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Simple Summary: ATRX is one of the most frequently mutated tumor suppressor genes in human
cancers. ATRX protein is a chromatin remodeler and transcriptional regulator that is essential
for normal development. ATRX plays a crucial role in several essential cellular pathways, such
as cooperating with DAXX to deposit histone variant H3.3 at repetitive regions, participating in
chromatin remodeling, and responding to replication stress and DNA damage repair. ATRX mutations
have been identified in several cancers and are considered important markers of clinical behavior,
especially in glioma. The disruption of ATRX may contribute to cancer development and resistance
to treatment. However, its role in tumorigenesis and the details of its mechanisms remain unclear. In
this review, we will summarize the function of ATRX in normal biology and cancer and discuss the
potential future direction of ATRX’s role in tumorigenesis. Understanding the functions of ATRX in
cancers will help to develop more efficient and targeted anticancer therapies.

Abstract: The alpha-thalassemia mental retardation X-linked (ATRX) syndrome protein is a chromatin
remodeling protein that primarily promotes the deposit of H3.3 histone variants in the telomere
area. ATRX mutations not only cause ATRX syndrome but also influence development and promote
cancer. The primary molecular characteristics of ATRX, including its molecular structures and
normal and malignant biological roles, are reviewed in this article. We discuss the role of ATRX
in its interactions with the histone variant H3.3, chromatin remodeling, DNA damage response,
replication stress, and cancers, particularly gliomas, neuroblastomas, and pancreatic neuroendocrine
tumors. ATRX is implicated in several important cellular processes and serves a crucial function in
regulating gene expression and genomic integrity throughout embryogenesis. However, the nature
of its involvement in the growth and development of cancer remains unknown. As mechanistic and
molecular investigations on ATRX disclose its essential functions in cancer, customized therapies
targeting ATRX will become accessible.

Keywords: alpha-thalassemia mental retardation X-linked syndrome protein (ATRX); death-domain-
associated protein (DAXX); DNA damage; replication stress; tumorigenesis

1. Introduction

ATRX (alpha-thalassemia, mental retardation, X-linked syndrome) was identified as
the gene responsible for the rare developmental condition characterized by α-thalassemia
and intellectual disability [1–3]. ATRX is a chromatin remodeling protein that belongs to the
switch/sucrose non-fermentable (SWI/SNF) family. The SWI/SNF protein family is also
known as BRG1/BRM-associated factor (BAF) complexes and regulates gene expression by
remodeling chromatin with ATP energy [4,5]. SWI-SNF proteins are involved in various
biological activities, including DNA repair, transcription regulation, and nucleosome
reorganization [6]. In recent decades, increasing evidence has demonstrated the importance
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of chromatin regulation in development and cancer processes. Thus, ATRX is a typical
example of a gene mutation that causes cognitive disability and cancer in sequence [7].

ATRX syndrome is an X-linked severe intellectual disability characterized by mental
retardation, facial dysmorphism, decreased expression of the α-globin genes (-thalassemia),
urogenital dysfunction, and skeletal abnormalities [1,8]. ATRX has been considered to be
an X-chromosome-encoded trans-acting factor that stimulates the expression of a chosen
group of diverse genes. Subsequent investigations in several model animals have demon-
strated deficiencies in a number of essential cellular processes when ATRX function is
disturbed, including defective sister chromatid cohesion and congression [9,10], telomere
dysfunction [11], and aberrant patterns of DNA methylation [12]. Several types of cancer,
such as glioma, neuroblastoma, and pancreatic neuroendocrine tumors (PanNETs), harbor
ATRX mutations [13–21].

The severe effects of ATRX gene mutations imply its fundamental role, which justifies
the increased attention of scientists. This review provides an up-to-date summary of
the various roles of the ATRX protein in both normal biology and cancer. The role of
ATRX in interactions with histone variants, chromatin remodeling, DNA damage response,
replication stress, and tumorigenesis will be highlighted.

2. Molecular Structures of ATRX

The ATRX gene is situated on the q21.1 band of the X chromosome long arm and spans
almost 300 kbp. It contains 37 exons that encode a 2492 amino acid protein with a molecular
weight of 282.586 kDa [22,23]. Based on its ATPase/helicase C-terminal domain, the protein
is a member of the SWI/SNF family. It also has an ADD histone H3-binding cysteine-rich
domain (ATRX-DNMT3-DNMT3L, ADDATRX). The globular ADD domain is composed of
an N-terminal GATA-like zinc finger, a plant homeodomain (PHD; Cys4-His-Cys3) finger,
and a lengthy C-terminal alpha-helix (Figure 1). The exposed and very basic alpha-helix of
the GATA-like finger suggests that ATRX can bind to DNA [24].
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Figure 1. Schematic showing the zinc-binding topology and secondary structure elements of the
ADD domain. B-Strands are labeled s1–s4 and helices are labeled h1–h4. Ribbon representation of the
NMR structure of the ADD domain of ATRX.

ATRX is ubiquitously expressed in the embryonic brain, suggesting a crucial involve-
ment in brain development [23,25]. Chromatin-associated proteins that initiate and/or
maintain a proper pattern of DNA methylation have the ADD domain. As a result, muta-
tions in the ADD domain influence several cellular processes. Numerous SNF2 proteins
utilize the energy released by ATP hydrolysis to translocate along DNA, therefore remodel-
ing DNA structures or DNA-protein interactions, as well as ATRX. ATRX’s histone-binding
and chromatin-remodeling capabilities play a unique role in neuronal differentiation [26].
Mutations in the ATRX protein’s PHD finger have diverse effects on the genome-wide
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location of polycomb repressive complex 2 (PRC2), whereas mutations in the helicase
domain induce loss in some places and gains in others. Each mutation is linked to dis-
tinct gene signatures, indicating separate neurodifferentiation-impairing processes. ATRX
syndrome-causing mutations commonly occur in the putative ATPase/helicase domain
and the PHD motif of the ADD domain [1,2,27], while ATRX tumorigenic mutations are
arbitrarily located point mutations that result in protein dysfunction (Table 1) [14,28,29].

