Improving HCC Prognostic Models after Liver Resection by AI-Extracted Tissue Fiber Framework Analytics
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Preparation and Segmentation
2.3. CNN-Based Fiber Framework Extraction
2.4. Hexagonal Grid Tiling
2.5. Calculation of Fiber Texture Descriptors
2.6. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Univariate Predictors of Overall Survival
3.3. Multivariate Analysis
3.4. Factor Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Toh, M.R.; Wong, E.Y.T.; Wong, S.H.; Ng, A.W.T.; Loo, L.H.; Chow, P.K.H.; Ngeow, J. Global Epidemiology and Genetics of Hepatocellular Carcinoma. Gastroenterology 2023, 164, 766–782. [Google Scholar] [CrossRef] [PubMed]
- Eswaran, S.L.; Reau, N.S. Hepatocellular Carcinoma: 5 Things to Know. Available online: https://www.medscape.com/viewarticle/925146?form=fpf (accessed on 15 September 2023).
- Chrysavgis, L.; Giannakodimos, I.; Diamantopoulou, P.; Cholongitas, E. Non-alcoholic fatty liver disease and hepatocellular carcinoma: Clinical challenges of an intriguing link. World J. Gastroenterol. 2022, 28, 310–331. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Meyer, T.; Sapisochin, G.; Salem, R.; Saborowski, A. Hepatocellular carcinoma. Lancet 2022, 400, 1345–1362. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Wong, G.; Anstee, Q.M.; Henry, L. The Global Burden of Liver Disease. Clin. Gastroenterol. Hepatol. 2023, 21, 1978–1991. [Google Scholar] [CrossRef] [PubMed]
- Calderon-Martinez, E.; Landazuri-Navas, S.; Vilchez, E.; Cantu-Hernandez, R.; Mosquera-Moscoso, J.; Encalada, S.; Zevallos-Delgado, C.; Cinicola, J. Prognostic Scores and Survival Rates by Etiology of Hepatocellular Carcinoma: A Review. J. Clin. Med. Res. 2023, 15, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Eilard, M.S.; Naredi, P.; Helmersson, M.; Hemmingsson, O.; Isaksson, B.; Lindell, G.; Sandström, P.; Strömberg, C.; Rizell, M. Survival and prognostic factors after transplantation, resection and ablation in a national cohort of early hepatocellular carcinoma. HPB 2021, 23, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef]
- Mauro, E.; Forner, A. Barcelona Clinic Liver Cancer 2022 update: Linking prognosis prediction and evidence-based treatment recommendation with multidisciplinary clinical decision-making. Liver Int. 2022, 42, 488–491. [Google Scholar] [CrossRef]
- Karsdal, M.A.; Daniels, S.J.; Holm Nielsen, S.; Bager, C.; Rasmussen, D.G.K.; Loomba, R.; Surabattula, R.; Villesen, I.F.; Luo, Y.; Shevell, D.; et al. Collagen biology and non-invasive biomarkers of liver fibrosis. Liver Int. 2020, 40, 736–750. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Z.; Liu, W.; Fu, M.; Jiang, W.; Xu, S.; Wang, G.; Chen, F.; Lu, J.; Chen, H.; et al. Predicting postoperative peritoneal metastasis in gastric cancer with serosal invasion using a collagen nomogram. Nat. Commun. 2021, 12, 179. [Google Scholar] [CrossRef]
- Brett, E.A.; Sauter, M.A.; Machens, H.G.; Duscher, D. Tumor-associated collagen signatures: Pushing tumor boundaries. Cancer Metab. 2020, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Pavithra, V.; Sowmya, S.V.; Rao, R.S.; Patil, S.; Augustine, D.; Haragannavar, V.C.; Nambiar, S. Tumor-associated collagen signatures: An insight. World J. Dent. 2017, 8, 224–230. [Google Scholar] [CrossRef]
