
Citation: Gillette, C.M.; Yette, G.A.;

Cramer, S.D.; Graham, L.S.

Management of Advanced Prostate

Cancer in the Precision Oncology Era.

Cancers 2023, 15, 2552. https://

doi.org/10.3390/cancers15092552

Academic Editor: Tarek A. Bismar

Received: 23 March 2023

Revised: 24 April 2023

Accepted: 27 April 2023

Published: 29 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Review

Management of Advanced Prostate Cancer in the Precision
Oncology Era
Claire M. Gillette 1, Gabriel A. Yette 1, Scott D. Cramer 1 and Laura S. Graham 2,*

1 Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
claire.gillette@cuanschutz.edu (C.M.G.)

2 Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
* Correspondence: laura.graham@cuanschutz.edu

Simple Summary: This review article details new precision oncology-based therapeutics used to
treat advanced prostate cancer. Metastatic castration-resistant prostate cancer remains an incurable
diagnosis, however newly identified biomarkers have expanded treatment repertories for some
patients with progressive disease. Advancements in immune checkpoint inhibitors, therapeutics
that exploit DNA damage response deficiencies, and new innovations in radioligand therapies
and theranostics are detailed. This article highlights the potential and real-world application of
precision oncology to improve outcomes for patients with prostate cancer by tailoring treatment to
the individual characteristics of each patient’s tumor.

Abstract: Prostate cancer (PC) is the second leading cause of cancer death in men in the United
States. While diversified and improved treatment options for aggressive PC have improved patient
outcomes, metastatic castration-resistant prostate cancer (mCRPC) remains incurable and an area
of investigative therapeutic interest. This review will cover the seminal clinical data supporting
the indication of new precision oncology-based therapeutics and explore their limitations, present
utility, and potential in the treatment of PC. Systemic therapies for high-risk and advanced PC
have experienced significant development over the past ten years. Biomarker-driven therapies have
brought the field closer to the goal of being able to implement precision oncology therapy for every
patient. The tumor agnostic approval of pembrolizumab (a PD-1 inhibitor) marked an important
advancement in this direction. There are also several PARP inhibitors indicated for patients with
DNA damage repair deficiencies. Additionally, theranostic agents for both imaging and treatment
have further revolutionized the treatment landscape for PC and represent another advancement in
precision medicine. Radiolabeled prostate-specific membrane antigen (PSMA) PET/CT is rapidly
becoming a standard of care for diagnosis, and PSMA-targeted radioligand therapies have gained
recent FDA approval for metastatic prostate cancer. These advances in precision-based oncology are
detailed in this review.

Keywords: metastatic prostate cancer; advanced prostate cancer; biomarkers; genomic selection;
chemotherapy; PARP inhibitors; immunotherapy; PSMA; theranostics; radioligand therapy

1. Introduction

Prostate cancer (PC) is the second leading cause of cancer death in men in the United
States [1]. In 2022, it was estimated that PC comprised 14% of all new cancer cases in
the United States and accounted for 5.7% of all cancer deaths. PC is a heterogeneous
disease with diverse outcomes. Although many men with low-grade localized PC will
have an indolent disease course and often die of unrelated causes, men with high-grade or
metastatic PC have a much more aggressive disease course, and metastatic disease remains
a fatal diagnosis. Advancements in biomarkers, targeted therapies, and combination
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systemic treatments aim to improve outcomes in men with PC by using a precision oncology
approach to optimally tailor treatment to the unique biology of each patient.

PC is an androgen-dependent malignancy, and most first-line therapies target andro-
gen production and the androgen receptor (AR) signaling axis. Androgens are secreted
factors that develop and maintain male sexual reproductive tissues, including the prostate.
The two most common androgens are testosterone and its downstream metabolite dihy-
drotestosterone (DHT) [2]. Androgens are primarily secreted by Leydig cells in the testis
and a small amount is produced by the adrenal glands. AR is part of the steroid hormone
receptor super family and is a nuclear transcription factor. Full length AR (AR-FL) contains
a ligand-binding domain (LBD), a DNA-binding domain (DBD), a hinge region contain-
ing a nuclear localization signal, and a poorly conserved N-terminal domain (NTD) [3].
When AR-FL binds to DHT, it dimerizes and translocates to the nucleus where it binds to
androgen receptor elements (AREs) along with coregulators to regulate AR-target gene
expression [3]. AR supports prostate function by positively regulating the prostate-specific
antigen (PSA), which is dysregulated in many PCs, and increased PSA serum levels are
a common clinical indicator of aberrations in prostate function [4]. In PC, the AR-signaling
axis promotes growth and the epithelial-to-mesenchymal transition (EMT), a hallmark of
metastatic aggressive cancer [5].

