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Simple Summary: Epstein–Barr virus is a highly prevalent virus associated with a multitude of
diseases, including autoimmune conditions such as multiple sclerosis and many types of cancer. As
such, it is imperative to have a foundational understanding of this virus. This review discusses the
contribution of the Epstein–Barr virus to key hematologic malignancies with a focus on the roles of
latent proteins, including diffuse large B-cell lymphoma, Hodgkin lymphoma, Burkitt lymphoma,
NK/T-cell lymphoma, and primary CNS lymphoma. It then provides a brief overview of treatment
for each of these diseases.

Abstract: The clinical significance of Epstein–Barr virus (EBV) cannot be understated. Not only
does it infect approximately 90% of the world’s population, but it is also associated with numer-
ous pathologies. Diseases linked to this virus include hematologic malignancies such as diffuse
large B-cell lymphoma, Hodgkin lymphoma, Burkitt lymphoma, primary CNS lymphoma, and
NK/T-cell lymphoma, epithelial malignancies such as nasopharyngeal carcinoma and gastric can-
cer, autoimmune diseases such as multiple sclerosis, Graves’ disease, and lupus. While treatment
for these disease states is ever evolving, much work remains to more fully elucidate the relation-
ship between EBV, its associated disease states, and their treatments. This paper begins with an
overview of EBV latency and latency-associated proteins. It will then review EBV’s contributions to
select hematologic malignancies with a focus on the contribution of latent proteins as well as their
associated management.
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1. Introduction

Epstein–Barr virus (EBV) is a wide-spread viral pathogen afflicting approximately
90% of the world’s population [1]. Infection most typically occurs following exposure to
infected oral secretions, although routes of transmission are recognized, including allograft
transplantation and blood transfusion [1].

Primary infection acquired at a young age is often asymptomatic. Symptomatic pri-
mary infection usually occurs in adolescence or young adulthood and results in infectious
mononucleosis [2], which presents with symptoms of fever, pharyngitis, tender adenopathy,
and fatigue [2,3]. Interestingly, individuals with asymptomatic infection have demonstrated
viral loads identical to those with symptomatic infections. The presence of symptoms has
been found to be instead dictated by the host immune response [4].

A key feature of EBV infection is its ability to establish latent infections in B cells [5].
Long-term infection of B cells coupled with cellular transformation and viral protein ex-
pression are key elements in EBV-mediated carcinogenesis [6]. Given these abilities, it is not
surprising that EBV is associated with a host of malignancies [6]. Amongst the hematologic
malignancies, EBV is associated with diffuse large B-cell lymphoma (DLBCL) [7], classic
Hodgkin lymphoma [8], NK/T-cell lymphoma [9], post-transplant lymphoproliferative
disorders (PTLD) [10], Burkitt lymphoma [11], and primary CNS lymphoma [12]. EBV
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has also been linked to multiple epithelial malignancies [13], including gastric cancer [14]
and nasopharyngeal cancer [15]. These EBV-associated malignancies were thought to be
responsible for 239,700–357,900 new cases and 137,900–208,700 deaths in 2020 [16]. It is
estimated that EBV causes 1.8% of all cancer-related deaths worldwide [17]. Indeed, just
EBV-associated gastric cancer, nasopharyngeal carcinoma, Burkitt lymphoma, and Hodgkin
lymphoma were responsible for 164,000 deaths [18]. In addition, there is less conclusive
evidence linking EBV to the pathogenesis of multiple other epithelial malignancies [13].
EBV proteins, which will be discussed further in this article, are key to the oncogenic
process [19].

Beyond malignancies, EBV has been linked with several other pathologic states, includ-
ing encephalitis [20], oral hairy leukoplakia [21], EBV-associated post-transplant lympho-
proliferative disorder [22], Alzheimer’s disease [23], and autoimmune conditions such as
Graves’ disease [24], systemic lupus erythematosus, Sjögren’s syndrome, and rheumatoid
arthritis [25]. In addition, it was recently demonstrated that EBV-infected patients have a
32-fold increased risk of developing multiple sclerosis [26].

EBV, also known as Human herpesvirus 4 (HHV-4), is a member of the Gammaher-
pesvirinae subfamily of Herpesviridae family. Its viral structure, which is similar to those of
other herpesviruses, includes a double-stranded DNA core with a surrounding icosahedral
capsid [27]. There is a surrounding envelope with glycoprotein spikes as well as a protein
tegument between the capsule and the envelope [28]. Envelope glycoproteins have multiple
important roles (reviewed in [29]) ranging from cellular entry [30] and viral assembly [31]
to immune evasion [32]. EBV glycoproteins help dictate its preferential tropism for B cells,
which has important implications in generating B-cell pathologies [33].

This review will begin with a brief overview of B-cell latent proteins and their role in
B-cell transformation. This will be followed by a discussion of other proteins expressed
by EBV that are important in the oncogenic process. We will then review the pathogenesis
(with a focus on latent proteins) and treatment options for key hematologic malignancies
associated with EBV.

2. EBV Latency

EBV can establish multiple types of latent infection, termed latency 0, I, II, and III,
depending on factors such as cell type, local environment, and time since infection. They
are differentiated from one another by the genes expressed [34]. Type 0 latency is typically
seen during latent infection of memory B cells. No latent proteins are expressed, although
Epstein–Barr virus-encoded small RNAs (EBERs) are seen. In type I latency, Epstein–Barr
nuclear antigen (EBNA) 1 is expressed in addition to EBERs. Type II latency features the
expression of EBERs, EBNA1, latent membrane protein (LMP) 1, and LMP2. Type III latency
features the most expansive expression profile. The expressed proteins include EBNA2,
EBNA3, and EBNA-leader protein (EBNA-LP) in addition to all those expressed in type II
latency [35,36].

Malignancies are more strongly associated with specific latent states [37]. For example,
Burkitt’s lymphoma is associated with type I latency while DLBCL is associated with type
II latency and, less frequently, type III latency. PTLD is usually associated with type III
latency [37] and type II latency is seen with Hodgkin lymphoma [38] as well as NK/T
lymphomas [39]. Figure 1 demonstrates patterns of EBV latent gene expression.
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Figure 1. Patterns of gene expression in Epstein-Barr virus (EBV) latency. Following initial infection,
EBV establishes 4 common patterns of gene expression termed type 0 latency, type I latency, type II
latency, and type III latency. No proteins are expressed in type 0 latency. In type I latency, Epstein–
Barr nuclear antigen (EBNA) 1 is the only protein expressed. In type II latency, EBNA1, latent
membrane protein (LMP) 1, and LMP2 are expressed. Type III latency features the expression of all
EBV-associated latency proteins including EBNA1, EBNA2, EBNA3, EBNA-LP, LMP1, and LMP2.
Notably, Epstein–Barr virus-encoded small RNAs (EBERs) are expressed in all forms of latency.

