Will Absolute Risk Estimation for Time to Next Screen Work for an Asian Mammography Screening Population?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Ethics Statement
2.3. Outcome of Interest
2.4. Risk Factors
2.5. Gail Model Absolute Risks
2.6. Statistical Analysis
3. Results
3.1. The Gail Model Is Not Well Calibrated for Singapore’s Population
3.2. Improved Calibration Using Population-Specific Breast Cancer Incidence and Mortality Rates
3.3. Calibration of the Gail Model Differs by Risk Factor Subgroups
3.4. Risk Prediction Performance Was Better for Longer Time Horizons
3.5. Gail Model Absolute Risk Does Not Predict the Age of Breast Cancer Occurrence
3.6. Rethinking What Is Considered High Risk in Asia
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fisher, S.; Gao, H.; Yasui, Y.; Dabbs, K.; Winget, M. Survival in stage I–III breast cancer patients by surgical treatment in a publicly funded health care system. Ann. Oncol. 2015, 26, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Nardin, S.; Mora, E.; Varughese, F.M.; D’Avanzo, F.; Vachanaram, A.R.; Rossi, V.; Saggia, C.; Rubinelli, S.; Gennari, A. Breast Cancer Survivorship, Quality of Life, and Late Toxicities. Front. Oncol. 2020, 10, 864. [Google Scholar] [CrossRef] [PubMed]
- Tabar, L.; Duffy, S.W.; Vitak, B.; Chen, H.H.; Prevost, T.C. The Natural History of Breast Carcinoma: What Have We Learned from Screening? Cancer 1999, 86, 449–462. [Google Scholar] [CrossRef]
- Adami, H.-O.; Bretthauer, M.; Kalager, M. Assessment of cancer screening effectiveness in the era of screening programs. Eur. J. Epidemiol. 2020, 35, 891–897. [Google Scholar] [CrossRef]
- Arnold, M.; Pfeifer, K.; Quante, A.S. Is Risk-Stratified Breast Cancer Screening Economically Efficient in Germany? PLoS ONE 2019, 14, e0217213. [Google Scholar] [CrossRef]
- French, D.P.; Woof, V.G.; Ruane, H.; Evans, D.G.; Ulph, F.; Donnelly, L.S. The feasibility of implementing risk stratification into a national breast cancer screening programme: A focus group study investigating the perspectives of healthcare personnel responsible for delivery. BMC Women Health 2022, 22, 142. [Google Scholar] [CrossRef]
- Tosteson, A.N.A.; Stout, N.K.; Fryback, D.G.; Acharyya, S.; Herman, B.A.; Hannah, L.G.; Pisano, E.D.; DMIST Investigators. Cost-Effectiveness of Digital Mammography Breast Cancer Screening. Ann. Intern. Med. 2008, 148, 1–10. [Google Scholar] [CrossRef]
- Román, M.; Sala, M.; Domingo, L.; Posso, M.; Louro, J.; Castells, X. Personalized breast cancer screening strategies: A systematic review and quality assessment. PLoS ONE 2019, 14, e0226352. [Google Scholar] [CrossRef]
- Pashayan, N.; Antoniou, A.C.; Ivanus, U.; Esserman, L.J.; Easton, D.F.; French, D.; Sroczynski, G.; Hall, P.; Cuzick, J.; Evans, D.G.; et al. Personalized Early Detection and Prevention of Breast Cancer: Envision Consensus Statement. Nat. Rev. Clin. Oncol. 2020, 17, 687–705. [Google Scholar] [CrossRef]
- Gail, M.H.; Pfeiffer, R.M. Breast Cancer Risk Model Requirements for Counseling, Prevention, and Screening. J. Natl. Cancer Inst. 2018, 110, 994–1002. [Google Scholar] [CrossRef]