Table 1. Type of ATRX mutations and their functional consequences.

Type of ATRX Mutations Functional Consequences

Mutations in the PHD finger (PHDmut)
Reduce enrichment of PHDmut protein to ATRX targets;

Reduce PRC2 binding at polycomb targets;
Associated with ATRX syndrome;

Mutations in the helicase domains (K1584R)
K1584R accumulates at ATRX targets;

Loss of PRC2 binding at some sites and gains at others;
Associated with ATRX syndrome;

Point mutations Result in protein dysfunction and are associated with tumorigenesis

3. ATRX in Regular Biology
3.1. Interactions with H3.3 Histone Variants

A critical role of ATRX is to deposit H3.3 in telomeres, pericentric heterochromatin,
and other DNA repeat sites when it binds and interacts with the chaperone protein DAXX
(death-domain-associated protein) to form a chromatin remodeling complex [30–32]. DAXX
was initially cloned as a signaling protein that binds specifically to the transmembrane
death receptor Fas (also known as CD95) and activates the JNK pathway to trigger apopto-
sis [33]. In the nucleus, DAXX is linked to both the promyelocytic leukemia (PML) nuclear
body and ATRX-positive heterochromatic regions. In the cytoplasm, DAXX has been dis-
covered to interact with many proteins involved in cell death regulation [34]. H3.3 is the
ancestral, conserved version of H3 that is uniquely expressed outside the cell cycle and
serves many functions in transcription, genomic stability, and mitosis [35]. It is feasible to
substitute conventional histones with histone variants that alter the chemical components
and physical characteristics of the nucleosome, thus affecting many cellular activities [36].
The HIRA complex is responsible for the deposition of H3.3 in genic regions [37,38], while
the ATRX/DAXX complex is responsible for the deposition of H3.3 in repetitive sections of
the genome [11,30,31].

3.2. Chromatin Remodeling

Chromatin is a dynamic structure that regulates the accessibility of DNA for transcrip-
tion, recombination, DNA repair, and replication as well as packaging the whole eukaryotic
genome within the confines of the nucleus [39]. By performing histone exchange, also
known as histone turnover, cells may maintain the fluidity of chromatin. This process
involves removing sections of the nucleosome or complete nucleosome, followed by re-
placement with freshly synthesized histones or other components. The swapping process
has several effects on the composition, structure, and function of various genomic areas.
During transcription, several factors regulate histone exchange. In eukaryotes, chromatin-
remodeling complexes play an important role in gene expression regulation [40,41]. These
complexes can alter the structure of the chromatin in two different ways. The first is covalent
modification, which includes methylation, phosphorylation, and acetylation. Non-covalent
processes, such as ATP-dependent chromatin remodeling, are involved in the other.

ATRX interacts directly with DNA and collaborates with many functional partners
to regulate the structure and function of chromatin in centromeric heterochromatin and
telomeric domains. The accessibility of chromatin (both in repetitive and non-repetitive
DNA) varies significantly in the absence of ATRX, resulting in the transcription of normally
repressed areas [42,43]. ATRX loss produces chromatin decompaction at telomeres and
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repetitive elements [44–46]. ATRX deficiency causes severe chromosomal cohesion and
congression abnormalities in Hela cells [10]. ATRX regulates the expression of certain
imprinted genes in the brain by modifying the formation of chromatin loops and large-
scale chromatin structures [47]. Except for its function in H3.3 deposition, ATRX also
collaborates with H3.3 and chromobox homolog 5 (CBX5) to maintain telomeric RNA
transcriptional suppression in mouse and human ES cells [11,30]. Essentially, ATRX loss
results in chromatin modifications and telomere instability in mouse ES cells [11].

ATRX is required for chromosomal stability throughout both mitosis and meiosis.
ATRX is necessary for centromere stabilization and epigenetic regulation of heterochromatin
function throughout meiosis and the transition to the first mitosis [48]. During prophase
I arrest, ATRX is necessary to bind the transcriptional regulator DAXX to pericentric
heterochromatin. At the metaphase II stage, transgenic ATRX-RNAi oocytes have an
aberrant chromosomal shape linked to decreased histone 3 phosphorylation in serine 10,
and chromosome segregation problems that result in aneuploidy and drastically diminished
fertility. ATRX also regulates crucial phases of meiosis in mouse oocytes [9]. Global histone
deacetylation at the beginning of meiosis, for example, is required for ATRX binding to
centromeric heterochromatin in mouse chromosomes. Centromeric ATRX is also necessary
for proper chromosomal alignment and spindle organization inside the bipolar meiotic
metaphase II spindle.

The ATRX-DAXX complex was reported to be a new ATP-dependent chromatin-
remodeling complex, with ATRX as the main ATPase component and DAXX as the targeting
subunit [49]. ATRX and its transcription cofactor DAXX were identified as a complex by
immunoprecipitation from HeLa extract, and the complex exhibits ATP-dependent activities
similar to those of other chromatin-remodeling complexes, such as DNA displacement
and modification of mononucleosome disruption patterns [50]. DAXX attaches directly
to H3.3 because its hydrophobic pocket is shallow enough to accept tiny hydrophobic
Ala87 of H3.3, and its polar binding environment favors hydrophobic Gly90 in H3.3 over
hydrophobic Met90 in H3.1 [51]. The ATRX-DAXX complex recognizes H3K9me3 via the
ADD domain and is likely responsible for recruiting its binding partner DAXX into these
areas for H3.3 deposition [52–55] (Figure 2).
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3.3. DNA Damage Response

The DNA damage response (DDR) is a complex network of signaling pathways
that cells establish to respond to exogenous or endogenous DNA damage that triggers
genetic changes. ATRX works during DNA replication and is directly involved in DNA
repair. ATRX deficiency increases sensitivity to agents, which induces replication stress [56].
Recent investigations have demonstrated that ATRX protects hydroxyurea (HU)-stalled
replication forks and promotes their restarting [56–58]. ATRX is essential for proficient
S phase progression by limiting fork stalling by recruiting to DNA damage sites and
interacting with components of the MRE11-RAD50-NBS1 (MRN) complex, which has
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several known functions crucial for genomic stability and replication, such as the repair of
double-strand breaks and the restart of a stalled replication fork [56,57].

