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Simple Summary: Chondrosarcoma are rare bone tumors. So far, the treatment of choice is complete
resection. In cases that cannot be resected, therapeutic options are limited. Chondrosarcoma are still
poorly understood compared to other types of tumors. Characterization of specific molecules and
tumor cells of chondrosarcoma will help to develop better therapies in the future.

Abstract: Chondrosarcoma (CHS) are heterogenous, but as a whole, represent the second most
common primary malignant bone tumor entity. Although knowledge on tumor biology has grown
exponentially during the past few decades, surgical resection remains the gold standard for the
treatment of these tumors, while radiation and differentiated chemotherapy do not result in sufficient
cancer control. An in-depth molecular characterization of CHS reveals significant differences com-
pared to tumors of epithelial origin. Genetically, CHS are heterogenous, but there is no characteristic
mutation defining CHS, and yet, IDH1 and IDH2 mutations are frequent. Hypovascularization,
extracellular matrix composition of collagen, proteoglycans, and hyaluronan create a mechanical
barrier for tumor suppressive immune cells. Comparatively low proliferation rates, MDR-1 ex-
pression and an acidic tumor microenvironment further limit therapeutic options in CHS. Future
advances in CHS therapy depend on the further characterization of CHS, especially the tumor
immune microenvironment, for improved and better targeted therapies.

Keywords: sarcoma; chondrosarcoma; immune; tumor microenvironment; extracellular matrix;
tumor profile

1. Introduction

Primary malignant bone tumors are a rare entity and thus account for less than
1% of cancers [1]. Chondrosarcoma (CHS) represent the second most common primary
malignant bone tumor entity [2,3]. Although there is an overall improvement in the
combined treatment of other types of bone sarcomas, there was no significant progress in
the treatment of CHS within the past 40 years. Thus, surgical treatment is still the only way
to cure the majority of patients suffering from CHS. CHS are heterogeneous with respect
to diverse subtypes that are heterogeneous in terms of clinical and prognostic features,
as well as molecular characteristics [4,5]. CHS are classified according to their location in
relation to the bone. Most central CHS arise in bones formed by endochondral ossification
(more than 85%), whereas the less common peripheral and periosteal CHS arise in flat
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bones (most commonly the scapula and pelvic bones) in a pre-existing osteochondroma.
In clinical practice, CHS are still classified into three grades based on their histology,
ranging from well-differentiated, low-cellularity, exceptionally metastatic grade I CHS to
poorly differentiated and highly cellular grade III CHS, with a high risk for pulmonary
metastasis [6–8]. With respect to the latest WHO recommendations, nomenclature for
CHS differentiates between central or secondary peripheral atypical cartilaginous tumor
(ACT)/CHS (grade 1) and central or secondary peripheral CHS grade 2 and 3 [7]. At initial
presentation, only about 6% of CHS patients are diagnosed with distant metastasis [9,10].
A total of 10–30% of the patients will develop distant metastasis after local recurrence or as
primary progression [11,12]. Nevertheless, an overall five-year survival rate is estimated to
be around 70%, which is superior to other primary bone tumors such as osteosarcoma [3].
The survival rate of CHS depends on subtypes, with good five-year survival rates in the
periosteal subtype (68.1%) and conventional CHS (68.4%). The one- and five-year survival
rates in clear cell (88.7%, 62.3%), myxoid (86.2%, 49.8%), and mesenchymal (76.1%, 37.6%)
subtypes are relatively lower but still better than in dedifferentiated CHS, with reported
five-year survival rates between 11% and 24% [13]. This may appear contradictory as the
gold-standard for the treatment of CHS is surgical resection, and neither radiation nor
chemotherapy have proven to have a relevant effect on recurrence rate and prognosis.

Research on CHS is diminutive compared to research on osteosarcoma with regard
to publications per year, but it is active with regard to the characterization of the (novel)
molecular markers of CHS subtypes and the identification of potential targets for immune
and targeted therapies.

