast-Free Ultrasound High-Definition Microvessel Imaging for Distinguishing Thyroid Nodules
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Study
2.2. Clinical Ultrasound Features
2.3. High-Definition Microvasculature Imaging
2.4. Microvessel Morphological Parameters
2.5. Fine Needle Aspiration Biopsy
2.6. Statistical Analysis Methods
3. Results
3.1. Characteristics of the Study Population and Thyroid Nodules
3.2. Visualization and Quantification of Microvessel Biomarkers of Thyroid Nodules
3.3. Analysis of HDMI Biomarkers for Differentiation of Thyroid Nodules
3.4. Differentiating Malignant Nodules from Benign with HDMI Biomarkers, and Combined with Clinical Factors
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seib, C.D.; Sosa, J.A. Evolving understanding of the epidemiology of thyroid cancer. Endocrinol. Metab. Clin. 2019, 48, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Prete, A.; Borges de Souza, P.; Censi, S.; Muzza, M.; Nucci, N.; Sponziello, M. Update on fundamental mechanisms of thyroid cancer. Front. Endocrinol. 2020, 11, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiest, P.W.; Hartshorne, M.F.; Inskip, P.D.; Crooks, L.A.; Vela, B.S.; Telepak, R.J.; Williamson, M.R.; Blumhardt, R.; Bauman, J.M.; Tekkel, M. Thyroid palpation versus high-resolution thyroid ultrasonography in the detection of nodules. J. Ultrasound Med. 1998, 17, 487–496. [Google Scholar] [CrossRef]
- Bessey, L.J.; Lai, N.B.K.; Coorough, N.E.; Chen, H.; Sippel, R.S. The incidence of thyroid cancer by f ine needle aspiration varies by age and gender. J. Surg. Res. 2013, 184, 761–765. [Google Scholar] [CrossRef] [Green Version]
- Valderrabano, P.; McIver, B. Evaluation and management of indeterminate thyroid nodules: The revolution of risk stratification beyond cytological diagnosis. Cancer Control 2017, 24, 1073274817729231. [Google Scholar] [CrossRef]
- Zhao, C.-K.; Xu, H.-X. Ultrasound elastography of the thyroid: Principles and current status. Ultrasonography 2019, 38, 106. [Google Scholar] [CrossRef] [Green Version]
- Cantisani, V.; Maceroni, P.; D’Andrea, V.; Patrizi, G.; Di Segni, M.; De Vito, C.; Grazhdani, H.; Isidori, A.M.; Giannetta, E.; Redler, A. Strain ratio ultrasound elastography increases the accuracy of colour-Doppler ultrasound in the evaluation of Thy-3 nodules. A bi-centre university experience. Eur. Radiol. 2016, 26, 1441–1449. [Google Scholar] [CrossRef]
- Gregory, A.; Bayat, M.; Kumar, V.; Denis, M.; Kim, B.H.; Webb, J.; Meixner, D.D.; Ryder, M.; Knudsen, J.M.; Chen, S. Differentiation of benign and malignant thyroid nodules by using comb-push ultrasound shear elastography: A preliminary two-plane view study. Acad. Radiol. 2018, 25, 1388–1397. [Google Scholar] [CrossRef] [Green Version]
- Park, A.Y.; Son, E.J.; Han, K.; Youk, J.H.; Kim, J.-A.; Park, C.S. Shear wave elastography of thyroid nodules for the prediction of malignancy in a large scale study. Eur. J. Radiol. 2015, 84, 407–412. [Google Scholar] [CrossRef]
- Kumar, V.; Webb, J.; Gregory, A.; Meixner, D.D.; Knudsen, J.M.; Callstrom, M.; Fatemi, M.; Alizad, A. Automated segmentation of thyroid nodule, gland, and cystic components from ultrasound images using deep learning. IEEE Access 2020, 8, 63482–63496. [Google Scholar] [CrossRef] [PubMed]
- Kohlenberg, J.; Gu, J.; Parvinian, A.; Webb, J.; El Kawkgi, O.; Larson, N.B.; Ryder, M.; Fatemi, M.; Alizad, A. Added value of mass characteristic frequency to 2-D shear wave elastography for differentiation of benign and malignant thyroid nodules. Ultrasound Med. Biol. 2022, 48, 1663–1671. [Google Scholar] [CrossRef] [PubMed]