Brief Overview of EBV Latent Proteins

A primary role of EBNA1 is viral genome maintenance [40]. This process is reliant
on EBNA1 forming a cross-link with the EBV origin of plasmid replication (oriP) [41].
Furthermore, it has been shown that EBNA1 contains SUMO-interacting motifs (SIMs)
that are essential in maintaining latency through inhibition of the Small-Ubiquitin-related
modifier (SUMO) 2 complex including STUB1, KAP1, and USP7 [42]. This protein has
also been implicated in immortalization and survival. Indeed, it is required for efficient
transformation [43]. Its expression has been associated with increased levels of reactive
oxygen species (ROS) such as 8-Oxoguanine-glycosylase-1 (OGG1). Importantly, it also
upregulates antioxidant pathways such as MTH1 pyrophosphatase. Furthermore, MTH1
inhibitors cause DNA damage in EBNA1+ cells, and MTH1 upregulation limits oxidative
stress caused by EBV [44]. It also stimulates expression of other latent genes [40]. Recent
evidence has indicated that EBNA1 has many roles beyond viral episome maintenance,
including viral persistence, cell survival, and oncogenesis [40].

EBNA2 is expressed very early in the infection cycle [45]. Pich et al. found that
it was the only essential latent gene for early latent gene reprogramming [46]. These
results are consistent with previous experiments showing that EBNA2 is essential in B-cell
transformation [47]. However, in vivo experiments indicate that EBNA2 deletion does not
preclude the establishment of infection [48] or development of cancer [49]. Notably, EBNA2
expression is highly efficient; experiments have shown that a single detectable EBV genome
is sufficient to drive EBNA2 expression [50].

EBNA2 also plays important roles in altering cellular protein expression profiles.
For example, CD23, also called Blast2/Fc epsilon RII, is a B-cell activation antigen that
is upregulated by EBNA2 [50,51]. In addition, Yanagi et al. used RNAseq to show that
EBNA2 induces programmed death ligand 1 (PD-L1) expression to further evade host
immunity [52]. Their findings regarding PD-L1 are consistent with previous results demon-
strating increased PD-L1 expression in Burkitt lymphoma and DLBCL secondary to de-
creased miR-34a expression, which targets PD-L1. The postulated mechanism is as follows:
EBNA2 recruits EBF1 to the miR-34a promoter with the subsequent downregulation of
miR-34a expression and increased PD-L1 levels [53]. Other genes induced by EBNA2
include those involved in the cell cycle, metabolic processes, membrane morphogenesis,
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and vesicle regulation. Immune signaling genes have been shown to be suppressed by
EBNA2 [52]. EBNA2 also plays a role in immune evasion through the downregulation of
human leukocyte antigen (HLA) class II molecules by decreasing CIITA expression [54].

Like EBNA2, EBNA-LP is expressed very early in the infection cycle [45]. The primary
role of EBNA-LP is to act as a co-activator of EBNA2 [55]. In conjunction with EBNA2,
EBNA-LP is involved in B-cell transformation through activation of viral and cellular
transcription [56], for example, through their effects on EBF1 and RBP-jκ [57]. There is some
evidence supporting a broader role for EBNA-LP, including the modulation of alternative
splicing [58], transcription factor recruitment [59], and cell survival [59].

The EBNA3 proteins are transcriptional regulators that include EBNA3A, EBNA3B,
and EBNA3C [60]. EBNA3A and 3C are required for B-cell transformation [61] while 3B
is not [62]. Interestingly, this family of proteins has conflicting roles in oncogenesis, with
EBNA3A and 3C promoting carcinogenesis and 3B inhibiting it [63]. EBNA3A promotes
cancer formation through mechanisms such as stimulating cell proliferation via repressing
p21WAF1/CIP1, a cyclin-dependent kinase inhibitor [64], targeting tumor suppressor
pathways [65], and altering cell cycle regulation [65]. EBNA3C promotes oncogenesis via
multiple mechanisms including targeting tumor suppressor proteins [65] and disrupting
cell cycle progression [66]. In addition, EBNA3A and 3C combine to prevent B cells from
differentiating into plasma cells, which contributes to the establishment of long-term latent
infection and lymphomagenesis [63]. EBNA3B is a tumor suppressor; indeed, mouse
studies showed that B cells infected with an EBNA3B-deficient strain of EBV formed
highly aggressive, DLBCL-like tumors. Cells infected with an EBV strain lacking EBNA3B
demonstrated decreased T-cell-mediated killing secondary to the decreased secretion of the
chemoattractant CXCL10. These tumors also proliferated more quickly [67].

The transformative potential of LMP1 was first recognized several decades ago when
its expression was noted to stimulate anchorage-independent growth and to abrogate
contact inhibition in RAT1 cells. This early experiment noted that LMP1-expressing cells
were tumorigenic [68]. Since then, it has been recognized as a key oncogene that mimics
CD40 signaling in B cells [34] and is critical for B-cell transformation [69]. Interestingly,
one study showed that treatment of EBV+ cells with N-acetylcysteine amide (NACA)
reduced LMP1 expression. Furthermore, cells treated with NACA had diminished cell
division and lymphoblastoid cell line (LCL) outgrowth [70]. Furthermore, LMP1 has been
associated with the increased expression of PD-L1 in multiple lymphoid malignancies.
LMP1+ cells have demonstrated increased PD-L1 expression when compared to LMP1−

cells [71]. This has significant implications regarding therapeutic options for EBV-associated
malignancies [72,73]. LMP1 has multiple other functions, including cytokine/chemokine
induction, tumor angiogenesis, and immune modulation [69]. The variety of roles played
by LMP1 can be explained by its extensive capacity to alter cell pathway regulation. For
example, it has been shown to upregulate molecular signaling pathways such as NF-κB [74],
Jak/STAT [75], EGFR [76], and ERK [76,77].

LMP2A is best known to mimic B-cell receptor (BCR) signaling. At the same time,
it blocks BCR signaling to prevent lytic replication [78,79]. Mechanistically, it has been
shown to mediate this effect through its immunoreceptor tyrosine activation motif (ITAM).
Mutations to the ITAM allowed for tyrosine phosphorylation, calcium mobilization, and
BZLF1 induction following BCR cross-linking. In addition, Syk protein tyrosine kinase
(PTK) could no longer bind LMP2A in cells infected with the mutant virus strains [78].
Subsequent experiments confirmed LMP2A mimicry of a multitude of BCR signaling
events, including phosphorylation of SYK, the BLNK, BTK, and PLCγ2 complex, and
NFAT [79]. However, its impact extends beyond that of a BCR mimic. In fact, it was shown
to regulate a slew of cellular processes that promote cellular survival and proliferation,
including cell cycle progression, apoptosis, and proliferation [79].