2. Morphology and Subtypes of CHS

From a macroscopic perspective, CHS are rather large tumors, usually extending 4 cm
in diameter. Typically, they present a translucent lobular, blue-grayish, or white surface
associated to the presence of hyaline cartilage [14]. Microscopically, the differentiation
between low-grade chondrosarcoma and an osteochondroma can be challenging, due to
the fact that binucleated cells, cystic changes, and necrosis can be seen in cartilaginous
cap and osteochondroma. The synopsis of clinical and radiological features together
with the macroscopic appearance of a cartilaginous cap > 2 cm are essential to establish
the diagnosis in the case of secondary peripheral ACT/CHS. In general, an increasing
lobulation separated by fibrous bands containing small vessels into nodules of varying
sizes is suspicious for the presence of an ACT/CHS1 [7]. The following features are typical
for CHS:

Grade 1: Low to moderate cellularity with embedded chondrocytes that partially
show small, dense, and binucleated nuclei that are usually not enlarged. Mitotic figures
are absent. The stroma is generally composed of a majority of cartilaginous tissue; myxoid
areas are sparse or absent [15].

Grade 2: There is an increase in cell density, with a subsequent smaller proportion
of chondroid matrix and a relatively higher percentage of myxoid stroma. The cell nuclei
are of moderate size. The mitotic rate is low (<2/10 HPF, high power fields). Some cell
nuclei appear enlarged, vesicular, or hyperchromatic. The majority of chondrocytes present
themselves as binucleated or multinucleated [16].

Grade 3: In these tumors, cellularity is highest and the chondroid matrix is very scant
and dominated by myxoid areas. Chondrocytes appear as irregular with a tendency toward
aggregation. The nuclei are often vesicular and spindle-shaped and enlarged in size with a
gain in size of 5- to 10-fold than regular. Mitotic figures are frequently observed adjacent to
necrosis areas. Moreover, high-grade CHS express and form extensive areas of non-calcified
tissue (Figure 1) [17].
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Figure 1. Dedifferentiated chondrosarcoma, 200× (A) well-differentiated cartilaginous component; 
400× (B) low-grade portion of the CHS with atypical chondrocytes and a larger proportion of extra-
cellular matrix; (C) high-grade dedifferentiated component with spindle cell appearance. 

The grading of CHS by morphologic criteria is sometimes difficult, and thus, im-
munohistochemical detection of different protein expression patterns can help in distinc-
tion.  

High-grade malignant tumors include dedifferentiated and mesenchymal CHS. 
While the former shows a histological pattern of undifferentiated, small, round, uniform 
cells and well-differentiated hyaline cartilage areas, the latter is positive for S100 and SRY-
box transcription factor 9 (SOX9) staining. This accounts for the conventional subtype as 
well, but mesenchymal CHS are additionally CD99 and NK2 homeobox 2 (NKX2.2) posi-
tive (Table 1) [18,19]. SOX9 is expressed in other types of sarcoma such as osteosarcoma, 
synovial sarcoma, and others, which makes it unspecific for differentiation purposes, as it 
functions as the main mediator of chondrogenesis [20–22]. To distinguish between osteo-
sarcoma and chondrosarcoma dentine matrix protein (DMP-1), expression can be ana-
lyzed, which is uncommon in CHS [23]. Similarly, chondroblastic osteosarcoma will ex-
press galectin-1 (GAL-1), which is not the case for conventional CHS [24]. In analogy, ex-
pression of FLI-1 is typical for Ewing’s sarcoma, but not for CHS [25].  

Table 1. Differential expression of markers among CHS subtypes. 

 Conventional CHS Clear-Cell CHS Mesenchymal CHS High-Grade CHS 
S-100 + + + − 

NY-ESO + − − + 
Ezrin − − + + 
IDH + − − + 

Other 
D2-40, osteonectin, 

MDM2, Cox-2 
Runx2, MYF4, 

keratine 
CD99, MYOD1, NKX2.2, 

desmin, vimentin 
CD44, MDM2, 
Runx2, PD-L1 

Figure 1. Dedifferentiated chondrosarcoma, 200× (A) well-differentiated cartilaginous component;
400× (B) low-grade portion of the CHS with atypical chondrocytes and a larger proportion of
extracellular matrix; (C) high-grade dedifferentiated component with spindle cell appearance.