- Gail, M.H. Personalized estimates of breast cancer risk in clinical practice and public health. Stat. Med. 2011, 30, 1090–1104. [Google Scholar] [CrossRef]
- Brentnall, A.R.; Cuzick, J.; Buist, D.S.M.; Bowles, E.J.A. Long-term Accuracy of Breast Cancer Risk Assessment Combining Classic Risk Factors and Breast Density. JAMA Oncol. 2018, 4, e180174. [Google Scholar] [CrossRef]
- Yala, A.; Mikhael, P.G.; Strand, F.; Lin, G.; Satuluru, S.; Kim, T.; Banerjee, I.; Gichoya, J.; Trivedi, H.; Lehman, C.D.; et al. Multi-Institutional Validation of a Mammography-Based Breast Cancer Risk Model. J. Clin. Oncol. 2022, 40, 1732–1740. [Google Scholar] [CrossRef]
- Spiegelman, N.; Colditz, G.A.; Hunter, D.; Hertzmark, E. Validation of the Gail et al. Model for Predicting Individual Breast Cancer Risk. Gynecol. Oncol. 1994, 86, 600–607. [Google Scholar] [CrossRef]
- Tyrer, J.; Duffy, S.W.; Cuzick, J. A breast cancer prediction model incorporating familial and personal risk factors. Stat. Med. 2004, 23, 1111–1130. [Google Scholar] [CrossRef]
- Lee, A.; Mavaddat, N.; Wilcox, A.N.; Cunningham, A.P.; Carver, T.; Hartley, S.; Babb de Villiers, C.; Izquierdo, A.; Simard, J.; Schmidt, M.K.; et al. Boadicea: A Comprehensive Breast Cancer Risk Prediction Model Incorporating Genetic and Nongenetic Risk Factors. Genet. Med. 2019, 21, 1708–1718. [Google Scholar] [CrossRef]
- Eriksson, M.; Conant, E.F.; Kontos, D.; Hall, P. Risk Assessment in Population-Based Breast Cancer Screening. J. Clin. Oncol. 2022, 40, 2279–2280. [Google Scholar] [CrossRef]
- Eriksson, M.; Czene, K.; Pawitan, Y.; Leifland, K.; Darabi, H.; Hall, P. A clinical model for identifying the short-term risk of breast cancer. Breast Cancer Res. 2017, 19, 1–8. [Google Scholar] [CrossRef]
- Peintinger, F. National Breast Screening Programs across Europe. Breast Care 2019, 14, 354–358. [Google Scholar] [CrossRef]
- Lim, Y.X.; Lim, Z.L.; Ho, P.J.; Li, J. Breast Cancer in Asia: Incidence, Mortality, Early Detection, Mammography Programs, and Risk-Based Screening Initiatives. Cancers 2022, 14, 4218. [Google Scholar] [CrossRef]
- Park, Y. Predicting Cancer Risk: Practical Considerations in Developing and Validating a Cancer Risk Prediction Model. Curr. Epidemiol. Rep. 2015, 2, 197–204. [Google Scholar] [CrossRef]
- Song, M.; Kraft, P.; Joshi, A.D.; Barrdahl, M.; Chatterjee, N. Testing calibration of risk models at extremes of disease risk. Biostatistics 2015, 16, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Gail, M.H.; Brinton, L.A.; Byar, D.P.; Corle, D.K.; Green, S.B.; Schairer, C.; Mulvihill, J.J. Projecting Individualized Probabilities of Developing Breast Cancer for White Females Who Are Being Examined Annually. Gynecol. Oncol. 1989, 81, 1879–1886. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Huang, Y.; Li, L.; Dai, H.; Song, F.; Chen, K. Assessment of performance of the Gail model for predicting breast cancer risk: A systematic review and meta-analysis with trial sequential analysis. Breast Cancer Res. 2018, 20, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Solikhah, S.; Nurdjannah, S. Assessment of the risk of developing breast cancer using the Gail model in Asian females: A systematic review. Heliyon 2020, 6, e03794. [Google Scholar] [CrossRef]