The first-line treatment for metastatic PC is androgen deprivation therapy (ADT)
combined with an additional therapy such as an AR-signaling inhibitor (ARSI) and/or
chemotherapy (Figure 1) [6]. Although treatment with ADT is highly effective in most
patients, eventual resistance is almost universal—a disease state known as castration-
resistant prostate cancer (CRPC). The past decade of research has seen an expansion of
systemic therapies that target PC beyond the AR-signaling axis which have improved
overall survival (OS) for patients with CRPC [7–10]. This review will cover advancements
in PC biomarkers and systemic treatments, with a focus on novel targeted therapies.
Specifically, we will focus on treatments for PC with homologous recombination deficiency
(HRD), mismatch repair deficiency (MMRd), microsatellite instability (MSI), or elevated
tumor mutational burden (TMB), and finally we will review advances in theranostics for
the detection and treatment of PC with a focus on prostate-specific membrane antigen
(PSMA)-directed therapy.
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Figure 1. Treatment sequencing in recurrent/advanced prostate cancer. A core standard of care for
metastatic disease is androgen deprivation therapy (ADT) in combination with at least one additional
therapy. This review focuses on the therapeutic options upon disease progression following treat-
ment. Abbreviations: biochemical recurrence, BCR; androgen deprivation therapy, ADT; androgen
receptor-signaling inhibitor, ARSI; prostate-specific membrane antigen, PSMA; positron emission
tomography/computational tomography, PET/CT; homologous recombination repair deficiency,
HRRd; mismatch repair deficiency, MMRd; tumor mutational burden-high, TMB-H; microsatellite
instability-high, MSI-H.
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2. Advances in Molecularly Selected Therapies

Molecularly selected therapy is a treatment approach that utilizes a patient’s unique
genetic or molecular signatures for the selection of optimal therapeutics, some of which can
exploit well-defined molecular vulnerabilities within cancers. A significant advancement in
precision oncology was the tissue-agnostic FDA approval of the programmed cell death-1
(PD-1) inhibitor pembrolizumab for the treatment of any tumor with mismatch repair
deficiency (MMRd) or high microsatellite instability (MSI-H), regardless of the tissue of
origin [11]. Since then, the indication for pembrolizumab has expanded to include any
tumor with high tumor mutational burden (≥10 mutations/megabase; TMB-H). Two ad-
ditional molecularly selected therapeutics—olaparib and rucaparib—were subsequently
approved for the treatment of men with mCRPC and mutations in homologous recombina-
tion repair (HR R) genes. It is recommended that all men with mCRPC undergo somatic
next-generation sequencing (NGS) to assess for MMRd, MSI, and HRD alterations [6].
Although the use of metastatic tumor tissue is the gold standard for NGS, the use of pri-
mary tissue is acceptable and advancements in cell-free DNA (cfDNA) technology have
allowed blood-based sequencing for many patients [12–14]. cfDNA can accurately deter-
mine MMRd and MSI status, and detect actionable DNA repair gene alterations [15]. These
approvals expanded the available treatments for men with mCRPC. In this section, we will
review the evidence that led to these approvals and discuss their use in current practice.

2.1. Immunotherapy for Mismatch Repair Deficiency, Microsatellite Instability, and Elevated
Tumor Mutational Burden

A repair mechanism crucial to genomic integrity is mismatch repair (MMR). Mis-
matched nucleotide incorporation is a consequence of damage (chemical/physical), im-
perfect DNA replication, and erroneous recombination between heteroallelic parental
DNA [16,17]. MMR is a process that requires many genes to be executed properly, in-
cluding MSH2-6, of which MSH2 and MSH6 are the most frequently altered MMR genes
in PC [17]. MMR deficiency (MMRd) is associated with high tumor mutational burden
(TMB-H) and high microsatellite instability (MSI-H) [18,19]. An estimated 3–5% of men
with PC have MMRd, most likely derived from a somatic mutational event rather than
a germline pathogenic alteration [20–22].

A consequence of MSI-H and TMB-H is the expression of strongly immunogenic
mutant proteins called neoantigens, which are hypothesized to increase the efficacy of
existing immunotherapies [23,24]. The generation of neoantigens by MMRd may increase
susceptibility to immune checkpoint inhibitors (ICI) [25]. Immune checkpoints are key to
inhibiting autoimmunity, or the targeted destruction of healthy cells. Tumors can co-opt
immune checkpoints to prevent the immune system from targeting and destroying tumor
cells, and ICI therapies can block these immune-suppressive interactions, allowing T cells
to recognize and destroy cancer cells [25–27]. ICIs are indicated for use in diverse cancer
types and include monoclonal antibodies that target the immune checkpoint proteins
programmed death receptor-1 (PD-1), programmed death ligand-1 (PD-L1), and cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4) [28].