The grading of CHS by morphologic criteria is sometimes difficult, and thus, immuno-
histochemical detection of different protein expression patterns can help in distinction.

High-grade malignant tumors include dedifferentiated and mesenchymal CHS. While
the former shows a histological pattern of undifferentiated, small, round, uniform cells
and well-differentiated hyaline cartilage areas, the latter is positive for S100 and SRY-box
transcription factor 9 (SOX9) staining. This accounts for the conventional subtype as well,
but mesenchymal CHS are additionally CD99 and NK2 homeobox 2 (NKX2.2) positive
(Table 1) [18,19]. SOX9 is expressed in other types of sarcoma such as osteosarcoma, synovial
sarcoma, and others, which makes it unspecific for differentiation purposes, as it functions
as the main mediator of chondrogenesis [20–22]. To distinguish between osteosarcoma
and chondrosarcoma dentine matrix protein (DMP-1), expression can be analyzed, which
is uncommon in CHS [23]. Similarly, chondroblastic osteosarcoma will express galectin-1
(GAL-1), which is not the case for conventional CHS [24]. In analogy, expression of FLI-1 is
typical for Ewing’s sarcoma, but not for CHS [25].

Table 1. Differential expression of markers among CHS subtypes.

Conventional CHS Clear-Cell CHS Mesenchymal CHS High-Grade CHS

S-100 + + + −

NY-ESO + − − +

Ezrin − − + +

IDH + − − +

Other D2-40, osteonectin,
MDM2, Cox-2

Runx2, MYF4,
keratine

CD99, MYOD1, NKX2.2,
desmin, vimentin

CD44, MDM2,
Runx2, PD-L1
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Note that S-100 expression is not reported in enchondroma, but markers for chondroid
differentiation such as collagen type II and type X are expressed in both enchondroma and
conventional CHS (Figure 2) [26–28]. This is not the case for periostin, which is expressed
in low-grade CHS but not in enchondroma [28,29]. High levels of lactate-dehydrogenase-A
(LDH-A) were found in CHS and are accountable to its treatment resistance [30]. Chon-
drocyte differentiation is dependent on hedgehog signaling; chondrosarcomas show high
expression levels of the hedgehog target genes GLI1 and PTCH1, which upregulates tumor
cell proliferation when activated constitutively [31].
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In addition, the co-expression of cytoskeletal proteins, such as epithelial membrane 
antigen (EMA), mucin 1 (MUC1), desmin, myogenin, and myoblast determination protein 
1 (MyoD1), is likely [19]. However, Friend leukemia virus integration 1 (FLI-1), smooth 
muscle actin (SMA), glial fibrillary acidic protein (GFAP), and keratins are entirely 
negative, and integrase interactor 1 (INI1) expression is retained in mesenchymal CHS 
[19]. Undifferentiated CHS occur when a portion of conventional low-grade CHS 
transforms into an aggressive high-grade sarcoma (most commonly undifferentiated 
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Figure 2. Chondrosarcoma G1-G2 50× (scale bar 1 mm) (A); 400× (scale bar 50 µm) (B); chondrosar-
coma G2 100× (scale bar 500 µm) (C); 400× (scale bar 50 µm) (D); myxoid degenerated partial necrotic
chondrosarcoma 200× (scale bar 100 µm) (E); S100 positivity 400× (scale bar 50 µm) (F).

