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Simple Summary: Laryngeal cancer poses a major global health burden, with late-stage diagnoses
contributing to decreased survival rates. Recently, deep learning and deep convolutional neural
network models have exhibited significant attention in the diagnosis of various diseases like skin
cancer and diabetic retinopathy. Therefore, this study focuses on the design and development of
a deep learning-based laryngeal cancer detection and classification model. The proposed model
exploited a hyperparameter-tuned EfficientNetB0 model with a multi-head bidirectional gated re-
current unit for classification. In addition, the Dwarf Mongoose Optimization algorithm is applied
for the hyperparameter tuning process. The experimental results stated that the proposed model is
found to be an accurate and reliable approach for automated detection of laryngeal cancer.

Abstract: Laryngeal cancer (LCA) is a serious disease with a concerning global rise in incidence.
Accurate treatment for LCA is particularly challenging in later stages, due to its complex nature as
a head and neck malignancy. To address this challenge, researchers have been actively developing
various analysis methods and tools to assist medical professionals in efficient LCA identification.
However, existing tools and methods often suffer from various limitations, including low accuracy in
early-stage LCA detection, high computational complexity, and lengthy patient screening times. With
this motivation, this study presents an Automated Laryngeal Cancer Detection and Classification
using a Dwarf Mongoose Optimization Algorithm with Deep Learning (ALCAD-DMODL) technique.
The main objective of the ALCAD-DMODL method is to recognize the existence of LCA using
the DL model. In the presented ALCAD-DMODL technique, a median filtering (MF)-based noise
removal process takes place to get rid of the noise. Additionally, the ALCAD-DMODL technique
involves the EfficientNet-B0 model for deriving feature vectors from the pre-processed images. For
optimal hyperparameter tuning of the EfficientNet-B0 model, the DMO algorithm can be applied to
select the parameters. Finally, the multi-head bidirectional gated recurrent unit (MBGRU) model is
applied for the recognition and classification of LCA. The simulation result analysis of the ALCAD-
DMODL technique is carried out on the throat region image dataset. The comparison study stated
the supremacy of the ALCAD-DMODL technique in terms of distinct measures.

Keywords: laryngeal cancer; Dwarf Mongoose Optimization; deep learning; endoscopy; median
filtering; multi-head bidirectional gated recurrent unit
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1. Introduction

Laryngeal cancer (LCA) is one of the major and preeminent malignant tumors of
the neck and head area. Treatment results of LCA in an earlier phase are good, whereby
five-year patient survival rates with Tis, T1, and T2 LCA range around 80–90% [1]. While
endoscopy becomes the major tool for identifying LCA in medical applications, endoscopy
with standard white light can be confined for both contrast and resolution which provides
the management or misdiagnosis of superficial mucosal cancer and the pioneering lesions
associated with it, still by expert endoscopists. In contrast, unwanted biopsy and suspicious
cancer identification are the second main difficulties in medical practices because of an
intrinsic concern of endoscopists to prevent the onset of early-stage cancer. Consequently,
the majority of the patients acquire their diagnoses at the final phase as well as frequently
endure vocal function loss impacting the deterioration of life quality. [2]. In recent times,
endoscopic techniques with narrow-band imaging (NBI) that increase the analysis of ep-
ithelial and sub-epithelial microvascular patterns played a crucial part in earlier recognition
of LCA [3]. However, the usage of NBI for diagnoses needs innovative magnifying endo-
scopes, a particular training period, and practiced endoscopists that confine the medical
utilization of NBI endoscopy in numerous emerging nations like China [4]. Hence, the
utilization of conventional non-magnifying and white-light images for LCA analysis is not
only significant but also essential for less-developed countries or regions facing challenges
such as a shortage of skilled endoscopists and a lack of advanced imaging endoscopes [5].

Because of the specific physiological features and structures, it is normally complicated
for human eyes to capture irrelevant LCA lesions from non-magnified endoscopy [6].
Furthermore, as machine learning (ML) methods develop quickly, intelligent and accurate
diagnoses have the potential with image-based deep learning (DL) [7]. Now, DL states
to an ML method that is dependent upon a neural network (NN) model with numerous
data representation stages. Convolutional neural networks (CNNs) constitute feedforward
neural networks (FFNNs) with deep architecture and convolution computation [8]. It has
a model that must overcome classification and identification issues. By comparison with
standard image processing techniques, CNN has a higher ability for evaluation and feature
extraction [9]. Presently, artificial intelligence (AI) depends on deep CNNs (DCNNs) that
could be implemented in pathology, magnetic resonance images (MRIs), classification of
skin cancer, congenital cataracts, and diabetic retinopathy (DR) analysis [10]. With the help
of such cutting-edge DL methods, the AI technique promptly offered accurate analyses
depending on image data that must be possibly provided for identifying early diseases as
well as improving the survival rate of patients.