LMP2B promotes the transition from latent to lytic replication. LMP2B overexpres-
sion resulted in the increased expression of lytic genes and reduced the amount of BCR
stimulation required to transition to the lytic cycle in one study [80]. LMP2B has also been
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implicated in epithelial cell spread [81]. A more comprehensive discussion of EBV latent
proteins can be found elsewhere [39,40,55,65,69,81].

In essence, EBV expresses latent proteins that play key roles in the pathogenesis of
EBV infection. Furthermore, they play essential roles in carcinogenesis. These proteins are
responsible for a diverse variety of functions ranging from cell transformation/cell repro-
gramming to immune evasion, immune suppression, angiogenesis, cell cycle regulation,
and BCR mimicry.

3. EBV and Oncogenesis

EBV is associated with numerous subtypes of lymphoma [82,83]. The following section
will discuss EBV’s contribution to lymphomagenesis.

3.1. Diffuse Large B-Cell Lymphoma

EBV+ diffuses large B-cell lymphoma (DLBCL); not otherwise specified (NOS) is
an aggressive lymphoma variant with a relatively poor prognosis [84]. This entity was
originally associated with the elderly [85], leading to the hypothesis that the immune
senescence that naturally occurs with aging may play a role in its oncogenesis [86]. The
aging immune system develops many changes, including but not limited to chronic low-
level inflammation, a diminished ability to handle pathogens, and an increased risk of
autoimmunity and cancer [87]. DLBCL has since been recognized as an entity that can
affect younger individuals as well [88,89].

EBV+ DLBCL typically expresses a type III latency program [84], and EBNA2 has been
shown to play a role in its oncogenesis. One way in which this is accomplished is through
the induction of PD-L1. Notably in one study, when EBNA2 expression was induced by in-
fecting the EBV negative DLBCL cell lines U2932 and SUDHL5 with EBV, PD-L1 expression
was upregulated in both lines. When tested in EBNA2-transfected U2932 cells, miR-34a, a
cellular miRNA, was downregulated [53]. Notably, miR-34a expression is inversely corre-
lated with PD-L1 expression [90]. miR-34a overexpression in this infected cell line resulted
in significant tumor cell death, indicating that the EBNA2-mediated downregulation of
miR-34a and subsequent upregulation of PD-L1 suppresses the immunogenicity of infected
cells. Consistent with these results, EBV+ DLBCL cells obtained from patients demonstrated
higher PD-L1 expression. The increase in PD-L1 expression in EBNA2+ samples when
compared to EBNA2− samples was particularly conspicuous when assessing the number
of cells that stained strongly for PD-L1 [53].

S1PR2 Is a sphingosine receptor that has been shown to prevent B-cell migration out
of germinal centers [91]. Indeed, S1PR2 signaling is inactivated in DLBCL [92]. A recent
set of experiments has implicated LMP1 in dysregulated S1PR2 signaling. Samples of
EBV+ DLBCL with intact LMP1 expression were more likely to lack S1PR2 than tumors not
expressing LMP1. Downstream effects of the reduced S1PR2 expression include constitutive
PI3K path expression [93]. In mouse models, LMP1 has also been shown to cooperate with
Ebf1 and Rel to promote lymphomagenesis. Following the induction of LMP1 expression in
CD43− B cells from R26LMP1stopf mice, retroviruses carrying either Ebf1 or Rel genes were
introduced into the cell. LMP1-expressing cells transformed into mouse lymphoblastoid
cell lines with the addition of either Ebf1 or Rel, but not with the control. The authors
further showed that loss of plasma cell differentiation secondary to Ebf1 activation, or as
yet undiscovered events in Relhigh cells, is a key element of LMP1 lymphomagenesis [94].
Notably, LMP1 was previously implicated in preventing B-cell differentiation into plasma
cells by downregulating BLIMP1α [95].

Murine experiments also demonstrated that LMP1 collaborates with LMP2A to pro-
mote early lymphomagenesis, but that neither protein is absolutely required. Working with
Humanized NOD/LtSz-scid/IL2Rγnull mice, Ma et al. demonstrated that deleting LMP1
and LMP2A simultaneously did not inhibit the development of lymphomas. However,
the frequency with which lymphomas developed was reduced, and tumors took longer to
develop [96].
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Nagel et al. recently demonstrated that NKL homeobox gene activity is dysregulated
in DLBCL [97]. Expression profiling of DOHH-2 cells, a DLBCL line with <5% EBV
positivity, unsurprisingly demonstrated altered expression patterns of several B-cell genes
between the EBV+ and EBV− subsets, including the downregulation of BCL6, BACH2,
and IL4R and increased levels of IRF4, MIR155HG, and PRDM1. The NKL homeobox
genes HLX, NKX6-3, and MSX1 also demonstrated altered expression profiling in DOHH-2
cells, a difference that was particularly notable in HLX and NKX6-3 cells. Subsequent
experiments demonstrated that EBV-mediated STAT3 upregulation increased HLX activity.
Notably, it was demonstrated that HLX inhibits B-cell differentiation factors SPIB and IL4R.
The authors further showed that EBV inhibited apoptosis in the presence of etoposide,
potentially through the activation of HXL and subsequent downregulation of the pro-
apoptotic gene BCL2L11/BIM [98].

EBV+ DLBCL expresses increased levels of NF-κB when compared to
EBV− DLBCL [99,100]. Indeed, nuclear staining for the NF-κB subunits p105/p50 and
p100/p52 showed that 79% of cases were positive for the former, 74% for the latter, and
63% were positive for both subunits. These results are consistent with NF-κB activation
through both the classical and alternative pathways. The authors concluded that EBV may
play a role in activating the NF-κB pathway in DLBCL [99].

In summary, EBV latent proteins stimulate a wide variety of changes that promote the
formation of DLBCL, such as the upregulation of PD-L1, which has major implications in
treatment. Management will be discussed in the next section. It also stimulates alteration
in S1PR2 signaling, which has significant downstream effects, and upregulation of STAT3.
These changes cumulatively promote the formation of DLBCL.