- Chambara, N.; Lo, X.; Chow, T.C.M.; Lai, C.M.S.; Liu, S.Y.W.; Ying, M. Combined Shear Wave Elastography and EU TIRADS in Differentiating Malignant and Benign Thyroid Nodules. Cancers 2022, 14, 5521. [Google Scholar] [CrossRef] [PubMed]
- Brandenstein, M.; Wiesinger, I.; Künzel, J.; Hornung, M.; Stroszczynski, C.; Jung, E.-M. Multiparametric Sonographic Imaging of Thyroid Lesions: Chances of B-Mode, Elastography and CEUS in Relation to Preoperative Histopathology. Cancers 2022, 14, 4745. [Google Scholar] [CrossRef]
- Reginelli, A.; Urraro, F.; di Grezia, G.; Napolitano, G.; Maggialetti, N.; Cappabianca, S.; Brunese, L.; Squillaci, E. Conventional ultrasound integrated with elastosonography and B-flow imaging in the diagnosis of thyroid nodular lesions. Int. J. Surg. 2014, 12, S117–S122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramsden, J. Angiogenesis in the thyroid gland. J. Endocrinol. 2000, 166, 475–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajabi, S.; Dehghan, M.H.; Dastmalchi, R.; Mashayekhi, F.J.; Salami, S.; Hedayati, M. The roles and role-players in thyroid cancer angiogenesis. Endocr. J. 2019, 66, 277–293. [Google Scholar] [CrossRef] [Green Version]
- Ebeed, A.E.; Romeih, M.A.E.-h.; Refat, M.M.; Salah, N.M. Role of ultrasound, color doppler, elastography and micropure imaging in differentiation between benign and malignant thyroid nodules. Egypt. J. Radiol. Nucl. Med. 2017, 48, 603–610. [Google Scholar] [CrossRef]
- Chammas, M.C.; Gerhard, R.; Oliveira, I.R.S.D.; Widman, A.; Barros, N.D.; Durazzo, M.; Ferraz, A.; Cerri, G.G. Thyroid nodules: Evaluation with power Doppler and duplex Doppler ultrasound. Otolaryngol. Head Neck Surg. 2005, 132, 874–882. [Google Scholar] [CrossRef]
- Newsome, I.G.; Dayton, P.A. Visualization of microvascular angiogenesis using dual-frequency contrast-enhanced acoustic angiography: A review. Ultrasound Med. Biol. 2020, 46, 2625–2635. [Google Scholar] [CrossRef]
- Zhu, C.; Zhong, L.; Lin, M.; Tian, C.; Wang, C. The value of TI-RADS combined with superb micro-vascular imagine in distinguishing benign and malignant thyroid nodules: A meta-analysis. PLoS ONE 2022, 17, e0261521. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.J.; Ahn, H.S.; Ha, S.M.; Park, H.J.; Oh, J. Quantitative analysis of vascularity for thyroid nodules on ultrasound using superb microvascular imaging: Can nodular vascularity differentiate between malignant and benign thyroid nodules? Medicine 2022, 101, e28725. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, J.Y.; Yoon, R.G.; Kim, J.-h.; Hong, H.S. The value of microvascular imaging for triaging indeterminate cervical lymph nodes in patients with papillary thyroid carcinoma. Cancers 2020, 12, 2839. [Google Scholar] [CrossRef] [PubMed]
- Bayat, M.; Fatemi, M.; Alizad, A. Background removal and vessel filtering of noncontrast ultrasound images of microvasculature. IEEE Trans. Biomed. Eng. 2018, 66, 831–842. [Google Scholar] [CrossRef] [PubMed]
- Ternifi, R.; Wang, Y.; Gu, J.; Polley, E.C.; Carter, J.M.; Pruthi, S.; Boughey, J.C.; Fazzio, R.T.; Fatemi, M.; Alizad, A. Ultrasound high-definition microvasculature imaging with novel quantitative biomarkers improves breast cancer detection accuracy. Eur. Radiol. 2022, 32, 7448–7462. [Google Scholar] [CrossRef] [PubMed]
- Ghavami, S.; Bayat, M.; Fatemi, M.; Alizad, A. Quantification of morphological features in non-contrast-enhanced ultrasound microvasculature imaging. IEEE Access 2020, 8, 18925–18937. [Google Scholar] [CrossRef] [PubMed]