- Xi, G.; Guo, W.; Kang, D.; Ma, J.; Fu, F.; Qiu, L.; Zheng, L.; He, J.; Fang, N.; Chen, J.; et al. Large-scale tumor-associated collagen signatures identify high-risk breast cancer patients. Theranostics 2021, 11, 3229–3243. [Google Scholar] [CrossRef] [PubMed]
- Bruckner, P. Suprastructures of extracellular matrices: Paradigms of functions controlled by aggregates rather than molecules. Cell Tissue Res. 2010, 339, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Rojkind, M.; Giambrone, M.A.; Biempica, L. Collagen Types in Normal and Cirrhotic Liver. Gastroenterology 1979, 76, 710–719. [Google Scholar] [CrossRef] [PubMed]
- Karsdal, M.A.; Nielsen, S.H.; Leeming, D.J.; Langholm, L.L.; Nielsen, M.J.; Manon-Jensen, T.; Siebuhr, A.; Gudmann, N.S.; Rønnow, S.; Sand, J.M.; et al. The good and the bad collagens of fibrosis—Their role in signaling and organ function. Adv. Drug Deliv. Rev. 2017, 121, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Abrutyn, S.; Mueller, A.S. The role of CAFs and fibrosis in liver cancer. Annu. Rev. Pathol. 2015, 79, 211–227. [Google Scholar]
- Zhang, R.; Ma, M.; Lin, X.H.; Liu, H.H.; Chen, J.; Chen, J.; Gao, D.M.; Cui, J.F.; Ren, Z.G.; Chen, R.X. Extracellular matrix collagen i promotes the tumor progression of residual hepatocellular carcinoma after heat treatment. BMC Cancer 2018, 18, 901. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Hamberger, F.; Ravichandra, A.; Miller, M.; Nair, A.; Affo, S.; Filliol, A.; Chin, L.; Savage, T.M.; Yin, D.; et al. Tumor restriction by type I collagen opposes tumor-promoting effects of cancer-associated fibroblasts. J. Clin. Investig. 2021, 131, e146987. [Google Scholar] [CrossRef]
- Burt, A.D.; Portmann, B.; Ferrell, L.D. MacSween’s Pathology of the Liver, 6th ed.; Churchill Livingstone/Elsevier: Edinburgh, Scotland, 2012; 784p. [Google Scholar]
- Hall, A.; Cotoi, C.; Luong, T.V.; Watkins, J.; Bhathal, P.; Quaglia, A. Collagen and elastic fibres in acute and chronic liver injury. Sci. Rep. 2021, 11, 14569. [Google Scholar] [CrossRef]
- Allaume, P.; Turlin, B.; Bardou-Jacquet, E.; Lor, O.; Calderaro, J.; Khene, Z.e.; Acosta, O.; De Crevoisier, R.; Rioux-Leclercq, N.; Pecot, T. Artificial Intelligence-Based Opportunities in Liver Pathology—A Systematic Review. Diagnostics 2023, 13, 1799. [Google Scholar] [CrossRef]
- Burt, A.D. Augmented liver pathology: Artificial intelligence and the assessment of hepatocellular neoplasms. Histopathology 2023, 83, 509–511. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.; Salvatori, R.; Smith, L.; Jenkins, S.M.; Cannon, A.; Hartley, C.P.; Graham, R.P.; Moreira, R.K. Artificial intelligence-based reticulin proportionate area—A novel histological outcome predictor in hepatocellular carcinoma. Histopathology 2023, 83, 512–525. [Google Scholar] [CrossRef] [PubMed]
- Taylor-Weiner, A.; Pokkalla, H.; Han, L.; Jia, C.; Huss, R.; Chung, C.; Elliott, H.; Glass, B.; Pethia, K.; Carrasco-Zevallos, O.; et al. A Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH. Hepatology 2021, 74, 133–147. [Google Scholar] [CrossRef] [PubMed]