- Schonfeld, S.J.; Pee, D.; Greenlee, R.T.; Hartge, P.; Jr, J.V.L.; Park, Y.; Schatzkin, A.; Visvanathan, K.; Pfeiffer, R.M. Effect of Changing Breast Cancer Incidence Rates on the Calibration of the Gail Model. J. Clin. Oncol. 2010, 28, 2411–2417. [Google Scholar] [CrossRef]
- Mubarik, S.; Yu, Y.; Wang, F.; Malik, S.S.; Liu, X.; Fawad, M.; Shi, F.; Yu, C. Epidemiological and Sociodemographic Transitions of Female Breast Cancer Incidence, Death, Case Fatality and Dalys in 21 World Regions and Globally, from 1990 to 2017: An Age-Period-Cohort Analysis. J. Adv. Res. 2022, 37, 185–196. [Google Scholar] [CrossRef]
- Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; et al. Cancer Statistics in China and United States, 2022: Profiles, Trends, and Determinants. Chin. Med. J. 2022, 135, 584–590. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists. Practice Bulletin Number 179: Breast Cancer Risk Assessment and Screening in Average-Risk Women. Obstet. Gynecol. 2017, 130, e1–e16. [Google Scholar] [CrossRef]
- Vogel, V.G.; Costantino, J.P.; Wickerham, D.L.; Cronin, W.M.; Cecchini, R.S.; Atkins, J.N.; Bevers, T.B.; Fehrenbacher, L.; Pajon, E.R., Jr.; Wade, J.L., III; et al. Breast National Surgical Adjuvant, and Project Bowel. Effects of Tamoxifen Vs Raloxifene on the Risk of Developing Invasive Breast Cancer and Other Disease Outcomes: The Nsabp Study of Tamoxifen and Raloxifene (Star) P-2 Trial. JAMA 2006, 295, 2727–2741. [Google Scholar] [CrossRef]
- Mousavi-Jarrrahi, S.H.; Kasaeian, A.; Mansori, K.; Ranjbaran, M.; Khodadost, M.; Mosavi-Jarrahi, A. Addressing the Younger Age at Onset in Breast Cancer Patients in Asia: An Age-Period-Cohort Analysis of Fifty Years of Quality Data from the International Agency for Research on Cancer. ISRN Oncol. 2013, 2013, 429862. [Google Scholar] [CrossRef]
- Barba, D.; León-Sosa, A.; Lugo, P.; Suquillo, D.; Torres, F.; Surre, F.; Trojman, L.; Caicedo, A. Breast cancer, screening and diagnostic tools: All you need to know. Crit. Rev. Oncol. 2021, 157, 103174. [Google Scholar] [CrossRef]
- Ng, E.H.; Ng, F.C.; Tan, P.H.; Low, S.C.; Chiang, G.; Tan, K.P.; Seow, A.; Emmanuel, S.; Tan, C.H.; Ho, G.H.; et al. Results of intermediate measures from a population-based, randomized trial of mammographic screening prevalence and detection of breast carcinoma among Asian women: The Singapore Breast Screening Project. Cancer 1998, 82, 1521–1528. [Google Scholar] [CrossRef]
- Banegas, M.P.; John, E.M.; Slattery, M.L.; Gomez, S.L.; Yu, M.; LaCroix, A.Z.; Pee, D.; Chlebowski, R.T.; Hines, L.M.; Thompson, C.A.; et al. Projecting Individualized Absolute Invasive Breast Cancer Risk in US Hispanic Women. Gynecol. Oncol. 2017, 109, djw215. [Google Scholar] [CrossRef]
- National Registry of Diseases Office. Singapore Cancer Registry 50th Anniversary Monograph (1968—2017). Available online: https://www.nrdo.gov.sg/publications/cancer (accessed on 4 February 2023).