Management

Treatment for DLBCL includes rituximab (anti-CD20 monoclonal antibody), cyclophos-
phamide, doxorubicin, vincristine, and prednisone (R-CHOP R-CHOP has demonstrated
less significant responses in EBV+ DLBCL than in EBV− DLBCL patients [7]. Currently,
there are no accepted treatments targeting EBV+ DLBCL, and the development of such tar-
geted treatment remains elusive [101,102]. A phase II trial used the knowledge that LMP1
has a similar function to that of the BTK-dependent B-cell receptor and used ibrutinib, a BTK
inhibitor in combination with R-CHOP. While effective, it did not demonstrate a significant
improvement when compared to R-CHOP. It was, however, associated with serious toxicity
and treatment-related death in older patients [103]. POLARIX, a double-blind phase III
trial, evaluated a modified R-CHOP regimen (pola-R-CHP) where polatuzumub vedotin
(anti-79b monoclonal antibody) replaced vincristine. Patients receiving pola-R-CHP had
lower rates of disease progression/relapse than those receiving R-CHOP [104]. Bortezomib
is another agent that, when tested in mice, induced the apoptosis of EBV-transformed B cells
and prolonged survival following the inoculation of those mice with the afore-mentioned
transformed B cells [105]. Lenalidomide exhibited antitumor activity against DLBCL cells,
particularly ABC-DLBCL cells. It was postulated that this difference arises through the
inhibition of IRF4 expression and BCR-NF-κB signaling pathway in a cereblon-dependent
manner [106]. PD-L1 is associated with a poor prognosis in aggressive lymphomas, and
PD-L1 is commonly upregulated in EBV+ lymphoproliferative disorders (LPD). Nivolumab,
a fully human IgG4 monoclonal anti-PD-1 antibody, is both safe and effective in lymphoid
malignancies. A phase II study including nine patients hypothesized that PD-1 blockade
may treat EBV+ LPD and NHL by reversing tumor-specific T-cell inactivation. ORR was
60% (three out of five) and CR was 40% (two out of five) in the LPD group [107]. The
adoptive transfer of antigen-specific T lymphocytes is emerging as a potential avenue for
the treatment of virus-associated malignancies, including EBV-associated malignancy [108].
In a cohort of 101 patients assessing anti-CD19 chimeric antigen receptor (CAR) T-cell
therapy, there was an objective response rate of 76%. Overall, 47% of patients experienced
a complete response, and progression-free survival at 1 month was 92%. It was 53% at
3 months [109]. A trial by Wudhikarn et al. assessed the efficacy of CAR T-cell therapy



Cancers 2023, 15, 2133 7 of 23

in relapsed/refractory DLBCL in patients who had no evidence of disease at the time
of CAR T-cell treatment. A total of 24 patients received tisagenlecleucel and 9 received
axicabtagene ciloleucel. Event-free survival was 59.6% and overall survival was 81.3% [110].
There are several ongoing studies for the treatment of EBV+ DLBCL, such as the NAVAL-1
(nanatinostat in combination with valganciclovir) phase II trial. Nanatinostat targets spe-
cific class I HDAC isoforms. Class I HDAC suppression results in the activation of the
lytic gene BGLF4 and subsequent activation of ganciclovir [111,112]. The combination
of nanatinostat and valganciclovir was further analyzed by Haverkos et al. in a phase
Ib/II trial that showed a 67% overall response rate, including a 33% complete response
rate in DLBCL [112]. Another study seeking to develop EBV-directed therapy is a phase
II, prospective, multi-center study assessing the combination of Sintilimab (an anti-PD-1
antibody) and R-CHOP in previously untreated patients with EBV+ DLBCL, NOS [113].

3.2. Classic Hodgkin Lymphoma

Hodgkin lymphoma is a malignancy characterized by the presence of Hodgkin cells,
which are mononucleated, and Reed–Sternberg cells, which are binucleated. These cells
express clusters of differentiation (CD) 20, 30, and occasionally CD15. They are thought
to originate from pre-apoptotic germinal center B cells [114]. Notably, these cells are
relatively rare compared to the inflammatory tumor microenvironment in which they
exist [115]. EBV’s relation to such cells has long been known [116]. Indeed, it is estimated
that approximately 30% of classical Hodgkin lymphoma (cHL) cases in the Western world
are associated with EBV [117], and recent research has shown that the lymphomagenesis of
a subset of EBV− lymphomas may in fact be related to EBV [118]. Notably, this statistic does
not reflect the nodular lymphocyte-predominant variant of Hodgkin lymphoma, which
can have EBV+ lymphocyte-predominant cells, but is not typically EBV-associated [119].

As was previously mentioned, Hodgkin lymphoma is characterized by a type II la-
tency program [39]. LMP1 plays a key role in lymphomagenesis, in part through the
reprogramming of germinal center (GC) B cells so they more closely resemble a Hodgkin
Reed–Sternberg cell (HRS) phenotype [120]. Of 20,551 GC B-cell genes examined on the
HG-U133 plus microarray, LMP1 upregulated 622 and downregulated 1304. Common
pathways with altered expression in both LMP1-infected cells and HRS cells include NF-κB,
AP-1/ATF, STAT, and PI3K as well as FAS/CD95 and anti-apoptotic genes. Pro-apoptotic
genes were downregulated. A total of 881 genes were changed by both LMP1 and HRS
cells [120]. LMP1 downregulated B-cell-specific genes and upregulated the B-cell-specific
gene suppressor ID2 [120]. Loss of B-cell-specific genes is a hallmark of HRS cells [121].
Notably, many of the pathways upregulated by LMP1, such as NF-κB and JAK/STAT, are
also upregulated in HRS cells [115]. LMP1 has additionally been shown to induce CD137
in HRS cells through the activation of the PI3K-AKT-mTOR signaling axis [122]. CD137
activity was previously shown to contribute to immune evasion in Hodgkin lymphoma by
inhibiting T-cell activation through downregulation of CD137 ligand [123]. LMP1 expres-
sion was further demonstrated to correlate with the expression of the chemokines CCL17
and CCL22 production in HRS [124]. These chemokines have previously been shown to en-
hance regulatory T-cell (Treg) recruitment in various EBV-related malignancies [125,126]. In
addition, LMP1 expression plays a role in regulating autophagy. Hodgkin lymphoma cells
expressing LMP1 were better able to adapt to starvation-induced autophagic stress [127].

Alterations in the gene expression are a hallmark of lymphoma and of cancer in
general [128–130]. LMP2A also induces changes in B-cell gene transcription that mimic
Reed–Sternberg cells [131]. Indeed, LMP2A was noted to result in the differential expression
of 159 genes in LMP2A-expressing BJAB cells and 139 genes in EBV-infected LCLs. These
changes impacted genes involved in multiple cellular processes including ubiquitination,
transcription, and cell cycle/apoptosis. Interestingly, genes implicated in RNA/DNA
were impacted in human cell lines, implying that LMP2A can cause deregulated DNA
replication/gene transcription [131]. Furthermore, Anderson and Longnecker used a
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mouse model to demonstrate that LMP2A acts through the Notch1 pathway to impact
B-cell development [132].