- McGenity, C.; Randell, R.; Bellamy, C.; Burt, A.; Cratchley, A.; Goldin, R.; Hubscher, S.G.; Neil, D.A.; Quaglia, A.; Tiniakos, D.; et al. Survey of liver pathologists to assess attitudes towards digital pathology and artificial intelligence. J. Clin. Pathol. 2023, 77, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Morkunas, M.; Zilenaite, D.; Laurinaviciene, A.; Treigys, P.; Laurinavicius, A. Tumor collagen framework from bright-field histology images predicts overall survival of breast carcinoma patients. Sci. Rep. 2021, 11, 15474. [Google Scholar] [CrossRef] [PubMed]
- Plancoulaine, B.; Laurinaviciene, A.; Herlin, P.; Besusparis, J.; Meskauskas, R.; Baltrusaityte, I.; Iqbal, Y.; Laurinavicius, A. A methodology for comprehensive breast cancer Ki67 labeling index with intra-tumor heterogeneity appraisal based on hexagonal tiling of digital image analysis data. Virchows Arch. 2015, 467, 711–722. [Google Scholar] [CrossRef]
- Rasmusson, A.; Zilenaite, D.; Nestarenkaite, A.; Augulis, R.; Laurinaviciene, A.; Ostapenko, V.; Poskus, T.; Laurinavicius, A. Immunogradient Indicators for Antitumor Response Assessment by Automated Tumor-Stroma Interface Zone Detection. Am. J. Pathol. 2020, 190, 1309–1322. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. Available online: https://arxiv.org/abs/1412.6980 (accessed on 31 October 2023).
- Nørredam, K. Primary Carcinoma of the Liver: Histological Study of 27 Cases of Primary Carcinoma of the Liver from Malawi. Acta Pathol. Microbiol. Scand. A 1977, 85, 461–469. [Google Scholar] [CrossRef]
- Mózes, F.E.; Lee, J.A.; Vali, Y.; Alzoubi, O.; Staufer, K.; Trauner, M.; Paternostro, R.; Stauber, R.E.; Holleboom, A.G.; van Dijk, A.M.; et al. Performance of non-invasive tests and histology for the prediction of clinical outcomes in patients with non-alcoholic fatty liver disease: An individual participant data meta-analysis. Lancet Gastroenterol. Hepatol. 2023, 8, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Abeysekera, K.W.M.; Srivastava, A.; Rowe, I.; Jarvis, H.; Ryder, S.D.; Yeoman, A.; Dillon, J.F.; Rosenberg, W. Exploring changing attitudes to non-invasive liver fibrosis tests in secondary care pathways: Comparison of two national surveys. Frontline Gastroenterol. 2023, 14, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.J.; Berhane, S.; Kagebayashi, C.; Satomura, S.; Teng, M.; Reeves, H.L.; O’Beirne, J.; Fox, R.; Skowronska, A.; Palmer, D.; et al. Assessment of liver function in patients with hepatocellular carcinoma: A new evidence-based approach—The ALBI grade. J. Clin. Oncol. 2015, 33, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Council for International Organizations of Medical Sciences (CIOMS) in Collaboration with the World Health Organization (WHO). International Ethical Guidelines for Health-Related Research Involving Humans, 4th ed.; Biomedical Research: Geneva, Switzerland, 2016; pp. 1921–1931. Available online: https://cioms.ch/wp-content/uploads/2017/01/WEB-CIOMS-EthicalGuidelines.pdf (accessed on 31 October 2023).