This study presents an Automated Laryngeal Cancer Detection and Classification
using a Dwarf Mongoose Optimization Algorithm with Deep Learning (ALCAD-DMODL)
technique. The main aim of the ALCAD-DMODL method is to recognize the existence
of LCA using the DL model. In the presented ALCAD-DMODL technique, a median
filtering (MF)-based noise removal process takes place to get rid of the noise. Besides, the
ALCAD-DMODL technique involves the EfficientNet-B0 model for deriving feature vectors
from the pre-processed images. For optimal hyperparameter tuning of the EfficientNet-B0
model, the DMO algorithm can be applied to select the parameters. Finally, the multi-
head bidirectional gated recurrent unit (MBGRU) model is applied for the recognition and
classification of LCA. The simulation result analysis of the ALCAD-DMODL technique is
carried out on the throat region image dataset.

2. Literature Works

Alrowais et al. [11] developed an innovative LCA Detection and Classification using
the Aquila Optimizer Algorithm with DL (LCDC-AOADL) method. The Inceptionv3
architecture was employed for feature extraction. Additionally, the algorithm implemented
a deep belief network (DBN) framework for identifying and classifying LCA. In addition,
the AOA should be applied for the hyperparameter tuning of the DBN method which
leads to an increase in the detection rate. Zhou et al. [12] presented an LCA classification
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network (LPCANet) that depends on a CNN and attention module. Initially, the novel HIs
have been sequentially collected into patches. Next, the images could be provided input
into the simple ResNet-50 for feature extraction. Similarly, position and channel attention
mechanisms can be included as equivalent. Also, the fusion feature map was removed
as well as visually evaluated by the Grad_CAM to offer a specific explainability for the
last outcomes.

In Meyer-Veit et al. [13], an effective HIs-DL technique was projected for predicting
LCA. Primarily, an important wavelength analysis was accomplished for identifying the
highly useful channels in the HS cubes for decreasing the noise as well as increasing
the prediction. According to the outcomes, a new Unet, named the EFX-Unet, has been
designed as well as two channels in all cubes that could be employed for prediction
and training. You et al. [14] projected consistent estimates of present DL methods. This
research generated white-light and NBI image databases of vocal cord leukoplakia that
can be categorized into six types. Vocal cord leukoplakia classification could be executed
by six traditional DL techniques, namely Vision Transformer, AlexNet, DenseNet, VGG,
ResNet, and Google Inception. DenseNet-121, ResNet-152, and GoogLeNet carried out
exceptional classification.

Ayyaz et al. [15] considered a novel hybrid technique that includes seven important
stages. This method can choose two various CNN techniques (Alexnet and VGG19) for
removing features. The transfer learning (TL) algorithms have been implemented. The
approach also employed a genetic algorithm (GA) in FS. This method also combined the
chosen features of two architectures through a serial-based technique. Lastly, the preemi-
nent features have contributed to numerous ML methods for classification and detection.
In Kwon et al. [16], DL-based CNN methods have been developed and categorized using
LCA images and voice data. Accurate classification might be acquired by implementing de-
cision tree (DT) ensemble learning employing the possibility of the CNN classifier method.
The classification and regression tree (CART) technique could be implemented. Next, the
authors related the classification precision of DT ensemble learning with CNN separate
classification by combining the laryngeal image with the voice DT algorithm.

In Lubrano et al. [17], the authors examined the capability of DL to support the
pathologist with automatic and dependable categorization of HI lesions. A huge dataset
of HIs (>2000 slides) is planned for emerging as an automatic analytical tool. This intro-
duced analysis also designed and trained an uncertainly supervised method executing
classification in whole-slide images (WSIs). In Huang et al. [18], an end-wise ViT-AMC
network (ViT-AMCNet) with adaptive model fusion and multi-objective optimizer to be
incorporated as well as to combine the ViT and AMC blocks was designed. Initially, this
study evidences the possibility of combining the ViT and AMC blocks dependent upon
Hoeffding’s dissimilarity. Afterward, a multi-objective optimizer technique was developed
to resolve the issue, in which ViT and AMC blocks do not concurrently provide a better
feature representation. Besides, a modified model fusion algorithm combining the fusion
and metrics blocks was designed.