ATRX is a unique functional partner of FANCD2 in the S phase that promotes histone
deposition-dependent homologous recombination (HR) processes, according to recent
studies [59]. FANCD2 is the protein of the central FA (Fanconi anemia) pathway that
recruits HR factors such as the CtBP interacting protein (CtIP) to enhance replication fork
restart while inhibiting new origin firing [60,61]. ATRX and FANCD2 build a complex that
prevents proteasomal degradation of FANCD2. ATRX further collaborates with FANCD2
to recruit CtIP and promote meiotic recombination 11 (MRE11) exonuclease-dependent
fork restart, while inhibiting the firing of new replication origins. ATRX and FANCD2
interact to facilitate HR-dependent repair of directly generated double-strand breaks in
DNA (Figure 3).

Cancers 2023, 15, x FOR PEER REVIEW 5 of 23 
 

 

The DNA damage response (DDR) is a complex network of signaling pathways that 
cells establish to respond to exogenous or endogenous DNA damage that triggers genetic 
changes. ATRX works during DNA replication and is directly involved in DNA repair. 
ATRX deficiency increases sensitivity to agents, which induces replication stress [56]. Re-
cent investigations have demonstrated that ATRX protects hydroxyurea (HU)-stalled rep-
lication forks and promotes their restarting [56–58]. ATRX is essential for proficient S 
phase progression by limiting fork stalling by recruiting to DNA damage sites and inter-
acting with components of the MRE11-RAD50-NBS1 (MRN) complex, which has several 
known functions crucial for genomic stability and replication, such as the repair of double-
strand breaks and the restart of a stalled replication fork [56,57]. 

ATRX is a unique functional partner of FANCD2 in the S phase that promotes histone 
deposition-dependent homologous recombination (HR) processes, according to recent 
studies [59]. FANCD2 is the protein of the central FA (Fanconi anemia) pathway that re-
cruits HR factors such as the CtBP interacting protein (CtIP) to enhance replication fork 
restart while inhibiting new origin firing [60,61]. ATRX and FANCD2 build a complex 
that prevents proteasomal degradation of FANCD2. ATRX further collaborates with 
FANCD2 to recruit CtIP and promote meiotic recombination 11 (MRE11) exonuclease-
dependent fork restart, while inhibiting the firing of new replication origins. ATRX and 
FANCD2 interact to facilitate HR-dependent repair of directly generated double-strand 
breaks in DNA (Figure 3). 

 
Figure 3. ATRX cooperated with FANCD2 and MRE11 to respond to the HU-induced replication 
stress and promote replication restart. Abbreviations: MRE11, meiotic recombination 11; HU, hy-
droxyurea. 

ATRX promotes DNA repair synthesis and sister chromatid exchange HR [62]. DNA 
double-strand breaks (DSBs) occur when cells are exposed to endogenous or exogenous 
stress. DSBs can be repaired by two major pathways: non-homologous end-joining 
(NHEJ) and HR [63]. HR is initiated by long-range 5′ end resection and RAD51 loading 
onto single-stranded DNA. Later phases comprise homology search, invasion of DNA 
strips to create a displacement loop (D loop), removal of RAD51, and repair synthesis to 
duplicate missing sequence information from a donor sister chromatid at the location of 

Figure 3. ATRX cooperated with FANCD2 and MRE11 to respond to the HU-induced replication stress
and promote replication restart. Abbreviations: MRE11, meiotic recombination 11; HU, hydroxyurea.

ATRX promotes DNA repair synthesis and sister chromatid exchange HR [62]. DNA
double-strand breaks (DSBs) occur when cells are exposed to endogenous or exogenous
stress. DSBs can be repaired by two major pathways: non-homologous end-joining (NHEJ)
and HR [63]. HR is initiated by long-range 5′ end resection and RAD51 loading onto
single-stranded DNA. Later phases comprise homology search, invasion of DNA strips to
create a displacement loop (D loop), removal of RAD51, and repair synthesis to duplicate
missing sequence information from a donor sister chromatid at the location of the break [64].
ATRX-deficient cells cannot repair exogenously induced DSBs by HR. ATRX and DAXX
deposit the histone variant H3.3 during HR-mediated repair of exogenously induced DSBs.
ATRX functions after the removal of RAD51 and interacts with PCNA and RFC-1, all of
which are essential for DNA repair synthesis during HR. Following a RAD51-dependent
homology search, the deposition of H3.3 promotes extended DNA repair synthesis and the
establishment of sister chromatid exchanges. Therefore, ATRX enables the reconstitution of
chromatin necessary for extended DNA repair synthesis and sister chromatid exchange
during HR (Figure 4).
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ATRX participates in the DNA damage repair pathway by modulating the ATM
pathway [65]. Ataxia telangiectasia mutated (ATM) kinase is an essential enzyme that
detects and repairs DSBs caused by temozolomide (TMZ) or radiation [66,67]. ATM activa-
tion is regulated by several variables, such as TIP60 acetyltransferase activity and histone
H3K9me3 status [68,69]. ATM phosphorylation is mediated by its acetylation level, whereas
histone H3K9me3 is necessary for ATM acetylation in response to DNA damage [70]. ATRX
can build a complex to promote the deposition and maintenance of H3K9me3 [71]. ATRX is
recruited to pericentromeric heterochromatin by the interaction between H3K9me3 and its
ADD domain. Mutations in this domain prevent ATRX from binding to H3K9me3, which
may result in chromosome mis-segregation and apoptosis in neuroprogenitor cells [53].
ATRX deletion decreased the association between H3K9me3 and ATRX, which may inhibit
TMZ-induced ATM acetylation. ATRX deficiency promotes the H3K9 trimethylation status
that prevents ATM phosphorylation and leads to the deactivation of the ATM pathway.