In addition, the co-expression of cytoskeletal proteins, such as epithelial membrane
antigen (EMA), mucin 1 (MUC1), desmin, myogenin, and myoblast determination protein 1
(MyoD1), is likely [19]. However, Friend leukemia virus integration 1 (FLI-1), smooth
muscle actin (SMA), glial fibrillary acidic protein (GFAP), and keratins are entirely neg-
ative, and integrase interactor 1 (INI1) expression is retained in mesenchymal CHS [19].
Undifferentiated CHS occur when a portion of conventional low-grade CHS transforms
into an aggressive high-grade sarcoma (most commonly undifferentiated pleomorphic
sarcoma, osteosarcoma, or other less common high-grade sarcomas such as angiosarcoma,
leiomyosarcoma, and rhabdomyosarcoma) [32]. As mentioned previously above, dediffer-
entiated CHS are most likely negative for S100 in dedifferentiated components, which is an
essential difference to the mesenchymal and conventional CHS subtype [33]. In a minor
percentage (about 20%) of dedifferentiated CHS, p.Arg132His mutation-specific isocitrate
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dehydrogenase 1 (IDH1) antibody staining is positive. Both conventional and dedifferenti-
ated components may express mouse double minute 2 homolog (MDM2), programmed
cell death receptor ligand 1 (PD-L1), and New York esophageal squamous cell carcinoma 1
(NY-ESO) marker [34]. While aurora kinase, which belongs to the family of serine kinases
and is responsible for cell cycle regulation through the control of centriole and microtubule
function, is expressed in higher grade CHS, much lower expression rates were detected in
low-grade CHS [35,36].

Other histological subtypes of CHS are low-grade clear-cell CHS and periosteal CHS.
While the former is characterized by a large proportion of transparent cells with clear, pale
cytoplasm in the presence of glycogen vacuoles and distinct cytoplasmic membranes, the
periosteal CHS show well-differentiated lobular cartilage areas and moderately cellular
cartilage with areas of calcification and endochondral ossification (Figure 3) [37,38].
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Figure 3. Depicting differences between carcinoma (e.g., G2) and CHS (G1 and G2). Note: Poor
vascularization of G1 and G2 CHS under a relatively lower cell density.

Extraskeletal myxoid CHS are malignant neoplasms of soft tissue of uncertain dif-
ferentiation. Histologically, they are characterized by a multinodular architecture and an
abundant hypocellular myxoid matrix and interconnecting cords of uniform neoplastic cells
with a typical spindle cell differentiation and a high variation in growth pattern. Genetically,
NR4A3 gene rearrangement is characteristic for these tumors. Although entitled as CHS,
there is no evidence of cartilaginous differentiation [7].

3. Tumor Microenvironment of CHS

The tumor microenvironment (TME) is of increasing interest to researchers and clin-
icians in the search for effective targeted therapies. The sarcoma microenvironment is a
very complex heterogenous and dynamic milieu, characterized mainly by high intersti-
tial acidosis and high-density immune and genetic heterogeneity [30]. In general, tumor
microenvironment is highly vascularized and built by mesenchymal stroma cells that are
in close cross-talk with tumor cells [39]. From a clinical perspective, CHS appear to be
less vascularized, as intralesional resections are not as bloody as in other entities and,
microscopically, there is not a very dense vascular network [40]. The literature investigating
mesenchymal stroma cell (MSC) recruitment to the CHS microenvironment is limited.
However, in analogy to other types of bone sarcoma, CHS TME is characterized by a het-
erogenous cell population with an intensive intercellular cross-talk, which enhances tumor
growth, progression, and aggressiveness by the secretion of growth factors, cytokines, and
extracellular matrix (ECM) deposition [41].

MSCs can differentiate toward diverse types of cells, such as myofibroblast-like cells,
pericyte-like cells, chondrocytes, adipocytes, osteocytes, and cancer-associated fibroblasts
(CAFs) [39]. Furthermore, there is a close cross-talk between MSCs and macrophages,
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mediating the polarization of macrophages into the M2-like phenotype, also known as
tumor-associated macrophages (TAMs) [42].

Both oncogenic events that occur during MSC differentiation and the microenviron-
ment that favors malignancy development contribute to tumor progression and strengthen
the “seed and soil” theory [43,44]. There is a strict and intensive cross-talk between MSCs
and sarcoma cells. As such, local tumor-derived acidosis and tumor-associated osteolysis
exert a great impact on MSC stemness [45,46]. Lactate, which is the main driver of tumor
acidosis, has a key role in tumor progression; Bonucelli G. et al. demonstrated that MSCs
are induced by adjacent (osteo)sarcoma cells to undergo Warburg metabolism, and hence
increase lactate production and monocarboxylate transporter 4 (MCT4) expression. In
fact, MSC-derived lactate feeds (osteo)sarcoma. Indeed, (osteo)sarcoma cells, through
MCT1, import lactate, which drives mitochondrial biogenesis and promotes the migratory
skill of (osteo)sarcoma cells [47]. Those mechanisms have not yet been investigated and
demonstrated in CHS.