Another way in which LMP2A contributes to the pathogenesis of Hodgkin’s lym-
phoma is through its impact on the tumor microenvironment (TME) [133]. The TME in
cHL is highly complex and plays many roles, including immune suppression, survival,
and proliferation. One mechanism by which this occurs is by attracting immune cells
into the TME [117]. LMP2A expression was highly correlated with the expression of the
cytokine MIP-1α [133]. Cells containing mutant EBV whose LMP2A did not bind SYK did
not upregulate MIP-1α expression. The same set of experiments demonstrated that LMP2A
upregulates MIP-1α expression through the activation of Syk/PI3K/NF-κB signaling [133].

EBNA1 has also been implicated in the pathogenesis of cHL, for example, through
promoting the survival of Reed–Sternberg cells [134]. For example, protein tyrosine phos-
phatase receptor kappa (PTPRK) expression was shown to be downregulated in EBV
infection. Mechanistically, it was determined that this downregulation was accomplished
through the downregulation of SMAD2. These results are significant because PTPRK is a
tumor suppressor protein. Indeed, the downregulation of PTPRK mRNA and protein re-
sulted in a significant increase in both cell viability and proliferation. EBV+ cHL tumor cells
demonstrated more frequent downregulation of PTPRK than EBV− cHL tumor cells [135].
Furthermore, EBV increases the expression of CCL20 to promote Treg migration. This al-
lows EBV to recruit Tregs to the TME, which provides a mechanism by which EBV-infected
cells can downregulate the anti-tumor immune response [136].

In summary, EBV promotes a rather dramatic change in B cells to promote the patho-
genesis of cHL, including a wholesale reprogramming of genetic expression to more closely
resemble a HRS phenotype. Changes include alterations in numerous pathways such as
anti-apoptotic paths, FAS/CD95, and STAT. It also plays a role in immune evasion. LMP2A
contributes to the remodeling of B cells to more closely mimic the transcription pattern of
HRS cells. It also alters the TME, which has numerous critical roles in immune suppression,
survival, and proliferation. EBNA1 also contributes to cHL pathogenesis, for example,
through its pro-survival effects on HRS cells.

Management

The initial treatment of Hodgkin lymphoma depends on disease stage and prognostic
factors. Patients are divided into three groups: patients with early-stage disease with fa-
vorable prognostic factors, patients with limited-stage disease and unfavorable prognostic
factors, and those with advanced-stage disease [137]. Combination chemoradiotherapy
remains integral to the treatment of patients with early disease and either favorable or
unfavorable factors. ABVD (doxorubicin, bleomycin, vinblastine, dacarbazine), BEACOPP
(bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, pred-
nisone), and MOPP (nitrogen mustard, vincristine, procarbazine, prednisone) are some of
the chemotherapy regimens used along with radiation depending on disease stage. Patients
with advanced disease receive chemotherapy alone [137]. Detecting EBV within cHL may
help confirm diagnosis but does not influence therapeutic selection. [18,115]. In general,
outcomes are poor in the elderly [138], and an EBV+ status is associated with even worse
prognosis [139]. EBV infection constitutes another means for PD-L1 induction in cHL,
and PD-1 blockade represents a possible avenue for targeted therapy. [140]. Brentuximab
vedotin, an anti-CD30 antibody, is another therapy that has been examined in the setting
of cHL [141]. For example, a recent phase I–II trial examined this drug in combination
with nivolumab in the setting of relapsed/refractory cHL. Patients could receive an autol-
ogous stem cell transplant (ASCT), but did not have to, following therapy. The objective
response rate was 85%, including a 67% complete response rate. Overall survival was 93%
at 3 years [142]. The phase II HOVON/LLPC Transplant bRaVE trial assessed its efficacy in
relapsed/refractory cHL in combination with dexamethasone, high-dose cytarabine, and
cisplatin. Patients with partial/complete response went on to receive an autologous periph-
eral blood stem-cell transplant. 42 of 52 patients experienced a metabolic complete response
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prior to transplant while another 5 had a partial response prior to transplant. Progression
free survival was 74%, and overall survival was 95% at 2 years [143]. Brentuximab vedotin’s
role in stage III/IV cHL has also been examined. The Echelon-1 study demonstrated that
brentuximab vedotin combined with doxorubicin, vinblastine, and dacarbazine demon-
strated greater clinical efficacy than ABVD, with a 3-year progression-free survival of 83.1%
vs. 76.0%, respectively [144]. CAR T cells have likewise been shown to have potential as
a therapeutic modality in cHL [145]. For example, Ramos et al. assessed its efficacy in
patients with previously treated cHL. Patients had received an average of 7 previous lines
of chemotherapy. Of the 32 patients analyzed, overall response was 72%, including a 59%
complete response rate. 1 year progression-free survival was 36%, with an overall survival
rate of 94% [146]. Another trial assessed the results of autologous stem cell transplantation
in combination with anti-CD30 CAR T-cell therapy. 4 of 5 cHL patients experienced a
complete response with the other experiencing a partial response. Responses were durable
through the median follow up of 20.4 months [147]. Other therapies under study include
vaccine approaches that have been developed based on recombinant virus proteins or
virus peptides [148], EBV-specific cytotoxic T lymphocytes (CTLs) [148], therapies targeting
specific EBV latent proteins [149], and EBNA1 inhibitors [150].

3.3. Burkitt Lymphoma

Burkitt lymphoma is a non-Hodgkin lymphoma that predominantly affects children.
It is most strongly associated with a MYC oncogene translocation, although multiple other
mutations play key roles as well, including those affecting TP53, ARF, and DDX3X [151].
The association between Burkitt lymphoma and EBV has long been known; indeed, it is the
first cancer found to have viral contributions to its pathogenesis [151,152]. There are three
forms: endemic, sporadic, and AIDS-Burkitt lymphoma. All three types can be associated
with EBV [153]. Notably, at least for the endemic form, malaria is also involved in the
development of Burkitt lymphoma [154].