Characteristic | Value (Range or Percent) |
---|---|
Patients | 105 (100%) |
Age, years | |
Mean (range) | 63.7 (13–82) |
Median | 65 |
≥55 years | 88 (83.8) |
Gender | |
Male | 81 (77.1%) |
Female | 24 (22.9%) |
Metavir fibrosis stage | |
F0 (no fibrosis) | 12 (11.4%) |
F1 (portal fibrosis without septa) | 5 (4.8%) |
F2 (portal fibrosis with rare septa) | 11 (10.4%) |
F3 (numerous septa without cirrhosis) | 16 (15.3%) |
F4 (cirrhosis) | 61 (58.1%) |
Largest tumor dimension, cm | |
Mean (range) | 4.76 (0.8–19.0) |
Median | 40 |
Tumor multinodularity | |
Single HCC nodule | 74 (70.5%) |
Multiple HCC nodules | 31 (29.5%) |
HCC grade | |
G1 | 8 (7.6%) |
G2 | 78 (74.3%) |
G3 | 19 (18.1%) |
pT stage | |
T1 | 38 (36.2%) |
T2 | 59 (56.2%) |
T3 | 7 (6.7%) |
T4 | 1 (0.9%) |
Intravascular invasion | |
Present | 52 (49.5%) |
Absent | 53 (50.5%) |
Lymph nodes present | |
Yes | 19 (18.1%) |
No | 86 (81.9%) |
Lymph nodes per patient if present, mean (median) | 2.7 (2) |
Metastatic spread confirmed | 1/19 (5.3%) |
Resection margin | |
R0 | 85 (80.9%) |
R1 | 20 (19.1%) |
History of viral infection | |
HBV | 9 (8.6%) |
HCV | 52 (49.5%) |
None or unknown | 44 (41.9%) |
Other treatment prior to current resection | |
Yes | 13 (12.4%) |
No | 92 (87.6%) |
HCC recurrence after resection | |
Yes | 56 (53.3%) |
No | 49 (46.7%) |
OS time, days | |
Mean (range) | 1108.7 (20–3160) |
Median | 938 |
Feature | Description |
---|---|
Orientation: | |
Circular standard deviation (CSD) | Dispersion of circular angles of the individual fibers |
Magnitude, mean (mMag) | Average strength or intensity of vectors (e.g., gradients) in the fiber mask |
Morphometry: | |
Fiber length, mean (mFL) | Average Euclidean distance between the endpoints of each skeletonized fiber |
Fiber path, mean (mFP) | Average pixel length of a line dividing a fiber into two equal parts along its longer axis |
Fiber straightness, mean (mFS) | A ratio of fiber length over fiber path |
Density: | |
Fiber density (FD) | Number of pixels in the mask |
Endpoints (nENDP) | Number of fiber endpoints in the hexagon mask |
Texture (Haralick’s): | |
Homogeneity (hom) | The closeness of the distribution of elements in the gray-level co-occurrence matrix to the matrix diagonal |
Entropy (ent) | Amount of information or randomness in the texture |
Correlation (cor) | Linear dependency of gray levels on those of neighboring pixels |
Fractal: | |
Lacunarity (lac) | A measure of both gaps and heterogeneity: the variation in space around objects in the image and their irregular distribution |
Feature | Min | Max | Mean | Median |