There was an increase in glucose uptake and a decrease in its oxidation in the sarcoma
patients observed, which is indicative of an altered glucose metabolism [46]. An increased
glycolytic flux assures several key benefits to cancer cells. For example, mitochondrial
oxidation is boosted, leading to a faster ATP production that subsequently results in an
advantage for cancer cell growth through elevated energetic resources, and the production
of glycolytic intermediates fuels divergent pathways that meet the metabolic demands of
proliferating cells [47]. Through different molecular modifications of glycolytic enzyme
activity and expression, proliferative cells are able to maintain this high glycolytic flux.

The sarcomas’ TME is also rich in immunosuppressive cytokines, including vascular
endothelial growth factor (VEGF). Both VEGF and hypoxia-inducible factor-1 (HIF-1)
inhibit the maturation of dendric cells and promote M2 macrophages and regulatory T-cell
(Treg) migration inside and into the tumor stroma. The increased expression of HIF-2α
and negative beclin-1 levels, which mediates autophagy, is predictive for a limited overall
survival in CHS, and the inhibition of HIF-2α may lead to an improved malignant signature
of CHS [48,49]. Indeed, in sarcomas, increased expression of VEGF and hypoxia correlate
with poor prognosis and resistance to chemotherapy [50]. Another characteristic of CHS
explaining multidrug resistance in these tumors is the expression of heat shock proteins
(HSP) and p-glycoprotein from the MDR-1 gene [51].

The environment of sarcomas is characterized by MSC-induced acidification, promot-
ing tumor growth and epithelial mesenchymal transition and hypoxic conditions [46]. As a
result of these sarcomas’ TME features, chemotherapeutics exhibit limited toxicity in this
oxygen-deprived and acidic tumor atmosphere.

3.1. Immune Microenvironment of CHS

The immune microenvironment of CHS is poorly understood. For future clinical
decision-making on whether checkpoint blockade or other types of immunotherapy are
effective for the treatment of CHS, a better and more in-depth understanding of the immuno-
profile of CHS is needed [52]. Apart from the aforementioned mechanical barriers of the
TME, several microenvironmental mechanisms have been proposed to promote chemoresis-
tance in CHS. In this context, the expression of membrane-bound P-glycoprotein, which has
been associated with more invasive and higher-grade chondrosarcomas, have to be men-
tioned [53,54]. The role of increased infiltration of CD163+ M2 macrophages in CHS should
be clarified. While in other solid tumors, an increased number of infiltrating CD163+ M2
macrophages correlates with a worse prognosis and a chemotherapy-induced switch from
M2 to M1 in osteosarcomas, thus increasing patient survival, it was mentioned that CD163+
infiltration in CHS is associated with a larger tumor mass, but no correlation between
CD163+ TAMs and overall patient survival could be confirmed. On the other hand, another
recent study found that tumor-associated macrophages were the predominant immune
cell type in the immune environment of CHS. Increased levels of CD68+ and CD163+,
macrophages correlate with metastatic diseases at diagnosis and there is a limited prog-
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nosis for survival [55]. These observations were confirmed recently by Kostine et al. who
demonstrated that 41–52% of dedifferentiated chondrosarcomas displayed PD-L1 positivity,
which correlated with elevated concentrations of TIL and HLA class I expression [34].

3.2. Extracellular Matrix in CHS

The extensive extracellular matrix (ECM) of CHS can be described as proteoglycan
rich and is mainly built of structural type II collagen, hydrophobic proteoglycans and
hyaluronan. In combination with relatively poor vascularity, high interstitial pressure
is generated. These features of CHS ECM further complicate efficient drug delivery to
cells for therapeutic intervention. Due to the highly negative charge of proteoglycans,
the ECM is extensively hydrated (93% water), with 27% of the dry weight (7% of total
weight) [40,56]. Type II collagen is a major protein and is the highest expressed gene in
Swarm chondrosarcoma tumors (SRC tumor), which accounts for 50% of the dry weight of
the tumor. Aggrecan, which represents more than 90% of the source of sulfate moieties in
the tumor, is the major contributing factor [40]. Within this matrix, CHS cells are thoroughly
anchored. Growth factors, such as connective tissue growth factor (CTGF), are expressed
by human chondrosarcomas and enhance the adhesion of human chondrosarcoma cells
through interactions of cells with fibronectin [57,58]. As such, CTGF may moderate distinct
stages of metastatic progression, and growth factor expression is upregulated in aggressive
tumors [59].