3. The Proposed Method

In this study, we have presented an ALCAD-DMODL technique. The main aim of the
ALCAD-DMODL system is to recognize the existence of LCA using the DL model. The
presented ALCAD-DMODL technique comprises MF-based preprocessing, an EfficientNet-
B0-based feature extractor, DMO-based parameter tuning, and MBGRU-based classification.
Figure 1 illustrates the entire flow of the ALCAD-DMODL algorithm. The figure shows
that the ALCAD-DMODL technique, derived from automated laryngeal cancer recognition
and classification, operates by meticulous, multiple-step processes. This procedure starts
with tackling unwanted noise within the throat region images. An MF approach effectively
removes noise but maintains vital image details, making sure there is reliable information
for subsequent phases. During this work, the EfficientNet-B0, a pre-trained DL approach,
has been trained on a huge database of images. This robust model examines the pre-
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processed images and extracts useful feature vectors, basically condensed representations
of the main features in all the images.

Cancers 2024, 16, 181 4 of 18 
 

 

there is reliable information for subsequent phases. During this work, the EfficientNet-B0, 
a pre-trained DL approach, has been trained on a huge database of images. This robust 
model examines the pre-processed images and extracts useful feature vectors, basically 
condensed representations of the main features in all the images. 

 
Figure 1. The overall flow of the ALCAD-DMODL technique. 

These vectors capture key data on the throat area, paving the way for correct cancer 
recognition. EfficientNet-B0 depends on distinct internal parameters that greatly 

Figure 1. The overall flow of the ALCAD-DMODL technique.

These vectors capture key data on the throat area, paving the way for correct cancer
recognition. EfficientNet-B0 depends on distinct internal parameters that greatly influence
its solution. At this point, the DMO approach comes into play. Simulated by the co-
operative hunting behavior of dwarf mongooses, DMO wisely searches for the boosting
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integration of these parameters, adjusting EfficientNet-B0 for peak accuracy in laryngeal
cancer recognition. Eventually, the extracting feature vectors and optimizer EfficientNet-B0
approach provide data to the powerful MBGRU network. This advanced recurrent neural
network (RNN), planned to procedure sequential data such as image series, examines the
features and outcomes of a definitive classification, namely cancerous and non-cancerous.

3.1. Preprocessing

Primarily, the MF-based noise removal process takes place to get rid of the noise. MF
has deployed image pre-processing methods to assist in mitigating noise and improving
the digital image qualities [19].

In the context of medical image or computer vision (CV) tasks, namely LCA recogni-
tion, this technique is particularly valued. The basic principle of MF includes exchanging
all the pixel’s intensity values with the median value of its adjacent pixels. A different
mean filter that assumes the average intensity, MF is robust to outliers, making it effective
in maintaining image edges and fine details but efficiently suppressing salt-and-pepper
or random noise. This characteristic is essential in enhancing the entire clarity of throat
area images, permitting later DL approaches to focus on significant features for reliable and
accurate LCA recognition. Combining MF as part of the pre-processing pipeline gives a
further resilient and noise-resistant input, finally improving the solution of the following
analytical stages.

3.2. EfficientNet-B0 Model

At this stage, the ALCAD-DMODL technique involves the EfficientNet-B0 model
for deriving feature vectors from the pre-processed images. The EfficientNet family of
structures is established to determine a suitable process to measure CNNs and enhance
network solutions [20]. This study developed a compound scaling method that consistently
scales depth, width, and resolution utilizing a provided group of coefficients. With the help
of such a process, the authors are capable of making the Efficientnet-B0-CNNs structure. The
EfficientNet technique set contains 8 approaches from B0 to B7, all the subsequent model
counts mentioning variations with additional parameters and maximum accurateness.