Burkitt lymphoma is primarily associated with a type I latency pattern, meaning
EBNA1 is the main protein expressed [37]. Indeed, there is some evidence that EBNA1 may
be involved in the pathogenesis of Burkitt lymphoma [155]. For example, EBNA1 knockout
using the transcription activator-like effector nuclease E1TN resulted in the death of cells
infected by EBV. Furthermore, it was noted to cause progressive loss of EBV episomes
from Burkitt lymphoma cells infected by EBV [156]. Wang et al. recently examined the
role of EBNA1 in the pathogenesis of Burkitt lymphoma [157]. Vav1, a proto-oncogene,
is aberrantly expressed in a multitude of B-cell malignancies, including non-Hodgkin
lymphoma [158]. This molecule impacted apoptosis in the EBV+ cell lines RAJI and LCL-1
but not the EBV− cell line BJAB [157]. Cell lines with decreased Vav1 expression had
increased levels of the pro-apoptotic BCL-2 protein Bim. It was subsequently shown that
Vav1 binds to EBNA1 and that EBNA1 expression was inversely correlated with Bim
expression. The implication is that the interaction between EBNA1 and Vav1 results in
enhanced resistance to apoptosis through suppression of Bim [157]. EBNA3A and EBNA3C
have also been shown to play a role in Bim suppression. This suppression was noted even
in the setting of latently infected cells. EBNA3A and EBNA3C appear to accomplish this
through downregulating Bim RNA. The survival advantage conferred by EBNA3A and
EBNA3C was negligible in the absence of Bim [159].

EBV-associated Burkitt lymphoma has differential gene expression when compared to
EBV− Burkitt lymphoma. It was recently shown that EBV miRNAs impact the molecular
profile of Burkitt lymphoma. Indeed, 103 genes known to be viral miRNA targets were
differentially expressed in EBV+ tumors when compared to EBV− tumors. These genes
were involved in many key cellular processes, including transcription, gene expression,
nucleotide/RNA metabolism, and apoptosis. Several were related to tumorigenesis, in-
cluding TP53, TGFB, mTOR, and others besides [160]. The substantial impact of miRNAs
corroborates studies demonstrating key roles for these molecules in Burkitt lymphoma
cell survival [161]. Ectopic BART miRNA introduced into Burkitt lymphoma cell lines
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resulted in decreased apoptosis and promoted cell proliferation. It was shown that BART
miRNAs target transcripts of CASP3 [161], a gene involved in apoptosis [162]. Subsequent
experiments demonstrated that the 12 BARTs inhibited CASP3 transcripts, with BART22
responsible for the most significant repression [163]. Moreover, BART miRNAs stimulated
B-cell transformation as well as survival and/or proliferation [161]. Furthermore, BARTs
have been shown to inhibit host defenses in the setting of Burkitt lymphoma. For example,
overexpression of miR-BART-6-3P resulted in a decreased expression of IL-6R. Furthermore,
it acted synergistically with the cellular microRNA miR-197, which also targets IL-6R, to
further downregulate IL-6R [164]. miR-BART-6-3P also acts synergistically with miR-142 to
reduce the expression of both IL-6R and PTEN [165], a tumor suppressor that inhibits the
PI3K/AKT/mTOR pathway [166].

In summary, Burkitt lymphoma is associated with type I latency. As such, EBNA1
is key to its pathogenesis. EBNA1 knockout results in the apoptosis of EBV-infected cells
and leads to episomal loss in Burkitt lymphoma cells. Furthermore, it results in aberrant
VAV1 expression, which ultimately enhances cell survival. EBV miRNAs significantly
alter the gene expression of multiple cell processes including apoptosis, transcription, and
gene regulation.

Management

The endemic subtype of Burkitt lymphoma is known to be universally associated with
EBV, and EBV is detected in 25% to 40% of sporadic and immunodeficiency-associated
cases [167]. Burkitt lymphoma is highly chemotherapy sensitive [167], and the com-
monly used regimens in the US include rituximab, etoposide, prednisone, vincristine,
cyclophosphamide, and doxorubicin (R-EPOCH); cyclophosphamide, doxorubicin, vin-
cristine, methotrexate, ifosfamide, cytarabine, and etoposide (CODOX-M/IVAC); hyper-
fractionated cyclophosphamide, vincristine, doxorubicin, dexamethasone alternating with
high-dose methotrexate, and cytarabine (hyper-CVAD) [167,168]. Low-dose adjusted R-
EPOCH facilitates the treatment of elderly and HIV-positive patients by reducing the
toxicity associated with higher intensity therapy. [169]. In patients with advanced disease,
autologous and allogeneic hematopoietic stem cell transplant are used as salvage therapy
followed by second-line chemotherapy for disease control [170]. Patients refractory to
primary treatment have a poor prognosis [171]. Autologous and allogeneic hematopoietic
stem cell transplant are used as salvage therapy with limited efficacy [170]. Abraham
Avigdor et al. reported a single case of Burkitt lymphoma refractory to multiple chemother-
apy regimens and allogenic HCT, where a good response was achieved with salvage
CAR T-cell therapy. Given the response, this treatment option could be considered for
those with relapsed/refractory disease. [172]. Dalton et al. reported the use of low-dose
decitabine, a hypomethylating agent. as a novel epigenetic therapeutic agent that can
sensitize weakly immunogenic (i.e., EBV+) Burkitt lymphoma expressing type I latency by
inducing the expression of more immunogenic proteins such as LMP1, EBNA2, EBNA3A,
and EBNA3C. Induction of these proteins allows for EBV-specific T cells to locate and lyse
tumor cells [173].

3.4. NK/T-Cell Lymphoma

NK/T-cell lymphoma is a type of non-Hodgkin lymphoma most frequently seen in
Latin America and Asia [174]. The predominant type is extranodal NK/T-cell lymphoma,
nasal type, although other pathologies exist [175]. Mutations are common, particularly
TP53, DDX3X, STAT3, JAK3, MGA, BCOR, ECSIT, and MCL1 [174]. These tumors are
strongly associated with EBV [174,175], although its precise role in generating these tumors
is not well explored [176].

One way in which EBV contributes to the pathogenesis of NK/T-cell lymphoma
is through the actions of LMP1. LMP1 activates PGC1β, a member of the peroxisome
proliferator-activated receptor-γ (PPARγ) coactivator-1 (PGC1) family, via activation of
NF-κB [177]. PGC1β has previously been implicated in tumorigenesis [178,179]. mRNA
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and protein levels of PGC1β and its downstream target 8-oxoguanine DNA glycosylase
(OGG1), a base excision repair enzyme, were significantly increased in multiple NK/T-cell
lines. Mechanistically, it was shown that this effect was mediated by NF-κB activation,
which subsequently regulated the PGC1β promoter [177]. Furthermore, the disruption
of the signaling pathway through the interruption of hexokinase domain component 1
(HKDC1) caused mitochondrial dysfunction and led to the generation of ROS. This led
to EBV suppression [177,180]. The role of LMP1 was further explored by Sun et al. [181],
who showed that short hairpin RNA (shRNA) targeting LMP1 reduced host migration
and invasion. It also promoted apoptosis in the human EBV+ NKTL cell line SNK-6. The
authors showed that the LMP1-mediated activation of NF-κB results in the increased
expression of elF4E [181], a molecule that has been associated with a poor prognosis in
multiple malignancies [182,183]. The LMP1/NF-κB/elF4E axis then increases proliferation,
migration, and invasion [181]. LMP1 has also been shown to decrease the expression of
miR-15a. Suppression of miR-15a allows for increased expression of MYB and cyclin D1
and subsequent increased cell proliferation [184].