Despite being effective in many other cancers, men with unselected PC have had dis-
appointing responses to checkpoint blockade therapies. The CTLA-4 inhibitor ipilimumab
did not demonstrate an OS improvement in men with mCRPC in two randomized phase
3 trials [29,30]. Single-agent pembrolizumab, an anti-PD1 antibody, also resulted in low
response rates (3–5%) in unselected patients [31]. Combination therapy with combined
CTLA-4 and PD-1 blockade resulted in modestly higher response rates but with signif-
icant added toxicity [32]. A proposed mechanism behind this resistance is that the PC
microenvironment has decreased infiltration by immune cell subtypes [33].

Pembrolizumab is approved for any tumor with MMRd or MSI, including PC [11].
A phase 2 trial found that across 12 tumor types, 53% of patients given PD-1 blockade
therapy experienced a durable response, and the subsequent next-generation sequencing
(NGS) of 12,019 cancers found that >5% of adenocarcinomas derived from 11/12 tissues
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were MMR deficient [34]. Subsequently, the KEYNOTE-158 phase 2 trial showed that
pembrolizumab monotherapy elicited a robust tumor response in 29% of TMB-H PC
patients, of which 57% had an enduring response of >12 months [31]. The FDA approved
pembrolizumab in 2020 for patients with TMB-H cancers that are metastatic or unresectable
and poorly responsive to other treatment (Table 1) [35]. The number of patients with PC
was limited in the prospective trials, leading to pembrolizumab’s tissue-agnostic approval.
Therefore, it was initially unknown how effective pembrolizumab would be for men with
PC whose tumors were MMRd, MSI-H, or TMB-H. Several retrospective studies have
attempted to answer this question. A retrospective analysis of patients with metastatic PC
who received pembrolizumab treatment showed that patients with MMRd had a response
rate of 53%, which is much higher than the previously reported 3–5% response rate in the
larger unselected patient population [36]. Further, a subset of responders showed a durable
response at 12 months of continual treatment [36]. This is congruent with other retrospective
analyses as well [17,21,37,38]. Pembrolizumab is approved for use in patients who have
failed at least one other treatment previously; however, the optimal timing and sequencing
of pembrolizumab with other therapies is yet to be elucidated [39,40]. Pembrolizumab
immunotherapy is a recent addition to PC treatment schemes that offers benefits to a subset
of patients who harbor molecular signatures of MMRd/MSI-H/TMB-H who have already
failed conventional therapeutic regimes. This marks a significant advancement in the use
of gene signatures as biomarkers for tissue-agnostic therapeutics in oncology.

Table 1. FDA approval and indication of therapeutic and diagnostic agents.

Agent Year FDA Approval Supporting Clinical Trial Indication

Pembrolizumab

2017 [11] NCT02628067
(KEYNOTE-158)

Tissue-agnostic approval for unresectable or
metastatic microsatellite-high (MSI-H) or
mismatch repair deficiency (MMRd) solid
tumors following prior treatment with no
satisfactory alternative treatment available

2020 [35] NCT02628067
(KEYNOTE-158)

Tissue-agnostic approval for unresectable or
metastatic cancer with tumor mutational
burden-high (TMB-H)

Rucaparib 2020 [41] NCT02952534
(TRITION2)

Patients with mCRPC with deleterious BRCA1/2
mutation who have progressed following
androgen receptor-directed therapy and
taxane chemotherapy

Olaparib 2020 [42] NCT02987543
(PROfound)

Patients with mCRPC with deleterious or
suspected deleterious BRCA1, BRCA2, ATM,
BARD1, BRIP1, CDK12, CHEK1, CHEK2,
fANCL, PALB2, RAD51B, RAD51C, RAD51D,
and RAD54L mutations who have progressed
following treatment with enzalutamide
or abiraterone

18F-fluciclovine
PET/CT

2016 [43] NCT02578940
(FALCON)

Patients with suspected biochemically recurrent
prostate cancer

18F-DCFPyL-PSMA
PET/CT

2021 [44] NCT02981368
(OSPREY)

Patients with suspected prostate cancer
metastasis who are potentially curable via
surgery or other therapy

2021 [44] NCT03739684
(CONDOR)

Suspected biochemical recurrence indicated by
prostate-specific antigen levels

68Ga-PSMA-11
PET/CT

2020 [45] NCT03368547
Patients with suspected prostate cancer
metastasis who are potentially curable with
surgery or radiation

2020 [45] NCT02940262 Suspected biochemical recurrence indicated by
prostate-specific antigen levels
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Table 1. Cont.