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Müller, M. Proc: An Open-Source Package for R and S+ to Analyze and Compare Roc Curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- Chay, W.Y.; Ong, W.S.; Tan, P.H.; Leo, J.N.Q.; Ho, G.H.; Wong, C.S.; Chia, K.S.; Chow, K.Y.; Tan, S.M.; Ang, S.P. Validation of the Gail Model for Predicting Individual Breast Cancer Risk in a Prospective Nationwide Study of 28,104 Singapore Women. Breast Cancer Res. 2012, 14, R19. [Google Scholar] [CrossRef]
- Ziegler, R.G.; Hoover, R.N.; Nomura, A.M.Y.; West, D.W.; Wu, A.H.; Pike, M.C.; Lake, A.J.; Horn-Ross, P.L.; Kolonel, L.N.; Siiteri, P.K.; et al. Relative Weight, Weight Change, Height, and Breast Cancer Risk in Asian-American Women. Gynecol. Oncol. 1996, 88, 650–660. [Google Scholar] [CrossRef]
- Kelsey, J.L.; Horn-Ross, P.L. Breast Cancer: Magnitude of the Problem and Descriptive Epidemiology. Epidemiologic Rev. 1993, 15, 7–16. [Google Scholar] [CrossRef]
- Nelson, N.J. Migrant Studies Aid the Search for Factors Linked to Breast Cancer Risk. Gynecol. Oncol. 2006, 98, 436–438. [Google Scholar] [CrossRef]
- Gao, F.; Machin, D.; Chow, K.-Y.; Sim, Y.-F.; Duffy, S.W.; Matchar, D.B.; Goh, C.-H.; Chia, K.-S. Assessing risk of breast cancer in an ethnically South-East Asia population (results of a multiple ethnic groups study). BMC Cancer 2012, 12, 529. [Google Scholar] [CrossRef]
- Amir, E.; Evans, D.G.; Shenton, A.; Lalloo, F.; Moran, A.; Boggis, C.; Wilson, M.; Howell, A. Evaluation of breast cancer risk assessment packages in the family history evaluation and screening programme. J. Med. Genet. 2003, 40, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.G.R.; Howell, A. Breast cancer risk-assessment models. Breast Cancer Res. 2007, 9, 213. [Google Scholar] [CrossRef] [PubMed]
- Euhus, D.M.; Leitch, A.M.; Huth, J.F.; Peters, G.N. Limitations of the Gail Model in the Specialized Breast Cancer Risk Assessment Clinic. Breast J. 2002, 8, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Ho, P.J.; Ho, W.K.; Khng, A.J.; Yeoh, Y.S.; Tan, B.K.-T.; Tan, E.Y.; Lim, G.H.; Tan, S.-M.; Tan, V.K.M.; Yip, C.-H.; et al. Overlap of high-risk individuals predicted by family history, and genetic and non-genetic breast cancer risk prediction models: Implications for risk stratification. BMC Med. 2022, 20, 150. [Google Scholar] [CrossRef] [PubMed]
- Ebell, M.H.; Thai, T.N.; Royalty, K.J. Cancer screening recommendations: An international comparison of high income countries. Public Health Rev. 2018, 39, 7. [Google Scholar] [CrossRef]
- Lin, C.-C.; Niu, M.J.; Li, C.-I.; Liu, C.-S.; Lin, C.-H.; Yang, S.-Y.; Li, T.-C. Development and validation of a risk prediction model for chronic kidney disease among individuals with type 2 diabetes. Sci. Rep. 2022, 12, 4794. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, Q.; He, Y.; Zou, J.; Guo, Y.; Yan, Y. Predicting the 2-Year Risk of Progression from Prediabetes to Diabetes Using Machine Learning among Chinese Elderly Adults. J. Pers. Med. 2022, 12, 1055. [Google Scholar] [CrossRef]