Among many other approaches, the perturbation of the ECM is one possible mecha-
nism to bar tumor growth. Therefore, deregulation of ECM protein expression and secretory
trafficking of ECM molecules represent viable therapeutic targets for the treatment of chon-
drosarcoma [37].

4. Genetics of CHS

Heterogeneity is one hallmark of CHS, which are associated with a complex cyto-
genetic signature [60]. Yet, subtypes of CHS have been shown to have frequent genetic
alterations, including mutations in COL2A1, IDH, and the hedgehog signaling pathway [37].
However, so far, no characteristic genomic change has been found. Isocitrate dehydro-
genase (IDH)1 and (IDH)2 mutations were identified in about half of CHS analyzed by
Amary and colleagues [61].

IDH is a metabolic enzyme that collateralizes the oxidative decarboxylation of isoci-
trate to alpha-ketoglutarate (a-KG). IDH1 and IDH2 gene mutations have been described
in several other malignancies, as well [62–64]. Although IDH1/2 mutations were described
in cartilaginous neoplasms, including patients with CHS (65% of conventional CHSs and
up to 57% of dedifferentiated CHSs), these mutations were not found in the clear-cell and
mesenchymal CHS [60,61,65].

The second most frequent mutation in conventional (central and peripheral) and ded-
ifferentiated CHS occurs in the TP53 gene (20–50%) [66]. In multiple studies, the correlation
between the overexpression of the TP53 gene or its alteration (loss of heterozygosity on
chromosome 17p) and a higher histologic grade of the tumor was observed [67,68].

Further typical gene alterations and mutations were described for the 8q24 region
(including c-MYC oncogene) in about one third of high-grade CHS and the 13q14 and
17p13 chromosomal regions for well-differentiated CHS [69].

Furthermore, genes associated with the cell cycle control process, such as cyclin-
dependent kinase 4 (CDK4) and MDSM2 are frequently mutated in CHS [68]. Gene fusions
are important for the differentiation of sarcoma, but so far are not well-investigated in
CHS. One gene fusion recognized in mesenchymal CHS is between hairy/enhancer-of-split
related with YRPW motif 1 (HEY1) and nuclear receptor coactivator 2 (NCOA2) genes.
This is a deletion or translocation in the 8 chromosome region (q13;q21), which takes part
in the process of epithelial–mesenchymal cell transition [70,71].

From an epigenetic perspective, the promoter of the tumor suppressor gene P16INK4a
is often hypermethylated in CHS [72]. Similarly, hypermethylation of the promoter region
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of the tumor suppressor RUNX3 transcription factor leads to a reduced gene expression,
increased proliferation, and reduced apoptosis in CHS cells in vitro. Gene expression
of RUNX3 is associated with better clinical prognoses, which further demonstrates the
importance of DNA methylation and its investigation in CHS research [73].

5. Implications for Targeted Therapies

Chondrosarcoma cells are responsive to different soluble factors produced by their mi-
croenvironment and activate various tyrosine kinase receptors. Therefore, several tyrosine
kinase inhibitors are assessed clinically either alone or in combination (e.g, regorafenib, pa-
zopanib, dasatinib (Bcr-Abl and Src family tyrosine kinase inhibitor), and imatinib (Bcr-Abl,
cKIT, RET, NGF-R, PDGFRα/β, ABL1, M-CSFR)).