3.4. Response to Replication Stress

ATRX is hypothesized to promote genome stability by avoiding replication stress via
the resolution of G-quadruplex (G4) DNA structures ahead of the replication fork [72].
When double-stranded DNA is detached in areas rich in GC during replication and tran-
scription, these stable non-B-form DNA structures are predicted to arise [73,74]. The G4
structures are believed to improve replication stress by inhibiting DNA replication fork
advancement, resulting in replication fork collapse and DNA breakage [75]. ATRX is bound
in GC-rich regions with a proclivity for forming G4 structures throughout the genome, and
ATRX directly interacts with G4 structures in cells [72,76]. ATRX presumably assists in the
replication of telomeric G4-DNA structures [77], its absence results in the aggregation of
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G4 structures at DNA synthesis sites [72], and exogenous expression of ATRX in ATRX
defect cells could decrease the levels of G4 structures [78]. ATRX has been demonstrated to
protect cells from replication stress caused by CX-5461 (or CX-3543), the chemical stabilizer
of G4 structures [78,79]. Furthermore, the function requires ATRX helicase activity and
ATRX/DAXX-mediated H3.3 deposition, but not HIRA-mediated H3.3 deposition [72].
ATRX interacts with DAXX by promoting the deposition of the histone variant H3.3 to
sustain G4-containing areas in a closed heterochromatic state. The formation of heterochro-
matin is the critical biochemical step that protects cells from G4-mediated replication stress.
However, the detailed molecular process of ATRX recruitment and function in G4 areas
remains unclear and requires future research.

4. ATRX and Cancer

ATRX has been reported as a tumor suppressor that is frequently mutated in a variety
of tumors, including adult lower-grade gliomas, pediatric glioblastoma multiforme, pedi-
atric osteosarcoma, neuroblastoma, and pancreatic neuroendocrine tumors [13,14,19,21].
Acquired somatic mutations in ATRX were primarily identified in patients with the rare
subtype of myelodysplastic syndrome (MDS) associated with thalassemia (ATMDS) [80,81].
Mutations of ATRX include point mutations in the coding regions and deletion/insertion-
induced frameshift mutations that lead to functional loss [82]. Recent finding indicates that
mutations in ATRX are associated with a specific subgroup of tumors that are characterized
by alternative telomere lengthening (ALT), an aberrant telomerase-independent form of
HR-based telomere maintenance. A new study found that ATRX loss and mutations are
hallmarks of 90% ALT-immortalized cell lines [83]. Moreover, ATRX mutations appear to
be mutually exclusive to mutations in the promoter of the telomerase reverse transcriptase
(TERT) gene that increase telomerase expression [84]. These studies strongly suggest that
ATRX is a suppressor of ALT and plays an important role in tumorigenesis. However,
loss-of-function mutations of ATRX alone are not sufficient to drive the ALT process. ALT
activation is a multifactorial, cell-type-specific process, with ATRX/DAXX mutations being
just one contributing factor [85–88].

ATRX is one of the twenty most frequently mutated genes in cancer and is the third
most mutated gene in gliomas, as registered in the National Cancer Institute GDC data
portal (accessed on 25 March 2023). More and more evidence shows that ATRX is implicated
in cancer initiation, progression, therapy, and therapeutic resistance. Here, we provide
a summary of its function in gliomas, neuroblastomas, and pancreatic neuroendocrine
tumors (Figure 5).

4.1. ATRX in Gliomas

Infiltrating gliomas are the most common primary malignant brain tumors, accounting
for 75% of primary malignant brain tumors in adults, which are typically associated with a
poor prognosis and low quality of life [89]. Gliomas derive from glial or precursor cells and
consist of astrocytomas, oligodendrogliomas, and ependymomas [90]. Recurrent mutations
in the ATRX gene are associated with an alternate telomere lengthening phenotype [15,91].
In pediatric glioblastoma (GBM), somatic mutations in the H3.3-ATRX-DAXX chromatin
remodeling pathway were reported in 44% of tumors. Furthermore, ATRX mutations
were identified in 31% of individuals with primary GBM (WHO grade IV glioma) [16]. In
adults, ATRX mutations are less prevalent in primary GBM, but more common in lower
grade (WHO grade II or III) and secondary glioblastomas [92,93]. ATRX mutations are
important markers of clinical behavior, and are strongly associated with IDH (isocitrate
dehydrogenase) mutations, closely correlated with TP53 mutations, and mutually exclusive
with 1p/19q codeletion [13,17]. In the 2016 World Health Organization classification of
Central Nervous System Tumors, the ATRX status was incorporated into the diagnostic
algorithm for glioma variants combined with histology (Table 2) [94,95].
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Figure 5. ATRX mutations and cancers. In gliomas, ATRX mutations impair NHEJ and ATM-
dependent DNA damage repair pathway, down-regulate CHEK1 expression that results in the early
release of G2/M entry, induce immunosuppression, and participate in TMZ resistance. In neuroblas-
tomas, ATRX mutations impaired DNA damage repair through HR, cause synthetic lethality with
MYCN amplification, and regulate transcription through reorganization of the chromatin landscape.
In pancreatic neuroendocrine tumors, ATRX mutations lead to chromosomal instability. Red ar-
rows: up-regulate; green arrows: down-regulate. Abbreviations: HR, homologous recombination;
NHEJ, non-homologous end-joining; PARP, poly (ADP-ribose) polymerase; CHEK1, Checkpoint
Kinase 1; PD-L1, immune-checkpoint protein programmed death-ligand 1; TMZ, temozolomide;
EZH2, enhancer of zeste homolog 2; FADD, Fas-associated death domain; ATRX IFF, ATRX in-frame
fusion proteins.