- Castle, P.E.; Solomon, D.; Schiffman, M.; Wheeler, C.M. Human Papillomavirus Type 16 Infections and 2-Year Absolute Risk of Cervical Precancer in Women With Equivocal or Mild Cytologic Abnormalities. Gynecol. Oncol. 2005, 97, 1066–1071. [Google Scholar] [CrossRef]
- Lee, S.K.; Kim, S.W.; Yu, J.H.; Lee, J.E.; Kim, J.Y.; Woo, J.; Lee, S.; Kim, E.K.; Moon, H.G.; Ko, S.S.; et al. Is the High Proportion of Young Age at Breast Cancer Onset a Unique Feature of Asian Breast Cancer? Breast. Cancer Res. Treat. 2019, 173, 189–199. [Google Scholar] [CrossRef]
- Leong, S.P.; Shen, Z.Z.; Liu, T.J.; Agarwal, G.; Tajima, T.; Paik, N.S.; Sandelin, K.; Derossis, A.; Cody, H.; Foulkes, W.D. Is Breast Cancer the Same Disease in Asian and Western Countries? World J. Surg. 2010, 34, 2308–2324. [Google Scholar] [CrossRef]
- Sung, H.; Rosenberg, P.S.; Chen, W.-Q.; Hartman, M.; Lim, W.-Y.; Chia, K.S.; Mang, O.W.-K.; Chiang, C.-J.; Kang, D.; Ngan, R.K.-C.; et al. Female Breast Cancer Incidence Among Asian and Western Populations: More Similar Than Expected. Gynecol. Oncol. 2015, 107, djv107. [Google Scholar] [CrossRef] [PubMed]
- Satoh, M.; Sato, N. Relationship of attitudes toward uncertainty and preventive health behaviors with breast cancer screening participation. BMC Women Health 2021, 21, 171. [Google Scholar] [CrossRef] [PubMed]
- Yoo, K.-Y. Cancer Control Activities in the Republic of Korea. Jpn. J. Clin. Oncol. 2008, 38, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Society, Singapore Cancer. Available online: https://www.singaporecancersociety.org.sg/get-screened/breast-cancer/mammogram.html (accessed on 5 April 2023).
- Liu, J.; Ho, P.J.; Tan, T.H.L.; Yeoh, Y.S.; Chew, Y.J.; Riza, N.K.M.; Khng, A.J.; Goh, S.-A.; Wang, Y.; Oh, H.B.; et al. BREAst screening Tailored for HEr (BREATHE)—A study protocol on personalised risk-based breast cancer screening programme. PLoS ONE 2022, 17, e0265965. [Google Scholar] [CrossRef] [PubMed]
- Crocker, T.F.; Brown, L.; Lam, N.; Wray, F.; Knapp, P.; Forster, A. Information provision for stroke survivors and their carers. Cochrane Database Syst. Rev. 2021, 11. [Google Scholar] [CrossRef]
- Brodersen, J.; Siersma, V.D. Long-Term Psychosocial Consequences of False-Positive Screening Mammography. Ann. Fam. Med. 2013, 11, 106–115. [Google Scholar] [CrossRef]
- Long, H.; Brooks, J.M.; Harvie, M.; Maxwell, A.; French, D.P. How do women experience a false-positive test result from breast screening? A systematic review and thematic synthesis of qualitative studies. Br. J. Cancer 2019, 121, 351–358. [Google Scholar] [CrossRef]
- Ohnuki, K.; Kuriyama, S.; Shoji, N.; Nishino, Y.; Tsuji, I.; Ohuchi, N. Cost-effectiveness analysis of screening modalities for breast cancer in Japan with special reference to women aged 40–49 years. Cancer Sci. 2006, 97, 1242–1247. [Google Scholar] [CrossRef]
- Chootipongchaivat, S.; Wong, X.Y.; Haaf, K.T.; Hartman, M.; Tan, K.B.; van Ravesteyn, N.T.; Wee, H.-L. Cost-effectiveness Analysis of Breast Cancer Screening Using Mammography in Singapore: A Modeling Study. Cancer Epidemiol. Biomark. Prev. 2021, 30, 653–660. [Google Scholar] [CrossRef]
- National Cancer Institute. National Cancer Institute. Available online: https://seer.cancer.gov/statistics-network/explorer (accessed on 26 April 2023).