- Ternifi, R.; Wang, Y.; Polley, E.C.; Fazzio, R.T.; Fatemi, M.; Alizad, A. Quantitative biomarkers for cancer detection using contrast-free ultrasound high-definition microvessel imaging: Fractal dimension, murray’s deviation, bifurcation angle & spatial vascularity pattern. IEEE Trans. Med. Imaging 2021, 40, 3891–3900. [Google Scholar]
- Gu, J.; Ternifi, R.; Larson, N.B.; Carter, J.M.; Boughey, J.C.; Stan, D.L.; Fazzio, R.T.; Fatemi, M.; Alizad, A. Hybrid high-definition microvessel imaging/shear wave elastography improves breast lesion characterization. Breast Cancer Res. 2022, 24, 16. [Google Scholar] [CrossRef]
- Adabi, S.; Ghavami, S.; Fatemi, M.; Alizad, A. Non-local based denoising framework for in vivo contrast-free ultrasound microvessel imaging. Sensors 2019, 19, 245. [Google Scholar] [CrossRef] [Green Version]
- Nayak, R.; Kumar, V.; Webb, J.; Gregory, A.; Fatemi, M.; Alizad, A. Non-contrast agent based small vessel imaging of human thyroid using motion corrected power Doppler imaging. Sci. Rep. 2018, 8, 15318. [Google Scholar] [CrossRef] [Green Version]
- Nayak, R.; Kumar, V.; Webb, J.; Fatemi, M.; Alizad, A. Non-invasive small vessel imaging of human thyroid using motion-corrected spatiotemporal clutter filtering. Ultrasound Med. Biol. 2019, 45, 1010–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayak, R.; MacNeill, J.; Flores, C.; Webb, J.; Fatemi, M.; Alizad, A. Quantitative assessment of ensemble coherency in contrast-free ultrasound microvasculature imaging. Med. Phys. 2021, 48, 3540–3558. [Google Scholar] [CrossRef] [PubMed]
- You, Q.S.; Chan, J.C.; Ng, A.L.; Choy, B.K.; Shih, K.C.; Cheung, J.J.; Wong, J.K.; Shum, J.W.; Ni, M.Y.; Lai, J.S. Macular vessel density measured with optical coherence tomography angiography and its associations in a large population-based study. Investig. Ophthalmol. Vis. Sci. 2019, 60, 4830–4837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, L.T.; Hoying, J.B.; Utzinger, U.; Underwood, C.J.; Krishnan, L.; Baggett, B.K.; Maas, S.A.; Guilkey, J.E.; Weiss, J.A. Mechanical interaction of angiogenic microvessels with the extracellular matrix. J. Biomech. Eng. 2014, 136, 021001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caresio, C.; Caballo, M.; Deandrea, M.; Garberoglio, R.; Mormile, A.; Rossetto, R.; Limone, P.; Molinari, F. Quantitative analysis of thyroid tumors vascularity: A comparison between 3-D contrast-enhanced ultrasound and 3-D Power Doppler on benign and malignant thyroid nodules. Med. Phys. 2018, 45, 3173–3184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sultan, L.R.; Xiong, H.; Zafar, H.M.; Schultz, S.M.; Langer, J.E.; Sehgal, C.M. Vascularity assessment of thyroid nodules by quantitative color Doppler ultrasound. Ultrasound Med. Biol. 2015, 41, 1287–1293. [Google Scholar] [CrossRef] [PubMed]
- Chambara, N.; Liu, S.Y.W.; Lo, X.; Ying, M. Diagnostic Value of AngioPLUS Microvascular Imaging in Thyroid Nodule Diagnosis Using Quantitative and Qualitative Vascularity Grading. Biomedicines 2022, 10, 1554. [Google Scholar] [CrossRef]
- Lu, R.; Meng, Y.; Zhang, Y.; Zhao, W.; Wang, X.; Jin, M.; Guo, R. Superb microvascular imaging (SMI) compared with conventional ultrasound for evaluating thyroid nodules. BMC Med. Imaging 2017, 17, 65. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Zhan, J.; Diao, X.-H.; Liu, Y.-C.; Shi, Y.-X.; Chen, Y.; Zhan, W.-W. Additional value of superb microvascular imaging for thyroid nodule classification with the thyroid imaging reporting and data system. Ultrasound Med. Biol. 2019, 45, 2040–2048. [Google Scholar] [CrossRef]