Interestingly, LMP1 expression in NK/T-cell lymphomas appears to be linked to
the TME; monocytes co-cultured with nasal NK/T-cell lymphoma cells stimulated both
LMP1 expression and cell proliferation through contact-dependent interactions. This effect
was mediated by IL-15 as was evidenced by the fact that treatment with IL-15 antibodies
abrogated this effect [185].

In summary, LMP1 upregulates PCG1β, which results in the upregulation in the base
excision repair enzyme OGG1. Alterations in this signaling pathway led to mitochondrial
dysfunction and subsequent ROS activation. In addition, LMP1 plays roles in migration,
invasion, cell survival, and cell cycle progression. It also plays a role in manipulating
the TME.

Management

Traditional therapies targeting B-cell lymphomas are largely ineffective in NK/T-cell
lymphomas [186]. The majority of effective therapies include asparaginase [186], a com-
pound shown to cause apoptosis in NK/T cells [187], or its pegylated form [186]. Treatment
typically involves chemoradiotherapy [186,188]. There are multiple potential chemotherapy
regiments recommended by the NCCN guidelines, including SMILE (steroid (dexametha-
sone), methotrexate, ifosfamide, pegaspargase, and etoposide), P-GEMOX (gemcitabine,
pegaspargase, and oxaliplatin), and DDGP (dexamethasone, cisplatin, gemcitabine, and
pegaspargase) [188]. New research has examined EBV as a potential therapeutic target [189].
In a phase II trial, 15 patients were treated with baltaleucel-T, a preparation of autologous
cytotoxic T lymphocytes specific for EBV. Of the 15 patients, 10 had apparent disease prior
to treatment initiation (salvage cohort), and the other 5 had no apparent disease (adjuvant
cohort). Of the 10 patients in the salvage cohort, 2 had a partial response and 3 had a com-
plete response. Progression-free survival in this group was 12.3 months on average. two of
the five patients in the adjuvant cohort did not experience disease relapse. Additionally,
there was no apparent difference between the responders and non-responders in plasma
EBV DNA level [189].

Additional studies have examined T-cell therapy targeted towards LMP. While patients
with T-cell-mediated disease (2 year overall survival (OS) 60%) did not fare as well as
patients with B-cell-mediated disease (2 year OS 80%) [190], the data did compare favorably
to the Center for International Blood and Marrow Transplant Research (CIBMTR) data
(2 year OS 36%). In this latter study, patients received allogeneic hematopoietic stem cell
transplant therapy for extranodal NK/T-cell lymphoma [191]. While the data were not
statistically significant, patients responding to therapy tended to have received T cells
with a greater specificity for LMP2/EBV antigens and for those who had higher levels
of LMP2-specific T cells [190]. A separate trial examined the effectiveness of LMP1 and
LMP2A-specific cytotoxic T lymphocytes in a cohort of 10 patients who demonstrated a
complete response to therapy. OS at 4 years was 100%, and progression-free survival at
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4 years was 90%. Furthermore, levels of IFN-γ-secreting T cells specific for LMP1 and
LMP2A were inversely proportional to plasma levels of EBV DNA [192].

3.5. Primary CNS Lymphoma

Primary CNS lymphoma (PCNSL) is a fairly rare and lightly studied tumor limited
to the brain, eyes, and cerebrospinal fluid. The vast majority of PCNSLs are DLBCL [193],
although other histologies have been reported [194]. EBV plays a role in the development
of a subset of these cases [12]. EBV-associated PCNSL was recently shown to differ from
PCNSL not associated with EBV infection. EBV-associated PCNSL was significantly less
likely to have mutations. Mutations commonly seen in EBV negative PCNSL, such as
Myd88, PIM1, and CD79B, were not seen in EBV-associated PCNSL. EBV-associated tu-
mors were also much less likely to be ABC-DLBCL [12]. This finding was confirmed by
Radke et al. [195], who found HLA-DRB and immunoglobulin loci to be the only frequent
mutations seen in EBV+ cases. Notably, EBV status has a marked impact on survival, with
EBV+ patients having a significantly higher risk of death [196]. In summary, while more
research is required, EBV has been linked to primary CNS lymphoma. Evidence supporting
this fact includes differential mutation types and rates between EBV+ and EBV− CNS
lymphomas. EBV status also has significant implications in overall survival. Figure 2
provides a summary of how EBV latent proteins impact lymphomagenesis.
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Figure 2. EBV-associated latent proteins and tumorigenesis. EBV latent proteins are strongly associ-
ated with tumorigenesis. For example, in diffuse large B-cell lymphoma (DLBCL), represented by
dark gray in the figure, LMP1 inhibits BLIMP1 α and S1PR2. S1PR2 inhibition allows for increased
PI3K signaling. It also cooperates with REL and EBLF1 to promote lymphomagenesis. EBNA2
inhibits miR-34a, which allows for increased expression of PDL1. In Hodgkin lymphoma, represented
by blue in the figure, LMP1 stimulates CD137 activity through the PI3K/AKT/mTOR pathway. It
also promotes expression of the chemokines CCL17 and CCL22. Furthermore, it promotes mutations
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that cause cells to more closely resemble HRS cells. LMP2A stimulates increased signaling through
Syk/PI3K/NF-κB, which results in increased expression of the cytokine MIP-1α. EBNA1 inhibits
SMAD2, which in turn decreases expression of the tumor repressor PTPRK. Activation of LMP1 in
NK/T lymphoma, represented by green in the figure, increases expression of IL-15. It also mediates
NF-κB activation, which in turn leads to increased expression of PGC1β and its target, the base
excision repair enzyme OGG1. NF-κB also increases ELF4E expression, which promotes proliferation,
migration, and invasion. Lastly, it inhibits miR-15a, which leads to increased Myb and cyclin D1
expression. Green arrows in the figure indicate that the next step in the pathway is upregulated while
red arrows indicate inhibition of the next step.