- Wang, F.; Duan, X.-N.; Ling, R.; Yu, Z.-G. Clinical practice guidelines for risk assessment to identify women at high risk of breast cancer: Chinese Society of Breast Surgery (CSBrS) practice guidelines 2021. Chin. Med. J. 2021, 134, 1655–1657. [Google Scholar] [CrossRef]
- Emmanuel, S. Quality assurance in medicine: Research and evaluation activities towards quality control in Singapore. Ann. Acad. Med. Singap. 1993, 22, 129–133. [Google Scholar]
- Teo, M.C.; Soo, K.C. Cancer Trends and Incidences in Singapore. Jpn. J. Clin. Oncol. 2013, 43, 219–224. [Google Scholar] [CrossRef]
- Fung, J.W.; Lim, S.B.; Zheng, H.; Ho, W.Y.; Lee, B.G.; Chow, K.Y.; Lee, H.P. Data Quality at the Singapore Cancer Registry: An Overview of Comparability, Completeness, Validity and Timeliness. Cancer Epidemiol. 2016, 43, 76–86. [Google Scholar] [CrossRef]
- Bhoo-Pathy, N.; Yip, C.H.; Hartman, M.; Uiterwaal, C.S.; Devi, B.C.; Peeters, P.H.; Taib, N.A.; van Gils, C.H.; Verkooijen, H.M. Breast Cancer Research in Asia: Adopt or Adapt Western Knowledge? Eur. J. Cancer 2013, 49, 703–709. [Google Scholar] [CrossRef]
- Chia, K.-S.; Reilly, M.; Tan, C.S.; Lee, J.; Pawitan, Y.; Adami, H.-O.; Hall, P.; Mow, B. Profound changes in breast cancer incidence may reflect changes into a Westernized lifestyle: A comparative population-based study in Singapore and Sweden. Int. J. Cancer 2004, 113, 302–306. [Google Scholar] [CrossRef]
Breast Cancer Occurrence before Age 80 Years | ||||
---|---|---|---|---|
All (n = 26,380) | No (n = 25,380) | Yes (n = 1000) | p-Value | |
Age at screen, years (IQR) | 57 (54–61) | 57 (54–61) | 56 (54–59) | 4.16 × 10−10 |
Ethnicity (%) | ||||
Chinese | 22,208 (84) | 21,351 (84) | 857 (86) | 1.51 × 10−2 |
Malay | 1480 (6) | 1445 (6) | 35 (4) | |
Indian | 1317 (5) | 1258 (5) | 59 (6) | |
Other | 1375 (5) | 1326 (5) | 49 (5) | |
Age at menarche, years (%) | ||||
14+ | 16,934 (64) | 16,351 (64) | 583 (58) | 1.05 × 10−4 |
12 to 13 | 8563 (32) | 8193 (32) | 370 (37) | |
<12 | 872 (3) | 825 (3) | 47 (5) | |
Missing | 11 (0) | 11 (0) | 0 (0) | |
Menopausal status, age in years (%) | ||||
Pre-menopausal | 2922 (11) | 2781 (11) | 141 (14) | 7.61 × 10−4 |
Post-menopausal, <50 | 9571 (36) | 9259 (36) | 312 (31) | |
Post-menopausal, 50 to 54 | 11,737 (44) | 11,274 (44) | 463 (46) | |
Post-menopausal, 55+ | 2137 (8) | 2053 (8) | 84 (8) | |
Missing | 13 (0) | 13 (0) | 0 (0) | |
Age at first life birth, years (%) | ||||