ATRX mutations in gliomas are associated with a better prognosis and longer pa-
tient survival [82,96]. The function of ATRX mutations in human gliomas has been re-
vealed. Recent research provides insight into the significance of ATRX mutations in human
gliomas [97]. In this paper, the scientists established an animal model of ATRX-deficient
GBM utilizing the Sleeping Beauty (SB) transposase system. They discovered that the ab-
sence of ATRX impaired glioma tumor proliferation and led to genetic instability, including
microsatellite instability and telomere maintenance impairment. In the investigation of pub-
licly available human glioma genome-wide data, ATRX mutations were related to a higher
mutation rate at the single-nucleotide variant level, but not at the chromosomal/copy num-
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ber level. They also indicated that ATRX deficiency impairs NHEJ, which is significantly
associated with the loss of active (phospho-) DNA-dependent protein kinase catalytic
subunit (pDNA-PKcs) staining, thus increasing the sensitivity to DNA-damaging chemicals
that induce double-stranded DNA breaks. Their investigation provides a mechanism for
genetic instability and an actionable therapeutic target for ATRX-deficient GBM.

Table 2. Molecular marker in diffuse gliomas.

Marker Biological Function Diagnostic Methods Clinical Significance

IDH1 R132 or IDH2
R172 mutation

Gain of function mutation
causing gCIMP

Immunohistochemistry for IDH1
R132H followed by sequencing

for noncanonical IDH1 or
IDH2 mutations

Diagnostic marker for
IDH-mutant diffuse gliomas

ATRX mutation/ATRX
loss of nuclear

expression

Causes alternative lengthening
of telomeres

Immunohistochemistry for loss of
nuclear ATRX expression

or sequencing

Diagnostic marker for
IDH-mutant astrocytomas

1p/19q codeletion

Unclear, possibly biallelic
inactivation of tumor

suppressors on 1p (e.g., FUBP1)
or 19q (e.g., CIC)

PCR-based loss of heterozygosity
analysis, FISH, array-based copy

number analysis, MLPA

Diagnostic marker for
IDH-mutant and
1p/19q-codeleted

oligodendrogliomas

H3 K27M mutation
Histone 3 mutation causing

epigenetic alterations affecting
gene expression

Immunohistochemistry for H3
K27M or sequencing

Diagnostic marker for diffuse
midline glioma, H3

K27M-mutant

The function of ATRX in DNA replication and repair has been increasingly emphasized.
Loss of ATRX inhibits ATM-dependent DNA damage repair by regulating H3K9me3
modification to increase TMZ sensitivity in gliomas [65]. Previous studies found a link
between ATRX expression and the level of DNA methylation of chromosome ends in
gliomas [98,99]. In the current work, ATRX knockout glioma cell lines were established by
CRISPR/Cas, and impaired proliferation and migration, as well as improved sensitivity to
TMZ, were observed. In addition, they verified a decreased activation of the ATM pathway
mediated by the H3K9 trimethylation status. By modulating the ATM pathway, these data
show that ATRX is important in DNA damage repair.

ATRX-deficient GBM cells are not only more sensitive to TMZ but also to irradia-
tion [97,100,101]. To explain the proliferative alterations and responsiveness to irradiation
observed in ATRX mutant human gliomas, researchers discovered that ATRX binds to
regulatory elements of genes involved in the cell cycle phase transition in murine neuronal
progenitor cells (mNPCs) and mGBM neurospheres [102]. Checkpoint Kinase 1 (CHEK1),
the essential cell cycle checkpoint regulating gene, was significantly down-regulated by
ATRX deficiency in numerous high-grade glioma (HGG) models, resulting in the early
release of G2/M entry following irradiation. Further results showed that in response to
irradiation and ATM inhibition-targeted sensitization, ATRX-deficient GBM cells exhibited
a decreased capacity to maintain the G2/M cell cycle checkpoint. Consequently, the com-
bination of irradiation and ATM inhibitors provides a novel synthetic lethal therapy for
ATRX-deficient glioma (Figure 6).

ATRX also contributes to TMZ resistance in gliomas [103]. GBM has a distinct anti-
DNA damage phenotype that is responsible for chemoresistance [104]. Even though TMZ
is the first-line treatment for GBM, drug resistance is a major problem in therapy [105]. In
gliomas, genetic inactivation of ATRX was found to impair cell proliferation and increase
TMZ-induced DNA damage [65]. Further evidence showed that ATRX expression was
increased by DNA demethylation caused by the STAT5b/TET2 complex in TMZ-resistant
glioma cells [103]. PARP1, a member of the poly (ADP-ribose) polymerase family, plays an
essential role in DSBs repair [106]. ATRX increased PARP1 stability by inhibiting H3K27me3
enrichment in the Fas-associated death domain (FADD), a necroptosis factor that regulates
PARP1 cleavage [107]. The loss of ATRX confers sensitivity to PARP inhibitors, which has
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been associated with increased replication stress [108]. In TMZ-resistant xenograft animal
models, the combination of PARP inhibitors with TMZ decreased glioma development,
suggesting the possibility of a synthetic lethal strategy for overcoming ATRX-mediated
TMZ resistance in gliomas.
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with ATM inhibitors.