Agent Year FDA Approval Supporting Clinical Trial Indication

Radium223 2013 NCT00699751
(ALSYMPCA)

Patients with metastatic prostate cancer with
symptomatic bone metastasis

177Lu-PSMA-617 2022 [46] NCT03511664
(VISION)

Patients with PSMA-positive metastatic
castration-resistant prostate cancer who have
progressed following androgen receptor
pathway inhibition and taxane chemotherapy

Abbreviations: metastatic-castration resistant prostate cancer, mCRPC; prostate-specific membrane
antigen, PSMA.

2.2. Theraputics Indicated for Homologous Recombination Repair Deficiency

Another therapeutically exploitable molecular signature is homologous recombination
repair (HRR) deficiency. HRR is a high-fidelity repair mechanism that uses the sister
chromatid as a template to exactly repair DNA double-stranded breaks (DSB) [47]. When
HRR is defective because of deleterious mutations in HRR genes, such as BRCA2, ATM,
CDK12, and CHEK2, cells must rely on more error-prone DNA repair mechanisms, which
leads to an increased rate of mutations and genetic alterations [48,49]. Patients with HRR
deficiency (HRD) have a higher lifetime risk of developing certain cancers such as breast,
ovarian, and prostate malignancies [50]. In a study evaluating the prevalence of HRR
mutations in metastatic PC, the prevalence was found to be 11.8% in the germline and 23%
in somatic sequencing [49].

The reliance of HRD cells on compensatory, error-prone repair mechanisms can be
exploited therapeutically. Blocking these compensatory repair mechanisms can increase the
rate of catastrophic genomic instabilities and drive cancer cell death. This also makes can-
cers with HRD more sensitive to DNA damage agents, such as platinum-based chemother-
apies, as they are also able to achieve catastrophic cytotoxicity more readily [51,52].

2.2.1. Poly (ADP-Ribose) Polymerase (PARP) Inhibitors

Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) block compensatory repair path-
ways (e.g., base excision repair), which generates a synthetic lethal effect in HRD patients [53,54].
The efficacy of PARPi in BRCA-altered tumors is recognized in other tumor types such as breast
and ovarian cancers [55]. Patients with PC who have progressed after a second-generation
hormonal agent (e.g., abiraterone acetate or enzalutamide) with HRD are potential candidates
for two FDA-approved PARP inhibitors, rucaparib and olaparib [41,42].

Rucaparib is indicated for patients with germline or somatic BRCA1 or BRCA2 muta-
tions [41]. Data to support rucaparib’s approval in this setting originally came from the
phase 2 TRITON2 trial [56]. TRITION2 enrolled men with mCRPC who had deleterious
HRR alterations and had progressed on one or two prior second-generation hormonal
agents as well as at least one taxane-based chemotherapy. Rucaparib demonstrated ef-
fectiveness in the subpopulation of men with BRCA1 or BRCA2 mutations, with a PSA
response rate of 54.8% and a confirmed objective response rate of 43.5%. Rucaparib showed
limited efficacy in patients with non-BRCA HRR alterations [57]. For example, out of
49 patients with a pathogenic ATM alteration, only 2 (4.1%) achieved a PSA response.
Similarly, 1/15 (6.7%) of patients with CDK12 alterations and 2/12 (16.7%) of patients
with CHEK2 alterations experienced a PSA response. The number of men with alterations
in other genes was limited, but a response was observed in patients who had mutations
in PALB2, FANCA, BRIP1, and RAD51B [56]. The low response rates in the non-BRCA
HRR genes limited rucaparib’s indication to BRCA1/2 mutations only. The confirmatory
TRITON3 phase 3 trial randomized men with mCRPC who had progressed on an ARSI and
who had a BRCA1, BRCA2, or ATM mutation to either rucaparib or the physician’s choice
of therapy (docetaxel or an alternative ARSI). Rucaparib therapy led to significantly longer
radiographic progression-free survival (rPFS) compared to control therapy (11.2 months
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versus 6.4 months) [58]. Similarly to the prior data, the majority of the benefits seemed to
be experienced by men with BRCA mutations [58].