---|---|---|---|---|
g_CSD | 0.327599 | 1.551254 | 0.874630 | 0.872546 |
g_mMag | 2.731371 | 25,599.785804 | 7410.622809 | 6869.993232 |
g_mFL | 0.000000 | 1059.079906 | 61.729315 | 52.348669 |
g_mFP | 2.500000 | 1246.933333 | 90.089874 | 78.200000 |
g_mFS | 0.000000 | 0.956133 | 0.497333 | 0.507360 |
g_FD | 1.000000 | 151,375.000000 | 34,755.695386 | 30,771.000000 |
g_nENDP | 0.000000 | 1394.000000 | 322.604360 | 312.000000 |
g_hom | 0.947687 | 0.999997 | 0.984834 | 0.985913 |
g_ent | 0.000068 | 1.092885 | 0.380083 | 0.378187 |
g_cor | −0.000008 | 0.944431 | 0.843028 | 0.851353 |
g_lac | 0.000000 | 1.206979 | 0.589991 | 0.579632 |
r_CSD | 0.282147 | 1.583950 | 0.842409 | 0.824565 |
r_mMag | 2.630596 | 34,292.920449 | 6742.703072 | 3761.257993 |
r_mFL | 0.000000 | 28,507.246022 | 132.393359 | 51.126263 |
r_mFP | 2.500000 | 14,861.500000 | 133.552675 | 72.366667 |
r_mFS | 0.000000 | 3.478550 | 0.470136 | 0.482461 |
r_FD | 1.000000 | 386,398.000000 | 45,713.265522 | 19,491.000000 |
r_nENDP | 0.000000 | 2221.000000 | 360.981139 | 206.000000 |
r_hom | 0.929537 | 0.999998 | 0.986157 | 0.992241 |
r_ent | 0.000044 | 1.315616 | 0.380543 | 0.259431 |
r_cor | −0.000008 | 0.988216 | 0.839329 | 0.858877 |
r_lac | 0.000000 | 1.295812 | 0.594719 | 0.602250 |
Feature | p-Value | Hazard Ratio (HR) |
---|---|---|
Stage pT2-4 | 0.0026 | 2.3719 |
Age ≥ 55 years | 0.0074 | 3.1990 |
Intravascular invasion | 0.0089 | 1.9564 |
g_mn_mFL_HCC_IZ3 | 0.0095 | 0.0897 |
g_mn_mFP_HCC_IZ3 | 0.0095 | 0.1078 |
g_mn_cor_HCC_IZ3 | 0.0199 | 0.1114 |
g_sd_mFL_HCC_IZ3 | 0.0285 | 0.2203 |
g_mn_ent_HCC_IZ3 | 0.0294 | 0.2987 |
g_mn_FD_HCC_IZ3 | 0.0340 | 0.3049 |
g_mn_lac_HCC_IZ3 | 0.0343 | 4.1651 |
g_mn_mMag_HCC_IZ3 | 0.0356 | 0.3049 |
g_mn_hom_HCC_IZ3 | 0.0361 | 3.2656 |
g_mn_cor_HCC_CORE | 0.0394 | 0.1385 |
g_sd_mFP_HCC_IZ3 | 0.0397 | 0.2500 |
g_mn_cor_HCC_STROMA | 0.0482 | 0.1466 |
g_mn_mFS_HCC_IZ3 | 0.0514 | 0.1900 |
r_sd_mFS_LVR_IZ3 | 0.0532 | 0.0417 |
g_mn_nENDP_HCC_IZ3 | 0.0553 | 0.3200 |
g_mn_ent_HCC_CORE | 0.0589 | 0.3644 |
g_sd_FD_HCC_STROMA | 0.0595 | 0.3406 |
g_mn_mFP_HCC_STROMA | 0.0702 | 0.1600 |
Multiple tumors | 0.0717 | 1.6175 |
g_sd_mFS_HCC_STROMA | 0.0733 | 2.6564 |
r_sd_FD_LVR_IZ3 | 0.0745 | 0.2762 |
g_mn_mFL_HCC_STROMA | 0.0784 | 0.1616 |
r_mn_cor_LVR_IZ3 | 0.0858 | 0.2579 |
g_mn_FD_HCC_CORE | 0.0865 | 0.3792 |
g_sd_mFS_HCC_IZ3 | 0.0902 | 3.0509 |
r_mn_mFS_HCC_IZ3 | 0.0935 | 4.2304 |
g_sd_ent_HCC_STROMA | 0.0941 | 0.3704 |
g_sd_mMag_HCC_STROMA | 0.0954 | 0.3911 |
g_sd_hom_HCC_STROMA | 0.0963 | 0.3912 |
g_mn_hom_HCC_CORE | 0.0986 | 2.5157 |
g_mn_mMag_HCC_CORE | 0.0988 | 0.3972 |