Management

EBV-associated PCNSL in the immunosuppressed is its own separate entity compared
to EBV−, HIV− PCNSL. Prospective therapies ideally are capable of penetrating the blood–
brain barrier, interrupting EBV-mediated oncogenesis, and targeting EBV antigens [12].
The regimens used in non-CNS lymphoma, such as R-CHOP, are ineffective in PCNSL
due to inadequate penetration of the blood–brain barrier [197]. Current guidelines suggest
that rituximab and high-dose methotrexate should be a part of induction therapy [193].
The different regimes used for induction include R-MVP (rituximab, HD-MTX, vincristine,
and procarbazine; R-MT (rituximab, HD-MTX, and temozolomide); MATRix (thiotepa,
rituximab and HD-MTX, high-dose cytarabine) [193]. Relapsed/refractory cases have
poor prognosis, and no optimal therapy has been established [193,198]. Currently, MTX
salvage therapy is used, but several prospective studies involving combination regimens
(rituximab and temozolomide) [199] and single agents such as pemetrexed, topotecan,
temozolomide, and rituximab have shown acceptable objective response rates [200–203].
Ibrutinib (BTK-inhibitor) has shown impressive phase I efficacy in recurrent/refractory
PCNSL [198]. Using EBV+ blood donors, Haque et al. generated EBV-specific cytotoxic
T lymphocytes to treat EBV+ PTLD with promising results [204]. It is likely that EBV-
specific CTL can be utilized in treating other EBV-associated malignancies [205]. A phase I
Australasian Leukemia/Lymphoma Group clinical trial is also examining the possibility
of incorporating EBV-specific third-party T cells (ACTRN12618001541291) in treatment
regimens [12]. Slobod et al. had promising results treating two patients with HIV-associated
PCNSL [206]. Table 1 includes a summary of therapeutic options for the EBV-related
malignancies discussed above.

Table 1. Treatment for EBV-related lymphomas.

Cancer Therapy Notes Citation

DLBCL Rituximab, cyclophosphamide, doxorubicin,
vincristine, prednisone (R-CHOP)

Rituximab: anti-CD20 monoclonal antibody
Standard of care [7]

R-CHOP + ibrutinib Ibrutinib: BTK inhibitor included because
LMP1 mimics BTK-dependent B-cell receptor [103]

Rituximab, cyclophosphamide, doxorubicin,
polatuzumab vedotin, prednisone

(pola-R-CHP)

Polatuzumab vedotin: anti-79b
monoclonal antibody [104]

Bortezomib Apoptosis of EBV-transformed B cells in mice [105]

Lenalidomide Inhibits IRF4 and BCR-NF-κB [106]

Nivolumab IgG4 monoclonal antibody targeting PD-1 [107]

Antigen-specific T cells [108–110]

Nanatinostat + valganciclovir Nanatinostat: selective for isoforms of
class I HDACs [111,112]

R-CHOP + Sintilimab Sintilimab: anti-PD-1 antibody [113]

Classic Hodgkin
Lymphoma

Doxorubicin, bleomycin, vinblastine,
dacarbazine (ABVD)

Standard of care, can be used in combination
with radiation [137]
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Table 1. Cont.

Cancer Therapy Notes Citation

Bleomycin, etoposide, doxorubicin,
cyclophosphamide, vincristine, procarbazine,

prednisone (BEACOPP)

Standard of care, can be used in combination
with radiation [137]

Nitrogen mustard, vincristine, procarbazine,
prednisone (MOPP)

Standard of care, can be used in combination
with radiation [137]

Anti-PD-1 pathway immune
checkpoint inhibitors [140]

Brentuximab vedotin Anti-CD30 antibody [141–144]

T-cell therapy [145–148]

EBV vaccination [148]

Therapies targeting EBV latent
proteins/EBNA1 inhibitors [149,150]

Burkitt Lymphoma Rituximab, etoposide, prednisone, vincristine,
cyclophosphamide, doxorubicin (R-EPOCH)

Standard of care
Low dose adjusted form for

elderly/HIV+ patients
[167–169]

Cyclophosphomide, doxorubicin, vincristine,
methotrexate, ifosfamide cytarabine, etoposide

(CODOX-M/IVAC)
Standard of care [167–169]

Hyperfractionated cyclophosphamide,
vincristine, doxorubicin, dexamethasone

alternating with high-dose methotrexate and
cytarabine (hyperCVAD)

Standard of care [167–169]

Autologous/allogenic hematopoietic stem
cell transplant Salvage therapy [170]

T-cell therapy Case report of salvage therapy [172]

Decitabine Epigenetic induction of immunogenic
EBV proteins [173]

NK/T-cell lymphoma Asparaginase Key component of therapy; causes NK/T
cell apoptosis [186,187]

Steroid (dexamethasone), methotrexate,
ifosfamide, pegaspargase, etoposide (SMILE) Standard of care [188]

Gemcitabine, pegaspargase, oxaliplatin
(P-GEMOX) Standard of care [188]

Dexamethasone, cisplatin, gemcitabine,
pegaspargase (DDGP) Standard of care [188]

Balataleucel-T Autologous EBV-specific CTLs; studied in
salvage/adjuvant setting [189]

T-cell therapy targeting LMP [190,192]

Allogeneic hematopoietic cell transplantation [191]

Primary CNS lymphoma Rituximab + high-dose methotrexate Included in induction therapy [193]

Rituximab, HD MTX, vincristine,
procarbazine (R-MVP) Induction chemotherapy [193]

Rituximab, HD MTX, temozolomide (R-MT) Induction chemotherapy [193]

Thiotepa, rituximab, HD MTX, high-dose
cytarabine (MATRix) Induction chemotherapy [193]

Rituximab, temozolomide Salvage chemotherapy [199]

Single agent salvage therapy: temozolomide,
rituximab, pemetrexed, topotecan [200–203]

Ibrutinib BTK inhibitor [198]

EBV-specific CTLs Examined in PTLD, but may be applicable in
CNS lymphoma [12,204,205]

Hydroxyurea Case report [206]
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4. Conclusions

The clinical importance of EBV cannot be underestimated. It is associated with a
multitude of malignancies of both hematologic and epithelial origin. Lymphoid neoplasms
are prominently featured among the hematologic malignancies, including DLBCL, cHL,
Burkitt lymphoma, primary CNS lymphoma, and NK/T-cell lymphoma.

Treatment for these EBV-associated diseases is progressing. However, EBV is still
implicated in hundreds of thousands of new cancer cases per year and nearly 2% of all
cancer deaths. An improved understanding of the virus will allow for novel therapies that
could both enhance treatment and prevent the development of a multitude of diseases.
Indeed, advances are already underway. For example, both prophylactic and therapeutic
vaccines targeting EBV are under examination [207], and compounds are being assessed
for their antiviral efficacy [208]. However, more research is required to better address the
global health challenges posed by this virus.
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