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Classifying Malignancy in Prostate Glandular Structures from 
Biopsy Scans with Deep Learning—Supplemental  
Documentation 

This supplemental document provides additional detail regarding prostate pathol-
ogy deep learning (DL) studies performed as published in “Classifying Malignancy in 
Prostate Glandular Structures from Biopsy Scans with Deep Learning”. For ease of the 
reader, section numbers in this document are made consistent with the formal paper 
whereby this ancillary information is most relevant. For this reason, not all section num-
bers provide additional information. 

S1. Introduction 
N/A. 

S2. Materials and Methods Supplemental 
S2.1. Deep Learning 
S2.1.1. Hyper Parameters 

The hyper parameters used to study the DL models are shown in Table S1. Since 
cosine annealing was used on learning rate (LR), a stochastic gradient descent (SGD) op-
timizer was used with a Nesterov momentum of 0.9. Other parameters of the cosine an-
nealing curve are also shown. Dropout was used between the last CNN layer and between 
the two fully connected layers. Pooling was also performed between the CNN and FC 
layers. Note early termination was set unusually high such that it was long enough to 
stride across the cosine annealing window. The idea is to ensure that if the optimizer es-
capes a local minimum after shocking the learning rate, we train long enough to search 
for a new minimum. 

Table S1. Hyper Parameters. 

PARAMETER VALUE PARAMETER VALUE 
Optimizer SGD Dropout 0.65 

Momentum 0.9 Pooling Global Average 
Batch Size 29 (typically) Early Term. Patience 75 

LR Function Cosine Early Term Metric Min. val. Loss. 
LR Cycle 60 epochs Tensor Size 300 × 300 × 3 

LR Warmup Cycles 5 Sample-mix Rank 3 (nominally) 
LR High 0.02 Augmentation Random Flips 
LR Low 0.02×(LR High)   

S3. Results 
We evaluated several popular deep CNN architectures prior to converging on a net-

work for our study; the top eight are listed in Table S2. In the study, all of the networks 
were pretrained on the large image dataset, ImageNet, prior to training for histopatholog-
ical discrimination. We find, the Visual Geometry Group (VGG) networks performed 
quite a bit better than ResNet and EfficientNet variants, based on F1-score. We observed 
several key performance criteria, but the selection was based on F1-score, as it provides a 
measure of both sensitivity and specificity. While the VGG architecture [1] is known to 
have a large number of parameters, many of them are contained in the dense or fully-
connected classification layers, tail-end of the network. In our study, this tail was removed 
in place of our own trained classification layers. As a result, the performance versus 
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number of parameters is competitive with other networks, scoring better than the larger 
ResNets, and significantly better than the EfficientNet variants, as also shown in Table S2. 
The number of parameters for each of these networks are reduced from those trained on 
ImageNet, as the fully-connected or dense output classification layers are replaced with a 
much smaller classification network with two layers: a 32-node feature aggregation dense 
layer with RELU outputs to distill features, followed by a single binary node with sigmoid 
nonlinear function. 

Table S2. Comparison of deep learning networks on GS3 versus GS4 classification. 

 F1-Score AUC Parameters 
ResNet-50 0.590 0.581 23.6M 
ResNet-101 0.636 0.577 42.6M 

EfficientNet-B0 0.596 0.607 4.1M 
EfficientNet-B1 0.605 0.607 6.6M 
EfficientNet-B2 0.563 0.582 7.7M 
EfficientNet-B3 0.567 0.585 10.7M 

VGG-16 0.690 0.670 14.7M 
VGG-19 0.686 0.674 20.0M 

As discussed in Section 2.2 of the formal paper, one of our challenges was to unify 
the size of all prostate pathology patches used in classification. Since the UM/MCC cohort 
was made up of labeled glands, and patches derived were random in size, numerous tech-
niques were tried to present the data to CNN feature layers. We tested the sample-mix 
technique independently against conventional rescaling approaches as an ablation study 
(a proof of the technique by testing with and without the feature), as shown in Table S3. 
As shown, the sample-mix technique performed well, and importantly did not degrade 
performance for the CNN feature extractor. The ablation study has shown that the sam-
ple-mix technique may not provide a boost in performance, but results demonstrate that 
it is an effective approach and does not hurt performance when discriminating textural 
features in this domain (in our case, performance was slightly improved). 

Table S3. Comparison of Image Patch Resizing Techniques. 

 F1-Score AUC 
Tight Bounding Box + Resize 0.684 0.669 

Square Bounding Box + Resize 0.640 0.640 
Fixed-Sized Bounding Box 0.647 0.639 

Sample-Mix 0.690 0.670 

Initial results shown in Table S3 are not remarkable but did show promise that the 
deep learner is able to distinguish degrees of malignancy. The VGG-16 and sample-mix 
technique proved to be the top performer and most practical. 

S3.1. Deep Network Performance 
In addition to the results shown in the main paper, we additionally performed vari-

ous generalization studies on the UM/MCC and PANDA Radboud datasets. The results 
shown here demonstrate how different the 2 datasets truly are. After pretraining a net-
work on PANDA Radboud data, we then retrained the two networks on our UM/MCC 
dataset, one for the Benign versus GS3/4/5 case, and another for GS3 versus GS4 classifi-
cation. Again, the data patches from our two data cohorts are quite different, despite both 
being derived from prostate pathology H&E stained WSIs. As mentioned in Section 2.1, 
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UM/MCC data is generated from individual glands, while PANDA Radboud has fixed-
size (400 × 400) patches derived from sufficiently densely labeled areas. Despite these dif-
ferences, we checked if the networks were generalizing well across sources. As Table S4 
shows, cross-source generalization is quite poor. Since the network trained on UM/MCC 
data was first trained on PANDA Radboud data, the 3rd and 4th columns are a clear case 
of catastrophic forgetting, a common problem with machine learners [2]. The network that 
jointly trains on both sources and that discriminates source and Gleason pattern simulta-
neously as shown in the main document, significantly improves on these scores.  

Table S4. Cross-source inference demonstrates poor performance. 

 Trained on PANDA Radboud Trained on UM/MCC 

 
UM/MCC 

Benign vs GS3/4
UM/MCC 

GS3 vs GS4  
PANDA Radboud 
Benign vs GS3/4/5 

PANDA Radboud 
GS3 vs GS4 

Accuracy 0.567 (0.40, 0.70) 0.305 (0.28, 0.34) 0.476 (0.39, 0.58) 0.529 (0.46, 0.70) 
Sensitivity 0.607 (0.22, 0.95) 0.899 (0.63, 0.99) 0.521 (0.33, 0.84) 0.805 (0.152, 1.0) 
Specificity 0.682 (0.23, 0.98) 0.064 (0.01, 0.22) 0.521 (0.334, 0.843) 0.305 (0.004, 0.93) 
Precision 0.723 (0.36, 0.97) 0.273 (0.19, 0.33) 0.722 (0.465, 0.873) 0.529 (0.436, 0.77) 

NPV 0.579 (0.28, 0.92) 0.621 (0.42, 0.75) 0.722 (0.465, 0.873) 0.671 (0.43, 1.0) 
F1-score 0.584 (0.35, 0.72) 0.419 (0.29, 0.50) 0.568 (0.473, 0.674) 0.600 (0.25, 0.69) 

AUC 0.738 (0.64, 0.82) 0.454 (0.39, 0.50) 0.522 (0.40, 0.70) 0.692 (0.58, 0.83) 
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