g_mn_ent_HCC_STROMA | 0.0995 | 0.2707 |
g_sd_lac_HCC_CORE | 0.0995 | 3.1310 |
Features | HR | 95% CI | p-Value |
---|---|---|---|
Model A, test set C-index 0.7094, AIC 359.3840 | |||
Age ≥ 55 years | 4.05 | 1.67–9.80 | 0.00194 |
Multiple_tumors | 1.92 | 1.11–3.31 | 0.01895 |
g_mn_lac_HCC_IZ3 | 6.36 | 1.69–23.87 | 0.00615 |
r_mn_cor_LVR_IZ3 | 0.21 | 0.05–0.92 | 0.03802 |
Model B, test set C-index 0.7061, AIC 359.2425 | |||
Age ≥ 55 years | 4.33 | 1.73–10.81 | 0.0017 |
Multiple_tumors | 2.24 | 1.30–3.83 | 0.0035 |
g_mn_lac_HCC_IZ3 | 5.58 | 1.48–21.06 | 0.0113 |
r_sd_mFS_LVR_IZ3 | 0.02 | 0.00–0.84 | 0.0396 |
Feature | Number of Occurrences |
---|---|
Age_55plus | 57 |
r_mn_cor_LVR_IZ3 | 39 |
r_sd_mFS_LVR_IZ3 | 28 |
LVI | 27 |
r_sd_FD_LVR_IZ3 | 23 |
Multiple_tumors | 23 |
g_mn_lac_HCC_IZ3 | 16 |
g_sd_lac_HCC_CORE | 13 |
pT2-3 | 12 |
g_mn_cor_HCC_IZ3 | 11 |
g_mn_mMag_HCC_IZ3 | 10 |
g_mn_hom_HCC_IZ3 | 10 |
g_mn_ent_HCC_IZ3 | 8 |
g_mn_FD_HCC_IZ3 | 7 |
g_mn_cor_HCC_STROMA | 7 |
g_mn_mFL_HCC_IZ3 | 7 |
g_mn_ent_HCC_CORE | 6 |
g_mn_mFP_HCC_IZ3 | 6 |
g_mn_hom_HCC_CORE | 6 |
g_mn_mMag_HCC_CORE | 6 |
g_mn_nENDP_HCC_IZ3 | 6 |
g_sd_mFS_HCC_STROMA | 5 |
g_sd_mFL_HCC_IZ3 | 3 |
g_mn_mFS_HCC_IZ3 | 2 |
g_mn_FD_HCC_CORE | 2 |
r_mn_mFS_HCC_IZ3 | 2 |
g_mn_cor_HCC_CORE | 2 |
g_sd_mFP_HCC_IZ3 | 2 |
g_sd_mMag_HCC_STROMA | 1 |
g_sd_hom_HCC_STROMA | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stulpinas, R.; Morkunas, M.; Rasmusson, A.; Drachneris, J.; Augulis, R.; Gulla, A.; Strupas, K.; Laurinavicius, A. Improving HCC Prognostic Models after Liver Resection by AI-Extracted Tissue Fiber Framework Analytics. Cancers 2024, 16, 106. https://doi.org/10.3390/cancers16010106
Stulpinas R, Morkunas M, Rasmusson A, Drachneris J, Augulis R, Gulla A, Strupas K, Laurinavicius A. Improving HCC Prognostic Models after Liver Resection by AI-Extracted Tissue Fiber Framework Analytics. Cancers. 2024; 16(1):106. https://doi.org/10.3390/cancers16010106
Chicago/Turabian StyleStulpinas, Rokas, Mindaugas Morkunas, Allan Rasmusson, Julius Drachneris, Renaldas Augulis, Aiste Gulla, Kestutis Strupas, and Arvydas Laurinavicius. 2024. "Improving HCC Prognostic Models after Liver Resection by AI-Extracted Tissue Fiber Framework Analytics" Cancers 16, no. 1: 106. https://doi.org/10.3390/cancers16010106
APA StyleStulpinas, R., Morkunas, M., Rasmusson, A., Drachneris, J., Augulis, R., Gulla, A., Strupas, K., & Laurinavicius, A. (2024). Improving HCC Prognostic Models after Liver Resection by AI-Extracted Tissue Fiber Framework Analytics. Cancers, 16(1), 106. https://doi.org/10.3390/cancers16010106