Olaparib has a broader approval for men with mCRPC and pathogenic mutations
in BRCA1, BRCA2, and 11 additional HRR pathway genes with mutations [10]. The
PROfound phase 3 clinical trial enrolled men with mCRPC who had progressed on
a second-generation ARSI. Men were randomized to receive either olaparib or the physi-
cian’s choice of enzalutamide or abiraterone and divided into two cohorts. Cohort A
included men who had at least one alteration in BRCA1, BRCA2, or ATM, whereas cohort B
included men who had alterations in any of the 12 other prespecified genes. Significant
improvement in rPFS was noted in cohort A (7.4 months compared to 4.6 months) alone
and the overall population of cohort A + B (5.8 months compared to 3.5 months). Given the
benefit seen in the overall population, olaparib was approved for use in men with all HRR
alterations studied, with the exception of PPP2R2A which showed evidence of possible
harm in prespecified subgroup analysis.

Despite this broad approval, there remain uncertainties about the effectiveness of
olaparib in men with non-BRCA1/2 alterations. In subset analyses of PROfound, the benefit
in the overall population seems to be largely experienced by men with BRCA1/2 alterations.
In men with ATM and CDK12 mutations, there was no difference in rPFS between the
olaparib and control groups [59–61]. The control arm of the PROfound trial may also
have been suboptimal, as the majority of patients had already received at least one of
the “physician’s choice” control therapies (i.e., enzalutamide or abiraterone) and there is
known cross-resistance between these agents. In addition, 18% of patients in the control
arm had received both abiraterone and enzalutamide previously [61]. Ultimately, further
research is needed to more precisely define which patients may benefit from treatment with
PARP inhibitors.

Although it is estimated that 20% of men with metastatic PC have a germline or somatic
alteration in HRR, PARPi therapy remains unavailable for most patients with PC who are
phenotypically normal for HRR. The activity of single-agent PARPi is minimal in patients
without HRD; however, there has been considerable interest in searching for combination
therapies that will sensitize or increase the effectiveness of PARP inhibitors in the unselected
patient population. Studies of PARPi in combination with second-generation ARSIs have
yielded conflicting results. The PROpel phase 3 trial evaluated the efficacy of olaparib
and abiraterone in patients with mCRPC who had not received prior chemotherapy [60].
Combination therapy improved image-based PFS compared to abiraterone alone regardless
of HRR status [60]. However, MAGNITUDE, a similar phase 3 trial, did not find a rPFS
benefit in men without HRR mutations for the combination of niraparib (PARPi) and
abiraterone [62]. Similarly, a phase 2 trial of veliparib (PARPi) and abiraterone failed to show
a PFS benefit compared to abiraterone alone in a group of unselected men with mCRPC [63].

There is likely a subset of men with functional alterations in HRR, but without canon-
ical alterations, who may benefit from PARPi treatment. Identifying and/or expanding
biomarkers for PARPi response is an area of active investigation, and there are many on-
going efforts to identify tumor features and gene signatures that accurately identify HRD
and potential responsiveness to genotoxic therapies [64,65]. The use of gene signatures to
identify candidate patients has been a precedent in both ovarian and breast cancer. The
ARIEL2 phase 2 trial found that patients with ovarian cancer with a loss of heterozygosity
benefit from PARPi treatment [66]. In breast cancer, a statistical model (HRDetect) was
developed to distinguish mutational signatures that could better predict HRD beyond
BRCA1/2 deficiency [67]. Similar classification frameworks are being developed and tested
on PC (e.g., NCT04951492) [64].

2.2.2. Platinum-Based Chemotherapeutics

Platinum-based chemotherapy (cisplatin, and carboplatin) is often used in small-cell
or aggressive-variant PC, and sometimes in patients who have failed standard-of-care
treatments [68]. The use of platinum-based chemotherapies is limited in standard PC
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adenocarcinoma. The oral platinum agent satraplatin prolonged PFS (11.1 weeks com-
pared to 9.7 weeks) and increased the time until pain progression but did not prolong
overall survival in a phase 3, randomized, placebo-controlled clinical trial [69,70]. Patients
with DNA damage repair mutations may benefit from platinum chemotherapy as it di-
rectly damages DNA. Increased platinum sensitivity in BRCA-altered tumors has been
demonstrated in other tumor types including breast and ovarian cancers [71]. In addition,
exceptional platinum responders have been reported in patients with PC that have a BRCA2
alteration [51,52,72]. In a large retrospective study of men with mCRPC who had received
platinum chemotherapy (either alone or in combination with another chemotherapy agent),
men with DNA repair alterations had higher PSA level decreases and soft tissue responses
compared to men without DNA repair alterations. Responses in patients with BRCA2
alterations were particularly promising, with a decrease in PSA from the baseline of at least
50% in 63.9% of patients and a soft tissue response in 50% of patients [52].