- Zhang, G.; Yu, J.; Lei, Y.-M.; Hu, J.-R.; Hu, H.-M.; Harput, S.; Guo, Z.; Cui, X.-W.; Ye, H.-R. Ultrasound super-resolution imaging for the differential diagnosis of thyroid nodules: A pilot study. Front. Oncol. 2022, 12, 978164. [Google Scholar] [CrossRef]
- Chappell, J.C.; Wiley, D.M.; Bautch, V.L. How blood vessel networks are made and measured. Cells Tissues Organs 2012, 195, 94–107. [Google Scholar] [CrossRef] [Green Version]
- Lindsey, B.D.; Rojas, J.D.; Martin, K.H.; Shelton, S.E.; Dayton, P.A. Acoustic characterization of contrast-to-tissue ratio and axial resolution for dual-frequency contrast-specific acoustic angiography imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 1668–1687. [Google Scholar] [CrossRef] [PubMed]
- Rojas, J.D.; Papadopoulou, V.; Czernuszewicz, T.J.; Rajamahendiran, R.M.; Chytil, A.; Chiang, Y.-C.; Chong, D.C.; Bautch, V.L.; Rathmell, W.K.; Aylward, S. Ultrasound measurement of vascular density to evaluate response to anti-angiogenic therapy in renal cell carcinoma. IEEE Trans. Biomed. Eng. 2018, 66, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Lv, W.; Zhao, X.; Qin, L.; Zhao, Y.; Xin, X.; Jian, J.; Chen, X.; Hu, C. Vascular branching geometry relating to portal hypertension: A study of liver microvasculature in cirrhotic rats by X-ray phase-contrast computed tomography. Quant. Imaging Med. Surg. 2020, 10, 116. [Google Scholar] [CrossRef]
- Schoenenberger, A.W.; Urbanek, N.; Toggweiler, S.; Seelos, R.; Jamshidi, P.; Resink, T.J.; Erne, P. Deviation from Murray's law is associated with a higher degree of calcification in coronary bifurcations. Atherosclerosis 2012, 221, 124–130. [Google Scholar] [CrossRef]
- Murray, C.D. The physiological principle of minimum work applied to the angle of branching of arteries. J. Gen. Physiol. 1926, 9, 835. [Google Scholar] [CrossRef] [PubMed]
- McAllister, A.; Abramoff, M.; Xu, X. Deviation from the optimal branching relationship of retinal vessels in diabetes mellitus. Investig. Ophthalmol. Vis. Sci. 2013, 54, 2421. [Google Scholar]
- Konerding, M.; Fait, E.; Gaumann, A. 3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon. Br. J. Cancer 2001, 84, 1354–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goutzanis, L.P.; Papadogeorgakis, N.; Pavlopoulos, P.M.; Petsinis, V.; Plochoras, I.; Eleftheriadis, E.; Pantelidaki, A.; Patsouris, E.; Alexandridis, C. Vascular fractal dimension and total vascular area in the study of oral cancer. Head Neck 2009, 31, 298–307. [Google Scholar] [CrossRef]
- Sabo, E.; Boltenko, A.; Sova, Y.; Stein, A.; Kleinhaus, S.; Resnick, M.B. Microscopic analysis and significance of vascular architectural complexity in renal cell carcinoma. Clin. Cancer Res. 2001, 7, 533–537. [Google Scholar]
- Chen, C.; He, Z.-C.; Shi, Y.; Zhou, W.; Zhang, X.; Xiao, H.-L.; Wu, H.-B.; Yao, X.-H.; Luo, W.-C.; Cui, Y.-H. Microvascular fractal dimension predicts prognosis and response to chemotherapy in glioblastoma: An automatic image analysis study. Lab. Investig. 2018, 98, 924–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimm, D. Recent Advances in Thyroid Cancer Research. Int. J. Mol. Sci. 2022, 23, 4631. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, J.; Zhang, D.; Zhang, Y.-Z.; Guo, L.; Jiang, Y.; Du, S.; Zhou, Q. An integrated AI model to improve diagnostic accuracy of ultrasound and output known risk features in suspicious thyroid nodules. Eur. Radiol. 2022, 32, 2120–2129. [Google Scholar] [CrossRef]