Loss of ATRX suppresses anti-tumor immunity [109]. IDH 1/2 mutations characterize
a subtype of glioma with a better prognosis and unique ontogeny than IDH-wildtype
glioma [110]. According to the 2016 WHO standard, Grade II/III IDH-mutant gliomas
are divided into oligodendrogliomas (IDH-O) and astrocytomas (IDH-A) according to the
presence of 1p/19q co-deletion or 1p/19q-intact [95]. The loss of function in ATRX is a char-
acteristic of IDH-A, while ATRX mutations are infrequent in IDH-O. Recent research has
found that ATRX regulates the tumor microenvironment in IDH-mutant gliomas [111]. The
single-cell transposase-accessible chromatin (scATAC-seq) and sc/snRNA-seq data from
22 untreated IDH-A/O human gliomas reveal cell-type-specific differences in transcription-
factor use, related targeting, and cis-regulatory grammars between IDH-A and IDH-O.
The proliferation of IDH-A cells is facilitated by nuclear factor I (NFI) transcription fac-
tors; they up-regulate the nuclear factor kappa-light-chain-enhancer of activated B cells
(NFκB) pathway genes and subsequent cytokine production. ATRX deficiency causes global
loss of CCCTC-binding factor (CTCF, which is localized by H3.3 histones) and boundary
disturbances of the chromatin loop, which promote coordinated loop-wide increases or
decreases in gene expression, resulting in the observed phenotypes. ATRX deficiency in
IDH-mutant gliomas orchestrates chromatin and gene-expression variations that govern
glial identity and myeloid-cell induction. These findings are consistent with previous
research showing that ATRX loss increases astrocytoma cell aggressiveness by inducing im-
munosuppressive gene expression in IDH-mutant gliomas [112]. Loss of ATRX upregulated
the immune-checkpoint protein programmed death-ligand 1 (PD-L1) and the production
of immunosuppressive cytokines (e.g., IL33, CXCL8, CSF2, IL6, CXCL9). Furthermore,
the absence of ATRX enhanced tumor cells’ resistance to T-cell killing and induced T-cell
apoptosis, tumorigenic/anti-inflammatory macrophage polarization, and Treg infiltration.
In addition, chemoradiation amplified the impact of ATRX loss on immune modulator
expression. The transcriptional and biological immune-suppressive responses to ATRX
loss depend on the expression of bromo- and extra-terminal (BET, epigenetic readers of
acetylated lysine residues) proteins BRD3/4, which were abrogated by pharmacologic BET
inhibition. These studies provide novel therapeutic strategies and require a comprehen-
sive comprehension of the reprogramming of the tumor microenvironment induced by
ATRX inactivation.
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ATRX has an important clinical significance for gliomas. ATRX loss is a useful
biomarker in improving the diagnosis of IDH mutant astrocytomas and may be used
to delineate these tumors from oligoastrocytomas and oligodendrogliomas [113,114]. ATRX
and IDH mutant anaplastic astrocytomas have a favorable prognosis than anaplastic as-
trocytomas with only IDH mutation [82]. Recently, large-scale studies of more than 400
oligodendroglial and astrocytic gliomas have further strengthened the notion that ATRX
is an important diagnostic marker [113–115]. Unlike pediatric GBM that ATRX mutations
occur at a hotspot near the carboxyl terminal helicase domain, adult glioma mutations are
evenly distributed in all genes. ATRX deletion occurs almost exclusively in IDH mutation
tumors, and ATRX deletion and 1p/19q codeletion are largely mutually exclusive [13,82].
Exome sequencing of IDH mutations, 1p/19q intact and oligoastrocytoma showed a high
incidence of mutations in the ATRX gene, but ATRX deletion rarely occurs in 1p/19q
codeleted oligodendroglioma [113].

4.2. ATRX in Neuroblastomas

Neuroblastoma is a common and aggressive pediatric neuronal tumor that emerges
from the developing sympathetic nervous system and has poor overall survival [116,117].
In whole genome sequencing analyses of high-risk neuroblastoma, MYCN amplifications
(37%), TERT rearrangements (23%), and recurrent ATRX deletions (11%) were identi-
fied [18,118,119]. The amplification of MYCN and the age at diagnosis are the two signifi-
cant predictors of the outcome, with the outcomes gradually worsening with increasing
age at diagnosis [116,120]. ATRX alterations are prevalent in neuroblastoma in adolescents
and young adults, which is linked with overall poor survival and the lack of effective
treatments [121,122].

ATRX loss-of-function mutations are a potential cause of pediatric cancer biology.
ATRX mutations have identified a subtype of neuroblastoma with a different clinical phe-
notype, including an older age at diagnosis, resistance to traditional therapy, and a chronic
but progressive disease course [121]. To evaluate the impact of loss of ATRX function in
neuroblastoma, Sally L George et al. established neuroblastoma cell lines isogenic for ATRX
by CRISPR-Cas9 gene editing [123]. They found that ATRX deficiency led to impaired DNA
damage repair through HR and impaired replication fork processivity. This is consistent
with the high-throughput drug screening findings that ATRX mutant cells are selectively
sensitive to various PARP inhibitors and the ATM inhibitor KU60019. Then, the combina-
tion of the PARP inhibitor Olaparib with the DNA-damaging agent irinotecan is effective
in preclinical neuroblastoma models with genetic alterations in ATRX. ATRX deficiency
leads to particular DNA damage repair defects that can be therapeutically exploited.

Amplification of the MYCN oncogene and inactivation of the ATRX tumor-suppressor
gene are associated with high-risk disease and poor prognosis in neuroblastoma. How-
ever, ATRX mutations and MYCN amplification are incompatible in neuroblastoma of
all ages and stages [124]. MYCN, a member of the larger MYC family, regulates various
cellular processes during development and in cancer. As a proto-oncogene, MYCN is
frequently deregulated in human cancers, and MYC-dependent metabolic reprogramming
is critical for tumorigenesis [125,126]. Increased MYCN levels induce metabolic repro-
gramming, mitochondrial dysfunction, the production of reactive oxygen species, and
DNA replication stress. One critical function of ATRX is to protect cells from G4-mediated
replication stress, which can block DNA replication or transcription, resulting in replication
fork collapse [127,128]. ATRX mutations in neuroblastoma increase replication stress and
cause DNA damage repair defects. Consequently, the DNA-replicative stress caused by
ATRX mutations and MYCN amplification causes synthetic lethality in neuroblastoma,
representing an uncommon instance in which the inactivation of a tumor-suppressor gene
and activation of an oncogene are incompatible.