From multiple studies, it is well understood that mTOR is essential in the control of
numerous basic biological cell functions, such as proliferation and migration, and that it
acts as a sensor for nutritive elements. One of the most effective and investigated mTOR
inhibitors in clinical application is rapamycin (sirolimus), which acts immunosuppressive
through mTOR inhibition after its binding to FKBP12. In this context, Bernstein-Molho et al.
analyzed the effect of mTOR inhibition by sirolimus combined with cyclophosphamide
in a series of 10 recurrent unresectable chondrosarcomas and found a disease control in
up to 70% of the cases [74]. Further potential targets for the effective treatment of CHS are
angiogenesis inhibitors, as VEGF-A expression has been reported to correlate with tumor
grade. Cyclin-dependent kinase inhibitors (CDKis) have demonstrated to be effective
for the treatment of breast cancer and are currently US Food and Drug Administration
(FDA)-approved to treat this cancer. This may account for CHS as well.

Another potential target is the hedgehog pathway. Misregulation of the hedgehog
pathway has been found to cause neoplastic transformations, malignant tumors, and drug
resistance of many cancers, including CHS [31]. As mentioned before, inhibition of mutated
IDH1 in CHS cells has an adverse prognostic impact on survival, and thus IDH becomes
a possible target for CHS therapy. The acidic and lactate-enriched ECM of CHS can be
targeted by LDH inhibitors.

Immunotherapies are of growing interest for the treatment of CHS, and PD-1 check-
point inhibition showed partial success in CHS patients, yet data is still sparse [52].

Other therapy options such as CAR T-cell therapy or targeting miRNA such as miR-100
oder miR-125b have not yet entered into CHS treatment studies [75–78].

6. Conclusions

Chondrosarcomas are a heterogeneous group of rare tumors. Although conventional
low-grade chondrosarcomas exhibit locally aggressive behavior, they have a good prognosis
with appropriate local surgical therapy. With incising vascularization, conventional and
dedifferentiated chondrosarcomas tend to metastasize, often to the lung. In addition,
high-grade conventional chondrosarcomas and dedifferentiated chondrosarcomas exhibit
remarkable resistance to therapy, including chemotherapy, radiotherapy, as well as targeted
approaches. This has been attributed to comparatively slow proliferation, MDR-1 gene
expression, relatively poor vascularization, and a dense hyaline ECM. Persistent stem cell
formation as well as global epigenetic and genomic changes seem to be implicated in the
therapeutic resistance of chondrosarcomas. In addition to the challenge to identify relevant
targets for this rare disease, single agent approaches may not be applicable at all. In reality,
clinical trials—as listed in Table 2—targeting mutant IDH, HDAC, PI3K/AKT/mTOR
and Src signaling as well as VEGF pathways are ongoing and have to be evaluated [49].
Furthermore, immunotherapy has to be considered as a therapeutic option of the future.



Cancers 2023, 15, 2556 9 of 13

Table 2. Overview of the current approaches for targeting CHS. CS, clinical study.

Target Group Mechanism Study Type Promising Active Agent Studies

Angiogenesis Endothelial cell activity CS + Plasminogen-related
protein B [79]

VEGF inhibition CS VEGF-AB [80]

VEGF pathway inhibition
VEGF antibody CS +/− Pazopanib,

ramucirumab [81,82]

VEGF pathway inhibition CS + Regorafenib [83]

Cyclin-dependent
kinase CDK-4 inhibition In vitro Palbociclib [84]

Hedgehog Deregulation of the
Hedgehog pathway In vitro HPI-4 [85]

IDH Mutant IDH inhibition CS + Ivosidenib (AG-120) [86]

Mutant IDH1 inhibition In vitro + AGI-5198 [87]

Mutant IDH1 inhibition In vitro, in vivo
model + DS-1001b [88]

Tyrosine kinase Tyrosine kinase inhibition CS − Dasatinib [89]

Tyrosine kinase inhibition CS − Imatinib [90]

mTOR mTOR pathway dysregulation CS + Sirolimus [74]

mTOR pathway dysregulation In vivo model + Everolimus [91]

Immune
checkpoints PD-L1 inhibition CS +/− Pembrolizumab [92]

Anti-PD1 therapy CS +/− Nivolumab [93]

LDH LDH inhibition In vivo model NCI-737 [94]

ECM MMP inhibition In vivo model QA-Dox [95]
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