- Gu, J.; Ternifi, R.; Sabeti, S.; Larson, N.B.; Carter, J.M.; Fazzio, R.T.; Fatemi, M.; Alizad, A. Volumetric imaging and morphometric analysis of breast tumor angiogenesis using a new contrast-free ultrasound technique: A feasibility study. Breast Cancer Res. 2022, 24, 85. [Google Scholar] [CrossRef]
- Nayak, R.; Nawar, N.; Webb, J.; Fatemi, M.; Alizad, A. Impact of imaging cross-section on visualization of thyroid microvessels using ultrasound: Pilot study. Sci. Rep. 2020, 10, 415. [Google Scholar] [CrossRef] [Green Version]
Patients n= 92 | Benign n= 57 (62) | Malignant n= 35 (38) |
---|---|---|
Gender | ||
Female a | 47 (82) | 27 (77) |
Male | 10 (18) | 8 (23) |
Age (y) b | 55.9 ± 15.2 | 42.7 ± 13.6 |
Nodule size b (mm), largest dimension | 21.75 ± 12.50 | 19.97 ± 13.12 |
Ultrasound features | ||
Echogenicity | ||
Hypoechoic | 35 (62) | 30 (86) |
Isoechoic | 19 (33) | 5 (14) |
Hyperechoic | 3 (5) | 0 (0) |
Composition | ||
Solid | 44 (77) | 32 (91) |
Mixed and spongiform | 13 (23) | 3 (9) |
Shape | ||
Taller than wide | 10 (18) | 9 (26) |
Margin | ||
Ill-defined, irregular margin | 24 (42) | 23 (66) |
Smooth margin | 33 (58) | 12 (34) |
Calcification | ||
Peripheral or rim microcalcification | 3 (5) | 5 (14) |
Macrocalcification | 7 (12) | 9 (26) |
No calcification | 47 (83) | 21 (60) |
Hypervascularity | 38 (67) | 22 (63) |
TI-RAD Scores | ||
2 | 3 (5) | 1 (3) |
3 | 8 (14) | 0 (0) |
4 | 27 (47) | 9 (26) |
5 | 16 (28) | 24 (69) |
Not reported | 3 (5) | 1 (3) |
Malignant nodule types | 35 (38) | |
Papillary carcinoma | 31 (89) | |
Medullary carcinoma | 3 (9) | |
Anaplastic carcinoma | 1 (3) |
HDMI Biomarkers | Benign (n = 57) | Malignant (n = 35) | p-Value |
---|---|---|---|
NB | 29.00 ± 8.49 | 42.50 ± 41.72 | <0.00001 |
NV | 49.00 ± 1.41 | 65.50 ± 64.35 | 0.00004 |
VD | 0.17 ± 0.08 | 0.24 ± 0.07 | 0.00061 |
Dmax (µm) | 624.59 ± 48.48 | 624.04 ± 9.65 | 0.98 |
VDR | 0.96 ± 0.23 | 1.09 ± 0.49 | 0.28 |
τmax | 1.36 ± 0.004 | 1.42 ± 0.14 | 0.44 |
τmean | 1.05 ± 0.01 | 1.06 ± 0.01 | 0.70 |
mvFD | 1.43 ± 0.01 | 1.46 ± 0.14 | 0.00005 |
BAmean | 108.31 ± 96.00 | 94.41 ± 6.55 | 0.0029 |
BAmax | 169.12 ± 2.66 | 149.11 ± 29.37 | 0.088 |
MDmean | 0.36 ± 0.02 | 0.38 ± 0.03 | 0.28 |
MDmax | 0.81 ± 0.12 | 0.84 ± 0.13 | 0.0055 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurti, M.; Sabeti, S.; Robinson, K.A.; Scalise, L.; Larson, N.B.; Fatemi, M.; Alizad, A. Quantitative Biomarkers Derived from a Novel Contrast-Free Ultrasound High-Definition Microvessel Imaging for Distinguishing Thyroid Nodules. Cancers 2023, 15, 1888. https://doi.org/10.3390/cancers15061888
Kurti M, Sabeti S, Robinson KA, Scalise L, Larson NB, Fatemi M, Alizad A. Quantitative Biomarkers Derived from a Novel Contrast-Free Ultrasound High-Definition Microvessel Imaging for Distinguishing Thyroid Nodules. Cancers. 2023; 15(6):1888. https://doi.org/10.3390/cancers15061888
Chicago/Turabian StyleKurti, Melisa, Soroosh Sabeti, Kathryn A. Robinson, Lorenzo Scalise, Nicholas B. Larson, Mostafa Fatemi, and Azra Alizad. 2023. "Quantitative Biomarkers Derived from a Novel Contrast-Free Ultrasound High-Definition Microvessel Imaging for Distinguishing Thyroid Nodules" Cancers 15, no. 6: 1888. https://doi.org/10.3390/cancers15061888
APA StyleKurti, M., Sabeti, S., Robinson, K. A., Scalise, L., Larson, N. B., Fatemi, M., & Alizad, A. (2023). Quantitative Biomarkers Derived from a Novel Contrast-Free Ultrasound High-Definition Microvessel Imaging for Distinguishing Thyroid Nodules. Cancers, 15(6), 1888. https://doi.org/10.3390/cancers15061888