2.3. Sipuleucel-T Cellular Immunotherapy

Sipuleucel-T is an FDA-approved vaccine for the treatment of asymptomatic or min-
imally symptomatic mCRPC [9,35,73]. This vaccine generates an immune response tar-
geted against prostatic acid phosphatase (PAP), an antigen upregulated in PC [9]. Patient-
extracted antigen-presenting cells (APCs) are incubated ex vivo with a recombinant anti-
gen protein which contains PAP, and then re-introduced to the patient. The proposed
mechanism is that these APCs stimulate an immune response against PAP and subse-
quently high-PAP-expressing PC cells [74]. In clinical trials, it extended patient survival
by 4.1 months [73]. The high cost of sipuleucel-T is considered a major obstacle to the
accessibility and utilization of this treatment [74].

3. Theranostics in Prostate Cancer

‘Theranostics’ refers to agents which target radioisotopes to cancer-specific structures,
typically a protein or antigen, for imaging and therapeutic purposes. In the case of imaging,
a PET-compatible positron-emitting radionuclide with a half-life in the range of minutes
to hours is used to label the radiopharmaceutical, such as fluoride-18 (18F) [75,76]. For
therapeutic theranostics, the radiopharmaceutical is conjugated to a beta- or alpha-emitting
radionuclide with a much longer half-life, which allows targeted radiation dosing [77]. The
first theranostic agent to be used specifically for PC was radium-223 (223Ra), which was
approved by the FDA in 2013 for the treatment of patients with mCRPC with symptomatic
bone metastases [78]. Recent years have seen a resurgence in the development of theranostic
agents, culminating in the development of prostate-specific membrane antigen (PSMA)-
targeted agents for both diagnostic and therapeutic use in PC. PSMA is a cell-surface
protein expressed by prostate cells and expression of PSMA is often increased in PC and
PC metastasis [79]. While PSMA is also expressed by neural, neuroendocrine, kidney and
small bowel tissue, it is expressed 12 times more by prostate tissue and is a highly specific
biomarker [80]. Though typically more highly expressed in PC, expression of PSMA can
be lost in poorly differentiated cells [81,82]. Herein, we will review the current state of
theranostics for their use in the diagnosis and treatment of PC.

3.1. Diagnostics

Positron emission tomography (PET) scans have been applied in oncology for decades
to search for tissues with an abnormal uptake of radiotracers [76,83]. Combining PET with
computed tomography (PET/CT) or magnetic resonance imagining (PET/MRI) can also
provide anatomical information. This imaging modality can be used to define both primary
tumor sites as well as identify regional spread and metastatic sites. Historically, PET has
relied heavily on several generalized radiotracers that exploit the increased metabolic
activity of tumors. A radiolabeled glucose derivative, (18)F-2-deoxy-2-fluoro-D: -glucose
(FDG)(18F-FDG), is a common radiotracer used for many malignancies; however, it lacks
sensitivity and specificity for PC [84].
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Another radiotracer used for diagnostic PET/CT is 11C-choline, which has several
advantages over 18F-FDG in the detection of PC, including rapid blood clearance and rapid
uptake by prostatic tissue. The rapid prostatic tissue uptake allows imaging to occur before
the radiotracer accumulates in the bladder for excretion via urine, allowing clearer imaging
of the pelvic region [85]. While 11C-choline may be used to detect biochemically recurrent
(BCR) PC, it also suffers from a lack of specificity and can detect non-prostate pathology,
such as renal cell carcinoma [86].

The radiotracer 18F-fluciclovine is FDA-approved to detect clinically suspected BCR PC
that eludes detection by other conventional imaging methods [87,88]. The 18F-fluciclovine
synthetic amino acid analogue is imported by glutamate transporters [89–91]. The sen-
sitivity of 18F-fluciclovine was 90.2% in the original prospective trial, but the specificity
was only 40% [92]. Later refinement of the imaging methodology (increasing the time to
imaging from 5 min to 15 min) brought specificity up to 84.8% in subsequent studies [93].

While the broad-spectrum radiotracers described above have advantages and disad-
vantages, new prostate-specific radiotracers targeting PSMA are quickly becoming the
standard of care. 18F-PSMA and 68Ga-PMSA are the two PSMA targeting radiolabels that
are approved by the FDA for use in PC detection. 18F-PSMA is primarily used for the
detection and staging of BCR PC and has several clinical advantages over 68Ga-PMSA,
including increased availability in-clinic, and a higher positron yield with lower positron
energy, which improves the contrast and decreases the noise in the images generated [94,95].
68Ga-PMSA may be superior at detecting BCR disease and is a companion diagnostic for
177Lu-PSMA-617 treatment (as detailed in the next section) [96,97]. PSMA PET/CT provides
highly specific imaging data and is presently indicated for the diagnosis and staging of
BCR disease.