CNNs capture richer and more difficult features by fine-tuning the network depth.
However, the vanishing gradient issue creates very complex network training. The model
has been gathering further fine-grained features by altering its width. Training can easily
depict the detailed baseline EfficientNetB0 technique that takes 224× 224× 3 input images,
but 224× 224 has the image’s width and height and 3 represents the image’s dimension.
This method utilized several convolution layers with a 3 × 3 receptive region and the
mobile reversed bottleneck convolution for capturing features across layers.

w = βϕ, (1)

d = αϕ, (2)

r = γϕ, (3)

s.t α.β2.γ2 ≈ 2 (4)

α ≥ 1, β ≥ 1, γ ≥ 1. (5)

whereas w refers to the width, d implies the height, and r signifies the resolution, α, β, and
γ denote the constant coefficients defined by a smaller grid search. Depth, width, and
resolution of the network can be uniformly computed by EfficientNet utilizing a multiple
co-efficient Φ.

Conversely, extensive and shallow networks can be impotent in obtaining higher-level
features. Higher-resolution images allow CNNs to identify additional time patterns, and
further memory and processing power are required to perform greater images. Additionally,
EfficientNet is mostly suitable to employ DL on edge, while it decreases computational rate,



Cancers 2024, 16, 181 6 of 18

battery utility, and training and implication speeds. The type of architecture performance
finally allows the utilization of DL with mobile and other edge devices.

3.3. DMO-Based Hyperparameter Tuning

For optimal hyperparameter tuning of the EfficientNet-B0 model, the DMO algorithm
can be applied to select the parameters. DMO has a new population-based meta-heuristic
model that depends on the social and foraging behavior of a dwarf mongoose called
Helogale [21]. All separately seek food because the food search cannot be a cooperative
practice, then foraging could be mutually achieved because of the seminomadic features
of such animals, the structure of the sleeping mound (SM) was nearer to a relevant food
source. The mathematical models are used for resolving optimizer problems.

The method initiates with random initialization. Subsequently, all decisions are
collected in the global preeminent optimum owing to the diversification and intensification
procedures. Similarly, the DMO activates its result by modifying the DMO population. It
could be randomly created among the upper and lower limits of the problems.

X =


x1,1 x1,2 . . . x1,d−1 x1,d
x2,1 x2,2 . . . x2,d−1 x2,d

...
... xi,j

...
...

xn,1 xn,2 . . . xn,d−1 xn,d

 (6)

In Equation (6), xi,j signifies the position of the jth parameter of the ith population,
X represents the group of candidates’ present population to be arbitrarily produced, d
characterizes the dimensionality of the problem, and n indicates the population size.

xi,j = uni f rnd(VarMin, VarMax, VarSize) (7)

where Equation (7), a consistently distributed random number denoted as uni f rnd, VarMin
and VarMax represents the lower and upper limits. The dimensionality refers to VarSize.
The best solution in some rounds will be the over-fit solution.

Comparable to other meta-heuristic methods, there are 2 various phases in the DMO:
exploration (a stochastic search for novel SM or food source) or diversification and ex-
ploitation (individual mongoose performs a wide-ranging search within the search range),
named intensification. The babysitters, alpha, and scout groups are the three social models
of the DMO that execute the tasks of the 2 previously mentioned phases.

The family unit controller represents the alpha female (α) and can be designated by
the given formula:

α =
iti

∑n
i=1 f iti

(8)

In Equation (8), peep describes the sound of α, and the no. of mongooses in the alpha
group has n− bs, and bs denotes the no. of babysitters.

The SM could be described by the rich food as follows,

Xi+1 = Xi + phi× peep (9)

In Equation (9), uniform distribution random number [−1, 1] is phi.

smi =
f iti+1 − f iti

max{| f iti+1, f iti|}
(10)

Once an SM determines an average value to be expressed as given below:

φ =
∑n

i=1 smi

n
(11)
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The scouting stands the following stage, while the babysitter alters the rule that
evaluates the following SM defined via other food sources.

The scout group drives the search for the following SM to give the exploration because
a mongoose can be called not for returning at a prior SM. Concurrently, it is named as scout
and forage in DMO.

Xi+1 =


Xi − CF× phi× rand×

[
Xi −

→
M
]

i f φi+1 > φj

Xi + CF× phi× rand×
[

Xi −
→
M
]

else
(12)

In Equation (12), rand is a random integer with [0, 1], CF =
(

1− iter
Maxiter

)(2 iter
Maxiter

)

represents the parameter for the collective volatile measure of individual movement, which

linearly dropped at some iterations.
→
M = ∑n

i=1
Xi×smi

Xi
shows the vector to inspire the

individual movement for the original SM.
While the foraging and scouting set searches for food sources and SM, the babysitter’s

set stands with the children. The no. of members has separated at the whole number of
candidate population as not scout or forage till the changes of the babysitter’s parameter
are occurred.