In addition to the detected point mutations and indels at the ATRX site, the large
N-terminal deletions of ATRX generate in-frame fusion proteins (IFF), which lack several
important chromatin interaction domains and contribute to aggressive neuroblastoma
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through reorganization of the chromatin landscape and result in transcriptional dysregu-
lation. Recent research has demonstrated that ATRX in-frame fusion neuroblastomas are
sensitive to the enhancer of zeste homolog 2 (EZH2) inhibition by modulating neuronal gene
signatures [129]. ATRX has a helicase domain similar to SWI/SNF that modulates DNA
accessibility [27]. The ATRX IFFs found in neuroblastoma lack most of these chromatin-
binding modules, leading to alterations in their genomic binding. The ATRX IFF proteins
are reallocated from H3K9me3-enriched chromatin to promoters of active genes, notably
the RE-1 silencing transcription factor (REST). REST is a transcriptional repressor that
binds to RE1 motifs, which are neuron-restrictive silencer elements [130,131]. The main
function of REST is to suppress neuronal gene transcription in non-neuronal cells, which is
important in neuronal development [132]. The research identifies REST as an ATRX IFF
target whose activation increases the silence of genes involved in neuronal differentiation.
Further evidence showed that REST deficiency and EZH2 inhibition enhance neuronal
genes derepression and cell death (Figure 7). These findings support the notion that thera-
peutic targeting of ATRX IFF neuroblastoma with EZH2 inhibitors is a potential therapy
for this aggressive neuroblastoma subtype.

The frequency of ATRX mutations in neuroblastoma was substantially higher in older
patients, i.e., children older than five years, adolescents, and young adults. Although
neuroblastoma is rare in older individuals, the mutations in ATRX seem to have signifi-
cant predictions, because individuals with somatic mutations seem to have a chronic but
progressive and lethal disease course [121]. Neuroblastoma tumors with ATRX mutations
had lengthened telomeres, and anti-telomerase-based therapies might be valuable [133].
ATRX-deficient neuroblastoma cells exhibit increased sensitivity to the ATM inhibitor
KU60019 [123]. The understanding of ATRX molecular functions will provide discoveries
of potential cancer treatments.

4.3. ATRX in Pancreatic Neuroendocrine Tumors

Pancreatic neuroendocrine tumors (PanNETs) are rare and genetically heterogeneous;
they account for around 3% of all pancreatic tumors and have a high malignant poten-
tial [134]. More than 50% of patients will die from their tumor within 10 years, as there are
no effective therapies other than surgery. PanNETs may be functional or non-functional
based on hormonal symptoms, with the latter being more common. These hormones in-
clude insulin, gastrin, glucagon, vasoactive intestinal peptide, and somatostatin. Functional
PanNETs present at an early stage due to tumor-related symptoms and complications, non-
functional PanNETs are often diagnosed at a later stage, when the illness has progressed
locally or metastasized [135]. Despite improvements in prognostic grading and staging
systems, the prediction of clinical behavior and response to specific therapies remains a
challenge. DNA methylation is essential for tumorigenesis and could contribute to the
identification of PanNET subgroups, and these subgroups could potentially be associated
with clinical features [136–138]. A deeper understanding of the molecular mechanisms
leading to the development of PanNETs is needed.

Chromosomal instability (CIN) is a characteristic of malignant PanNETs that was
detected in patients with poor outcomes [139]. Whole-exome sequencing recently revealed
very frequent somatic mutations in DAXX and ATRX in PanNETs, which were found to be
beneficial [14,140]. Both DAXX and ATRX mutations in PanNETs are associated with ALT
activation [28]. The absence of the ATRX, DAXX, and subsequent ALT phenotype activation
are related to CIN in PanNETs and are associated with increased metastatic potential in
sporadic primary PanNETs [141–143]. Therefore, it was considered a biomarker but has not
been included in clinical decision making to date [144,145]. A recent study has indicated
that the loss of chromatin-remodeling proteins and/or cyclin dependent kinase inhibitor
2A (CDKN2A) is linked to PanNET metastasis and shorter patient survival times [146]. Set
domain containing 2 (SETD2) protein is a histone H3 lysine trimethyltransferase, and loss-of-
function mutations lead to the absence of H3K36me3 expression [147]. Defects in ARID1A
(AT-rich interaction domain 1A), a component of the SWI/SNF chromatin remodeling
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complex, increase the sensitivity of tumor cells to ATR inhibitors [148]. CDKN2A is a tumor
suppressor and a cyclin-dependent kinase inhibitor which is essential in cancer [149]. The
authors found that loss or deletion of either DAXX, ATRX, H3K36me3/SETD2, ARID1A, or
CDKN2A in primary PanNETs leads to significantly shorter patient survival rates.

Cancers 2023, 15, x FOR PEER REVIEW 13 of 23 
 

 

 
Figure 7. ATRX IFFs localize from H3K9me3 to the REST promoter, leading to its activation. REST 
and EZH2 cooperate to silence neurogenesis genes. REST depletion or EZH2 inhibition upregulates 
neurogenesis genes, which prompt differentiation followed by apoptosis. Abbreviations: ATRX IFF, 
ATRX in-frame fusion proteins; REST, RE-1 silencing transcription factor; EZH2, enhancer of zeste 
homolog 2; EZH2i, EZH2 inhibitor. 

The frequency of ATRX mutations in neuroblastoma was substantially higher in 
older patients, i.e., children older than five years, adolescents, and young adults. Alt-
hough neuroblastoma is rare in older individuals, the mutations in ATRX seem to have 
significant predictions, because individuals with somatic mutations seem to have a 
chronic but progressive and lethal disease course [121]. Neuroblastoma tumors with 
ATRX mutations had lengthened telomeres, and anti-telomerase-based therapies might 
be valuable [133]. ATRX-deficient neuroblastoma cells exhibit increased sensitivity to the 
ATM inhibitor KU60019 [123]. The understanding of ATRX molecular functions will pro-
vide discoveries of potential cancer treatments. 