3.2. Therapeutics
3.2.1. Radium-223 Dichloride

Radium-223 was the first approved theranostic for use in PC and is indicated for
mCRPC which has spread to the bone. Radium-223 is a calcium mimetic that accumulates
in areas of bone with increased turnover, as is characteristic of bone metastases frequently
observed in PC [78]. The diagnostic counterpart for radium-223 is either bone scintig-
raphy with 99mTc-MDP or PET/CT with 18F-NaF [98]. The Alpharadin in Symptomatic
Prostate Cancer Patients (ALSYMPCA) trial showed an increase in OS of approximately
three months and improved quality of life [99]. Importantly, radium-223 also prolonged
the time until the first symptomatic skeletal event, defined as the use of palliative radiation
to treat skeletal symptoms, symptomatic pathologic fracture, spinal cord compression, or
surgery to treat a tumor-related orthopedic condition. The main limitation to the use of
radium-223 is hematologic toxicity, especially in a heavily pre-treated population.

3.2.2. 177Lu-PSMA-617

Lutetium Lu 177 vipivotide tetraxetan (177Lu-PSMA-617, Lu-PSMA) targets beta ra-
diation to PSMA-positive cells. Beta emitters release electrons which damage DNA and
typically travel farther through tissue than alpha particles do [100,101]. The VISION phase3
clinical trial showed that 177Lu-PSMA-617 prolonged PFS (median: 8.7 vs. 3.4 months)
and OS (15.3 vs. 11.3 months) in patients with PSMA-positive lesions compared to the
investigator’s choice of therapy [8]. Based on the results of this trial, 177Lu-PSMA-617
treatment was FDA-approved in May of 2022 for patients with PSMA-avid mCRPC who
have previously received a taxane chemotherapy and an ARSI. This represented a major
advance for patients with mCRPC and limited other treatment options; however, there
remain many unanswered questions about the optimal approach to the use of 177Lu-PSMA-
617. One criticism of the VISION trial was the very high initial dropout rate (56%) of the
control arm, which was addressed and improved to 16% later in the study [102]. The
standard-of-care (SOC) treatment arm of the study excluded chemotherapy, immunother-
apy, and radium-223 therapy because of a lack of research into the safety of combining these
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agents with 177Lu-PSMA-617. However, with emerging evidence supporting the efficacy of
doublet and triplet therapies, further investigation as to the safety of 177Lu-PSMA-617 with
these therapies is imperative [102].

In the Australian TheraP phase 2 trial, men with mCRPC were randomized to 177Lu-
PSMA-617 vs. cabazitaxel. Importantly, TheraP screened participants with both PSMA
PET/CT and FDG PET/CT and only included patients with PSMA-positive disease who
had no sites of discordant FDG avidity. Compared to cabazitaxel, 177Lu-PSMA-617 had
a higher PSA response rate (66% vs. 37%) whilst eliciting fewer grade 3 or 4 adverse events
(33% vs. 53%) [103]. 177Lu-PSMA-617 treatment also resulted in significantly improved
PSA response and radiographic PFS. There is significant interest in the prognostic value of
dual PET/CT with radiolabeled PSMA and 18F-FDG, with an early study suggesting that
FDG-positive/PSMA-negative lesions are a negative predictor of OS in mCRPC patients
undergoing radioligand therapy [104].

Additional applications of 177Lu-PSMA-617 are under clinical investigation. The
PSMAfore phase 3 trial is an on-going investigation of the effect of 177Lu-PSMA-617 treat-
ment compared to a change in ARSI therapy in taxane-naive progressive mCRPC patients,
and has shown a significant PFS benefit compared to the control arm thus far [105,106].
The phase 3 trial, PSMAddition, is investigating 177Lu-PSMA-617 with the SOC com-
pared to the SOC alone in patients with treatment-naive metastatic hormone-sensitive
PC (HSPC) [107,108].