The DMO algorithm develops a fitness function (FF) to accomplish a greater classifier
solution. It explains positive integers to refer to the best result of candidate efficiency. The
decrease in classifier rate of errors has been assumed that FF is written as:

f itness(xi) = Classi f ierErrorRate(xi)

= No. o f misclassi f ied instances
Total no. o f instances × 100

(13)

3.4. Classification Using MBGRU

Finally, the MBGRU architecture has been applied to recognizing and classifying
LCA. Different from typical NNs, MBGRU excels at capturing long-range dependencies in
sequential data. This performed admirably for LCA recognition, but it efficiently analyzes
connections among various areas of the throat images and identifies subtle patterns that
can signal cancer development. MBGRU’s several heads permit it to concentrate on distinct
features of the input features, extracting more detailed data and potentially leading to
optimum model efficiency. By processing the input sequence in either forward or backward
directions, MBGRU attains a deeper understanding of feature connections, leading to more
robust and accurate classification. The MBGRU receives its input from the EfficientNet-B0
approach—the feature vector extraction from the pre-processed throat area images. These
vectors capture the vital features of the images, generating the basis for cancer recognition.
After processing the input feature vectors, the MBGRU creates a last classification outcome,
signifying if the image depicts signs of laryngeal cancer or not. This result serves as
the analysis for the patient. The MBGRU itself has hyperparameters that need careful
optimizers for achieving better solutions. These hyperparameters, like the count of hidden
units and layers, are tuned utilizing approaches like the DMO system.

RNNs can procedure sequential data [22]. In addition, RNNs are capable of learning
any data in preceding data once managing the present data. The LSTM and GRU are
enhanced RNN approaches that have potent modeling abilities for extended dependencies,
and GRU can reduce difficulties related to LSTM. A GRU has been collected of updated
gate zt and reset gate rt. The outcome ht is defined by either present input xt or prior
layer ht−1 in the control of these 2 gates. The outcome of gates and the GRU unit can be
computed as:
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rt = σ(Wrxt + Urht−1 + br)

zt = σ(Wzxt + Uzht−1 + bz)
∼
ht = tanh[Whxt + Uh(rt ⊙ ht−1) + bh]

ht = (1− zt)⊙ ht−1 + zt ⊙ ht

(14)

where Wr, Ur, Wz, Uz, Wh, and Uh refer to the weighted matrices. br, bz, and bh signifies the
synthesis of bias vectors for input xt and preceding layer ht−1, ⊙ stands for the Hadamard
products, σ implies the logistic sigmoid function, and tanh describes the hyperbolic tangent
activation function.

These methods with bidirectional design can learn data from preceding and sub-
sequent data once controlled with the present data. The BiGRU technique is defined
depending on the layer of 2 GRUs that are unidirectional in opposite directions. One GRU
that moves forward starts with the beginning of the data order, and the other GRU that
moves backward starts from the finish of the data order. This permits the data from either
the future or past to influence the existing layers. The BiGRU is determined as:

→
ht = GRU f wd(xt,

→
ht−1)

←
ht = GRUbwd(xt,

←
ht+1)

ht =
→
ht ⊕

←
ht

(15)

In which,
→
ht refers to the layer of the forward GRU,

←
ht denotes the layer of the backward

GRU, ⊕ and stands for the procedure of concatenating 2 vectors.
The MBGRU is an advanced category of the conventional GRU that increases its abili-

ties by integrating the notion of multi-head attention. This model incorporates the strengths
of attention mechanisms and bi-directional processing for capturing long-term reliance
and considering significant information in sequential data. In MBGRU, the architecture
has been established with numerous attention heads, permitting it to appear for promptly
various sections of the input sequence. The bi-directional feature of the GRU allows the
network to measure data from both previous and upcoming time stages, which enables a
highly extensive understanding of temporal dependencies. The combination of multi-head
attention also increases the model’s capability for capturing intricate patterns and intercon-
nections within the data, which makes it appropriate for tasks, namely time series analysis,
natural language processing (NLP), and other applications wherein contextual data can be
vital. The MBGRU method represents a robust solution for tasks that need subtle analysis
of sequential information by integrating the aids of multi-head attention mechanisms and
bi-directionality.