<20 | 4429 (17) | 4310 (17) | 119 (12) | 2.57 × 10−12 |
20 to 24 | 9778 (37) | 9468 (37) | 310 (31) | |
25 to 29 | 7023 (27) | 6731 (27) | 292 (29) | |
30+ | 3041 (12) | 2880 (11) | 161 (16) | |
Nulliparous | 1935 (7) | 1831 (7) | 104 (10) | |
Missing | 174 (1) | 160 (1) | 14 (1) | |
Parity (%) | ||||
Nulliparous | 1935 (7) | 1831 (7) | 104 (10) | 2.55 × 10−7 |
1 to 2 | 4200 (16) | 4001 (16) | 199 (20) | |
3+ | 20,245 (77) | 19,548 (77) | 697 (70) | |
Number of first degree relative with breast cancer (%) | ||||
None | 25,691 (97) | 24,744 (97) | 947 (95) | 1.09 × 10−9 |
1 | 678 (3) | 628 (2) | 50 (5) | |
2 | 11 (0) | 8 (0) | 3 (0) | |
Recall status (%) | ||||
Yes | 1992 (8) | 1851 (7) | 141 (14) | 2.19 × 10−15 |
None | 24,388 (92) | 23,529 (93) | 859 (86) | |
Biopsy ever (%) | ||||
No | 26,095 (99) | 25,116 (99) | 979 (98) | 2.50 × 10−3 |
Yes | 285 (1) | 264 (1) | 21 (2) | |
Body mass index, kg/m2 (IQR) | 24 (22–27) | 24 (22–27) | 25 (23–28) | 3.32 × 10−6 |
Absolute risk, estimated from Whites (IQR) | ||||
2-year | 0.4 (0.4–0.5) | 0.4 (0.4–0.5) | 0.5 (0.4–0.5) | 4.42 × 10−5 |
5-year | 1.2 (1.0–1.4) | 1.2 (1.0–1.4) | 1.2 (1.0–1.4) | 9.57 × 10−5 |
10-year | 2.5 (2.1–2.9) | 2.5 (2.1–2.9) | 2.6 (2.2–3.1) | 6.09 × 10−7 |
15-year | 3.8 (3.3–4.5) | 3.8 (3.3–4.5) | 4.0 (3.5–4.7) | 5.16 × 10−10 |
At age 80 | 5.9 (4.9–7.1) | 5.9 (4.9–7.1) | 6.6 (5.4–7.6) | 2.87 × 10−24 |
Absolute risk, estimated from Asian-American (IQR) | ||||
2-year | 0.3 (0.2–0.3) | 0.3 (0.2–0.3) | 0.3 (0.2–0.3) | 2.71 × 10−15 |
5-year | 0.6 (0.5–0.8) | 0.6 (0.5–0.8) | 0.7 (0.6–0.9) | 3.45 × 10−17 |
10-year | 1.3 (1.1–1.6) | 1.2 (1.1–1.6) | 1.5 (1.2–1.7) | 6.54 × 10−18 |
15-year | 1.9 (1.7–2.4) | 1.8 (1.7–2.3) | 2.2 (1.7–2.5) | 5.94 × 10−18 |
At age 80 | 2.9 (2.2–3.8) | 2.9 (2.2–3.8) | 3.3 (2.5–4.1) | 3.73 × 10−23 |
Absolute risk, estimated from Singapore (IQR) | ||||
2-year | 0.3 (0.3–0.4) | 0.3 (0.3–0.4) | 0.4 (0.3–0.4) | 3.90 × 10−9 |
5-year | 0.9 (0.7–1.1) | 0.9 (0.7–1.1) | 0.9 (0.7–1.1) | 2.64 × 10−11 |
10-year | 1.7 (1.5–2.1) | 1.7 (1.5–2.1) | 2.0 (1.6–2.2) | 8.92 × 10−14 |
15-year | 2.5 (2.3–3.1) | 2.5 (2.3–3.1) | 3.0 (2.3–3.3) | 4.86 × 10−16 |
At age 80 | 4.0 (3.1–5.0) | 3.9 (3.1–5.0) | 4.5 (3.4–5.4) | 7.26 × 10−25 |
Unadjusted | Adjusted * | ||||||
---|---|---|---|---|---|---|---|
Parameters (RR/Incidence and Mortality Rates) | X-Year Absolute Risk | Beta | SE | p-Value | Beta | SE | p-Value |