3.2.3. 177Lu-PSMA I&T

There are several clinical trials in progress with another PSMA radioligand agent,
177Lu-PSMA I&T. The SPLASH and ECLIPSE phase 3 trials are evaluating 177Lu-PSMA I&T
in patients with mCRPC who have previously failed ADT/ARSI [101]. However, there are
concerns regarding increased renal radiation compared to that observed with 177Lu-PSMA-
617 [109]. The BULLSEYE phase 2 trial was initially designed to evaluate 177Lu-PSMA
I&T; however, an update to the clinical trial in 2022 changed the agent to 177Lu-PSMA-617.
BULLSEYE is evaluating the use of 177Lu-PSMA-617 as an early therapeutic option in
ARSI/chemotherapy-naive patients with metastatic HSPC [110].

3.2.4. 225Actinium-PSMA-617

Very similar in concept is 225Actinium-PSMA-617 (Ac-PSMA), which emits low-dose
alpha radiation. Alpha emitters are highly cytotoxic and mainly generate DNA double-
stranded breaks. A small pilot study (n = 17) establishing a treatment protocol for 225Ac-
PSMA-617 in chemotherapy-naive metastatic PC, yielded a >90% decrease in PSA levels
in 82% of patients, and 41% of patients achieved remission for 12 months [111]. The
AcTION (NCT04597411) phase 1 clinical trial is currently enrolling, and aims to evalu-
ate Ac-PSMA in three experimental arms: (1) naive for radioligand therapy, prior ARSI
and/or chemotherapy, (2) naive for radioligand therapy, ARSI, and chemotherapy and,
and (3) prior radioligand therapy with no selection for ARSI or chemotherapy [112]. There
is some concern regarding the increased adverse events seen with the use of Ac-PSMA,
as early studies suggest it may have increased hematological toxicity and cause severe
xerostomia; however, larger trials are necessary to investigate these early observations [113].
Further research will also elucidate whether or not Ac-PSMA may be an option for patients
who have progressed after 177Lu-PSMA-617 therapy. There are also early studies on com-
bination 225Ac-PSMA and 177Lu-PSMA-617 therapy, which suggest that the combination
may enhance responses to PSMA-targeted radiotherapy while limiting xerostomia [114].

4. Conclusions

The diagnosis and treatment of PC has advanced significantly; however, metastatic
PC continues to defy curative treatment options and remains a terminal diagnosis. The
increased understanding of molecular drivers of PC has led to improvements in biomarkers
and targeted therapies, which has ushered in a new era of precision oncology treatment.
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Recent work exploiting vulnerabilities derived from deficient DNA damage repair re-
sponses have provided several therapeutic agents for advanced PC. Although immunother-
apy in PC has underperformed compared to some other cancer types, the tissue-agnostic
indication of pembrolizumab still marks a significant step forward in precision oncology
and a valuable therapeutic option for the treatment of patients with MMRd/MSI-H/TMB-
H PC. Likewise, PARP inhibitors have been proven to be effective in patients with HRD
but are less so in unselected patients.

Theranostics have gained considerable traction in the diagnostic setting and show
significant promise as therapeutic agents. PSMA-targeted radiotracers have high specificity
and while they are primarily indicated for the detection of BCR disease, they are also
showing promise in early diagnosis and staging. Coupled with alpha- and beta-emitting
radioligand PSMA-targeted therapies, theranostics offer a highly specific radiation therapy
option capable of treating PSMA-positive PC.

5. Future Directions

A fundamental challenge in the treatment of PC is the progression to castration-
resistance. For men with mCRPC, there is an urgent need to meet this challenge and develop
new therapeutic options. Targeting PC beyond the AR-signaling axis is clinically beneficial
and the development of novel therapeutics or cross-application of current therapeutics
used in other cancers can expand existing PC treatment options.

The advent of targeted next-generation sequencing panels allowed the identification of
men with certain genetic biomarkers who would benefit from therapies such as checkpoint
blockade, PARP inhibitors, or platinum chemotherapy. There is still much work to be carried
out to ultimately achieve the goal of having precision medicine for every patient. Although
therapies such as pembrolizumab and PARP inhibitors elicit robust responses in some
patients, significant research efforts are needed to both further understand how to identify
patients most likely to benefit from them and also to develop combination therapeutics
to increase efficacy in unselected patients. Theranostics show immense promise as both
diagnostic and therapeutic agents; however, many questions remain regarding the optimal
timing and sequencing of these agents and the best way to utilize more sensitive diagnostic
scans. In addition, future research is needed to identify predictive biomarkers for PSMA-
targeting radioligand therapy.

The identification of biomarkers for molecularly selected therapeutics remains an area
of significant interest. Additionally, many questions remain regarding the synergy and
safety of newly approved therapeutics in doublet and triplet combination therapies. As
these questions are answered, the field will grow closer to achieving the goal of optimally
tailoring treatment to the unique biology of each patient.
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