4. Performance Validation

The proposed model is simulated using the Python 3.6.5 tool on PC i5-8600k, GeForce
1050 Ti 4 GB, 16 GB RAM, 250 GB SSD, and 1 TB HDD. The parameter settings are
given as follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and
activation: ReLU.

In this section, the LCA detection outcome of the ALCAD-DMODL technique is carried
out on the throat region image dataset, which contains 1320 samples using four classes, as
described in Table 1. Figure 2 signifies the sample images.

Figure 3 demonstrates the confusion matrices produced by the ALCAD-DMODL
model below 80:20 and 70:30 of TRPH/TSPH. The results indicate the effectual detection
and classification of all four classes.
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Table 1. Details on the database.

Name Classes No. of Instances

Healthy Tissue He 330

Hypertrophic Blood Vessels Hbv 330

Leukoplakia Le 330

Abnormal IPCL-like Vessel IPCL 330

Total No. of Instances 1320
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In Table 2 and Figure 4, an overall LCA recognition outcome of the ALCAD-DMODL
method under 80:20 of TRPH/TSPH is shown. The result inferred that the ALCAD-
DMODL technique has effectual detection of all four classes. With 80% of TRPH, the
ALCAD-DMODL model provides an average accuy, precn, recal , Fscore, and AUCscore of
97.16%, 94.29%, 94.27%, 94.26%, and 96.19%, respectively. Furthermore, with 20% of TSPH,
the ALCAD-DMODL approach delivers average accuy, precn, recal , Fscore, and AUCscore of
96.78%, 93.74%, 93.51%, 93.56%, and 95.67%, correspondingly.
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Table 2. LCA detection outcome of ALCAD-DMODL technique under 80:20 of TRPH/TSPH.

Classes Accuy Precn Recal FScore AUCScore

TRPH (80%)

He 98.39 95.49 98.57 97.00 98.45

Hbv 97.54 93.80 96.03 94.90 97.02

Le 96.21 93.13 91.73 92.42 94.73

IPCL 96.50 94.76 90.73 92.70 94.55

Average 97.16 94.29 94.27 94.26 96.19

TSPH (20%)

He 97.73 95.92 92.16 94.00 95.61

Hbv 96.59 93.67 94.87 94.27 96.09

Le 96.59 89.86 96.88 93.23 96.69

IPCL 96.21 95.52 90.14 92.75 94.29

Average 96.78 93.74 93.51 93.56 95.67
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The accuy curves for training (TR) and validation (VL) exposed in Figure 5 for the
ALCAD-DMODL technique under 80:20 of TRPH/TSPH provide valuable insights into its
performance below many epochs. Particularly, there is steady development in both TR and
TS accuy to growing epochs, representing the model’s ability to learn and identify patterns
from both TR and TS data. The upward trend in TS accuy underlines the model’s flexibility
to the TR dataset and its capability to create precise forecasts on hidden data, emphasizing
robust generalization skills.
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Figure 6 delivers a complete summary of TR and TS loss values for the ALCAD-
DMODL technique under 80:20 of TRPH/TSPH through numerous epochs. The TR loss
steadily drops as the model improves its weights to minimize classification errors on both
datasets. The loss curves exemplify the model’s alignment with TR data, highlighting its ap-
titude to capture patterns efficiently in both datasets. Significant is the continuous alteration
of parameters in the ALCAD-DMODL technique, marked by diminishing discrepancies
amid predictions and actual TR labels.
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In Table 3 and Figure 7, a complete LCA recognition outcome of the ALCAD-DMODL
model below 70:30 of TRPH/TSPH is shown. The consequence inferred that the ALCAD-
DMODL technique has effective detection of all four classes. With 70% of TRPH, the
ALCAD-DMODL method provides average accuy, precn, recal , Fscore, and AUCscore of
95.94%, 91.94%, 91.94%, 91.89%, and 94.62%, respectively. Furthermore, with 30% of TSPH,
the ALCAD-DMODL technique offers average accuy, precn, recal , Fscore, and AUCscore of
96.97%, 93.98%, 93.86%, 93.85%, and 95.93%, separately.

Table 3. LCA detection outcome of ALCAD-DMODL technique under 70:30 of TRPH/TSPH.