4.3. ATRX in Pancreatic Neuroendocrine Tumors 
Pancreatic neuroendocrine tumors (PanNETs) are rare and genetically heterogene-

ous; they account for around 3% of all pancreatic tumors and have a high malignant po-
tential [134]. More than 50% of patients will die from their tumor within 10 years, as there 

Figure 7. ATRX IFFs localize from H3K9me3 to the REST promoter, leading to its activation. REST
and EZH2 cooperate to silence neurogenesis genes. REST depletion or EZH2 inhibition upregulates
neurogenesis genes, which prompt differentiation followed by apoptosis. Abbreviations: ATRX IFF,
ATRX in-frame fusion proteins; REST, RE-1 silencing transcription factor; EZH2, enhancer of zeste
homolog 2; EZH2i, EZH2 inhibitor.

The absence of ATRX/DAXX is frequent in PanNETs [140], indicating that the
complex might play a crucial role in the pathogenesis. Moreover, loss of ATRX/DAXX
expression is a late event in pathogenesis that is associated with an aggressive phe-
notype [150]. To explore the exact mechanisms of how ATRX and DAXX mutations
make sense of tumorigenesis, relevant preclinical experimental models are required.
Genetically engineered mouse models are excellent tools for investigating the multistep
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tumorigenic pathway of PanNETs and assessing the role of candidate genes in tumor
initiation and progression [151]. The group of Amanda R. Wasylishen used genetically
engineered mouse models combined with environmental stress to evaluate the tumor
suppressor functions of DAXX and ATRX in the mouse pancreas [152]. They found
that DAXX or ATRX loss, alone or in combination with MEN1 loss, did not drive or
accelerate pancreatic neuroendocrine tumorigenesis. The results strongly show that the
human genome is crucial to promote tumor growth after the loss of ATRX or DAXX.
Another group developed a genetically engineered mouse model with ATRX conditional
disruption in β cells to investigate the potential role of ATRX as a driver event in PanNET
tumorigenesis [153]. However, they verified that ATRX deficiency did not cause PanNET
formation but led to dysglycaemia and the exacerbation of inflammageing (increased
pancreatic inflammation and hepatic steatosis).

Mutations in ATRX are found in about a third of sporadic non-functional PanNETs
and are accompanied by DAXX mutations and ALT [140]. In all neuroendocrine neoplasms,
ATRX/DAXX mutations and ALT are found almost exclusively in PanNETs and are not
present in other cellular origins [154]. The absence of ATRX increases CIN and mutational
burden. However, ATRX/DAXX protein loss is not the initiating genomic alteration
but rather occurs at a later stage in the development of the primary NF-PanNET that is
associated with the progression to metastatic disease [145]. Therefore, loss of ATRX/DAXX
protein and ALT in primary PanNET is a strong prognostic biomarker of recurrence and/or
development of metachronous metastatic disease [154–156]. In numerous retrospective
studies, ALT and/or ATRX/DAXX protein loss is the strongest predictor of recurrent
disease after surgery.

5. Conclusions

Since the ATRX gene was found, various functions of ATRX that are involved in
many essential cellular pathways have been identified. ATRX functions as a chromatin-
remodeling complex together with DAXX to deposit histone variant H3.3 at repetitive
regions [52]. ATRX plays a crucial role the in the dynamic regulation of chromatin structure
and the responses to replication stress and DNA damage repair (Figure 8). ATRX plays an
essential role in chromatin remodeling, especially in the resolution of G4 DNA structures,
but the detail of the molecular mechanism needs more research to be revealed. Although
ATRX participates in DNA repair pathways such as HR and NHEJ, it remains unclear if
ATRX promotes DNA repair through direct involvement in specific pathways or plays a
role in controlling the balance or activity of different repair pathways. The disruption of
ATRX has been related to several cancer alterations that contribute to cancer development
and progression or resistance to treatment. In regard to the high frequency of ATRX
mutations in cancer, the chromatin regulator appears to play a key role in pathogenesis.
However, the details of how ATRX regulates cell fate decisions during development that
go awry in cancer remain unclear. Given the diversity of mutations identified in ATRX,
there remains a question of whether all mutations are loss-of-function, such as in-frame
deletions of ATRX in neuroblastoma [129]. As the complete absence of ATRX is not tolerated
in development, we must ask whether ATRX alterations are truly loss-of-function or if
they are hypomorphic. Considering that ATRX is related to immunological responses
in cancer, molecular studies focusing on this area will offer an opportunity to promote
immunotherapy. This paper provides an overview of ATRX, including both structure and
functions. More research is needed to investigate the role of ATRX in tumorigenesis and to
reveal new therapeutic approaches.
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clear if ATRX promotes DNA repair through direct involvement in specific pathways or 
plays a role in controlling the balance or activity of different repair pathways. The disrup-
tion of ATRX has been related to several cancer alterations that contribute to cancer de-
velopment and progression or resistance to treatment. In regard to the high frequency of 
ATRX mutations in cancer, the chromatin regulator appears to play a key role in patho-
genesis. However, the details of how ATRX regulates cell fate decisions during develop-
ment that go awry in cancer remain unclear. Given the diversity of mutations identified 
in ATRX, there remains a question of whether all mutations are loss-of-function, such as 
in-frame deletions of ATRX in neuroblastoma [129]. As the complete absence of ATRX is 
not tolerated in development, we must ask whether ATRX alterations are truly loss-of-
function or if they are hypomorphic. Considering that ATRX is related to immunological 
responses in cancer, molecular studies focusing on this area will offer an opportunity to 
promote immunotherapy. This paper provides an overview of ATRX, including both 
structure and functions. More research is needed to investigate the role of ATRX in tu-
morigenesis and to reveal new therapeutic approaches. 

 
Figure 8. The multiple roles of ATRX in the cellular pathways. ATRX maintains the chromatin state 
at heterochromatic regions, responds to replication stress and promotes replication fork restart, 

Figure 8. The multiple roles of ATRX in the cellular pathways. ATRX maintains the chromatin
state at heterochromatic regions, responds to replication stress and promotes replication fork restart,
promotes the DNA damage response (DDR), regulates transcription, and avoids G4 DNA structure.
Abbreviations: DSBs, double-strand breaks; G4, G-quadruplex.
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