White/White | 2 | −1.26 | 3.47 | 0.720 | 0.05 | 0.56 | 0.929 |
5 | 1.36 | 0.73 | 0.065 | −0.10 | 0.26 | 0.694 | |
10 | 0.52 | 0.22 | 0.019 | −0.03 | 0.14 | 0.813 | |
15 | 0.06 | 0.16 | 0.686 | −0.15 | 0.12 | 0.197 | |
Asian-American/Asian-American | 2 | −7.82 | 3.05 | 0.015 | −0.09 | 0.62 | 0.887 |
5 | −2.59 | 0.77 | 0.001 | −0.30 | 0.29 | 0.295 | |
10 | −1.36 | 0.33 | <0.001 | −0.34 | 0.21 | 0.106 | |
15 | −0.88 | 0.22 | <0.001 | −0.20 | 0.17 | 0.235 | |
Asian-American/Singapore | 2 | −2.48 | 1.64 | 0.139 | 0.15 | 0.27 | 0.592 |
5 | −0.89 | 0.51 | 0.082 | −0.23 | 0.18 | 0.197 | |
10 | −0.47 | 0.2 | 0.022 | −0.21 | 0.12 | 0.097 | |
15 | −0.43 | 0.14 | 0.003 | −0.17 | 0.11 | 0.109 |
X-Year Absolute Risk | Parameters (RR/Incidence and Mortality Rates) | Absolute Risk (%) | Percentage Difference between the Highest and Lowest Threshold for X-Year Absolute Risk * |
---|---|---|---|
2 | White/White | 0.39 | 37 |
Asian-American/Asian-American | 0.25 | ||
Asian-American/Singapore | 0.33 | ||
5 | White/White | 0.98 | 37 |
Asian-American/Asian-American | 0.62 | ||
Asian-American/Singapore | 0.82 | ||
10 | White/White | 2.14 | 32 |
Asian-American/Asian-American | 1.46 | ||
Asian-American/Singapore | 1.74 | ||
15 | White/White | 3.50 | 38 |
Asian-American/Asian-American | 2.16 | ||
Asian-American/Singapore | 2.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, P.J.; Lim, E.H.; Mohamed Ri, N.K.B.; Hartman, M.; Wong, F.Y.; Li, J. Will Absolute Risk Estimation for Time to Next Screen Work for an Asian Mammography Screening Population? Cancers 2023, 15, 2559. https://doi.org/10.3390/cancers15092559
Ho PJ, Lim EH, Mohamed Ri NKB, Hartman M, Wong FY, Li J. Will Absolute Risk Estimation for Time to Next Screen Work for an Asian Mammography Screening Population? Cancers. 2023; 15(9):2559. https://doi.org/10.3390/cancers15092559
Chicago/Turabian StyleHo, Peh Joo, Elaine Hsuen Lim, Nur Khaliesah Binte Mohamed Ri, Mikael Hartman, Fuh Yong Wong, and Jingmei Li. 2023. "Will Absolute Risk Estimation for Time to Next Screen Work for an Asian Mammography Screening Population?" Cancers 15, no. 9: 2559. https://doi.org/10.3390/cancers15092559
APA StyleHo, P. J., Lim, E. H., Mohamed Ri, N. K. B., Hartman, M., Wong, F. Y., & Li, J. (2023). Will Absolute Risk Estimation for Time to Next Screen Work for an Asian Mammography Screening Population? Cancers, 15(9), 2559. https://doi.org/10.3390/cancers15092559