Class Labels Accuy Precn Recal FScore AUCScore

TRPH (70%)

He 94.05 87.67 88.05 87.86 92.02

Hbv 95.67 95.02 87.87 91.30 93.13

Le 95.45 89.39 93.19 91.25 94.71

IPCL 98.59 95.67 98.66 97.14 98.62

Average 95.94 91.94 91.94 91.89 94.62

TSPH (30%)

He 95.20 92.93 88.46 90.64 93.03

Hbv 97.22 96.51 91.21 93.79 95.11

Le 95.96 88.35 95.79 91.92 95.90

IPCL 99.49 98.15 100.00 99.07 99.66

Average 96.97 93.98 93.86 93.85 95.93
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The accuy curves for TR and VL presented in Figure 8 for the ALCAD-DMODL
technique under 70:30 of TRPH/TSPH provide valuable insights into its performance below
several epochs. Particularly, there is a reliable enhancement in both TR and TS accuy with
collective epochs, demonstrating the model’s expertise in learning and diagnosing patterns
from both TR and TS data. The upward trend in TS accuy underlines the model’s flexibility
to the TR dataset and its capacity to create exact forecasts on unseen data, prominence
robust generalization skills.
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Figure 9 offers an inclusive overview of the TR and TS loss values for the ALCAD-
DMODL model under 70:30 of TRPH/TSPH across numerous epochs. The TR loss depend-
ably reduces as the method perfects its weights to decrease classification errors on both 
datasets. The loss curves clarify the model's position with TR data, underscoring its capa-
bility to capture patterns well in both datasets. Noteworthy is the endless refinement of 
parameters in the ALCAD-DMODL model, intended to diminish discrepancies between 
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Figure 9 offers an inclusive overview of the TR and TS loss values for the ALCAD-
DMODL model under 70:30 of TRPH/TSPH across numerous epochs. The TR loss de-
pendably reduces as the method perfects its weights to decrease classification errors on
both datasets. The loss curves clarify the model’s position with TR data, underscoring its
capability to capture patterns well in both datasets. Noteworthy is the endless refinement
of parameters in the ALCAD-DMODL model, intended to diminish discrepancies between
predictions and actual TR labels.
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Table 4 and Figure 10 illustrate a comprehensive comparative analysis of ALCAD-
DMODL methodology with other recent techniques [11]. The simulation values imply
that the ALCAD-DMODL method has outperformed enhanced performances. Concerning
accuy, the ALCAD-DMODL technique has obtained a higher accuy of 97.16%. On the other
hand, the LCDC-AOADL, DCNN, Exception, ResNet50, VGG19, and AlexNet approaches
have achieved lesser accuy of 96.18%, 84.16%, 90.27%, 91.13%, 85.23%, and 87.66%, respec-
tively. Additionally, based on precn, the ALCAD-DMODL methodology has attained a
greater precn of 94.29%. In addition, the LCDC-AOADL, DCNN, Exception, ResNet50,
VGG19, and AlexNet techniques have succeeded lesser precn of 92.24%, 89.37%, 87.72%,
89.62%, 85.98%, and 87.45%, correspondingly. Lastly, based on Fscore, the ALCAD-DMODL
methodology has gained a higher Fscore of 94.26%. On the other hand, the LCDC-AOADL,
DCNN, Exception, ResNet50, VGG19, and AlexNet methods have reached a lesser Fscore of
91.99%, 87.06%, 86.27%, 86.61%, 87.30%, and 86.06%, individually.

Table 4. Comparative analysis of ALCAD-DMODL methodology with other models. [11].

Classifiers Accuy Precn Recal FScore

ALCAD-DMODL 97.16 94.29 94.27 94.26

LCDC-AOADL 96.18 92.24 91.99 91.99

DCNN 84.16 89.37 86.07 87.06

Exception 90.27 87.72 86.98 86.27

ResNet50 91.13 89.62 85.28 86.61

VGG19 85.23 85.98 88.33 87.30

AlexNet 87.66 87.45 89.83 86.06
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In Table 5 and Figure 11, a complete computational time (CT) analysis of the ALCAD-
DMODL technique with other existing models is displayed. The outcome values suggest
that the ALCAD-DMODL model has outperformed superior performances. With esteem to
CT, the ALCAD-DMODL method has gained a lesser CT of 0.80 s. On the other hand, the
LCDC-AOADL, DCNN, Exception, ResNet50, VGG19, and AlexNet methodologies have
reached lesser accuy of 1.98 s, 2.54 s, 3.12 s, 4.94 s, 4.41 s, and 5.24 s, individually. These
results confirmed the enhanced performance of the LCA detection process.

Table 5. CT analysis of the ALCAD-DMODL approach with other models.

Classifiers Computational Time (s)

ALCAD-DMODL 0.80

LCDC-AOADL 1.98

DCNN 2.54

Exception 3.12

ResNet50 4.94

VGG19 4.41

AlexNet 5.24

Cancers 2024, 16, 181 16 of 18 
 

 

In Table 5 and Figure 11, a complete computational time (CT) analysis of the ALCAD-
DMODL technique with other existing models is displayed. The outcome values suggest 
that the ALCAD-DMODL model has outperformed superior performances. With esteem 
to CT, the ALCAD-DMODL method has gained a lesser CT of 0.80 s. On the other hand, 
the LCDC-AOADL, DCNN, Exception, ResNet50, VGG19, and AlexNet methodologies 
have reached lesser 𝑎𝑐𝑐𝑢௬ of 1.98 s, 2.54 s, 3.12 s, 4.94 s, 4.41 s, and 5.24 s, individually. 
These results confirmed the enhanced performance of the LCA detection process. 

Table 5. CT analysis of the ALCAD-DMODL approach with other models. 

Classifiers Computational Time (s) 
ALCAD-DMODL 0.80 

LCDC-AOADL 1.98 
DCNN 2.54 

Exception 3.12 
ResNet50 4.94 
VGG19 4.41 
AlexNet 5.24 

 
Figure 11. CT analysis of the ALCAD-DMODL system with other models. 

  

Figure 11. CT analysis of the ALCAD-DMODL system with other models.



Cancers 2024, 16, 181 17 of 18

5. Conclusions

In this study, we have presented an ALCAD-DMODL methodology. The main aim
of the ALCAD-DMODL methodology is to recognize the existence of LCA using the DL
model. The presented ALCAD-DMODL technique comprises MF-based preprocessing, an
EfficientNet-B0-based feature extractor, DMO-based parameter tuning, and MBGRU-based
classification. In addition, the ALCAD-DMODL technique involves the EfficientNet-B0
model for deriving feature vectors from the pre-processed images. For optimal hyper-
parameter tuning of the EfficientNet-B0 model, the DMO algorithm can be applied to
select the parameters. Finally, the MBGRU model could be applied for the recognition
and classification of LCA. The simulation result analysis of the ALCAD-DMODL method
is carried out under the throat region image dataset. The comparison study stated the
supremacy of the ALCAD-DMODL technique in terms of distinct measures.

Author Contributions: Conceptualization, S.A. and R.D.; Methodology, R.L.A., S.A. and F.M.A.;
Software, N.M., R.L.A. and R.A.; Validation, R.A.; Formal analysis, N.M., R.L.A. and A.A.E.; Investi-
gation, N.M., R.L.A., B.M.E.E. and A.A.E.; Resources, S.A., F.M.A., B.M.E.E. and A.A.E.; Data curation,
R.A., F.M.A. and B.M.E.E.; Writing—original draft, N.M. and R.D.; Writing—review & editing, R.D.;
Visualization, S.A. The manuscript was written through the contributions of all authors. All authors
have read and agreed to the published version of the manuscript.

Funding: This research has been funded by the Scientific Research Deanship at the University of
Ha’il-Saudi Arabia through project number «RG-23 127».

Institutional Review Board Statement: This article does not contain any studies with human
participants performed by any of the authors.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in this article.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References
1. Huang, S.Y.; Hsu, W.L.; Liu, D.W.; Wu, E.L.; Peng, Y.S.; Liao, Z.T.; Hsu, R.J. Identifying Lymph Nodes and Their Statuses from

Pretreatment Computer Tomography Images of Patients with Head and Neck Cancer Using a Clinical-Data-Driven Deep Learning
Algorithm. Cancers 2023, 15, 5890. [CrossRef] [PubMed]

2. Bhattacharya, D.; Behrendt, F.; Felicio-Briegel, A.; Volgger, V.; Eggert, D.; Betz, C.; Schlaefer, A. Learning robust representation
for laryngeal cancer classification in vocal folds from narrow-band images. In Proceedings of the Medical Imaging with Deep
Learning, Zurich, Switzerland, 6–8 July 2022.

3. Young, G.O. Synthetic structure of industrial plastics. In Plastics, 2nd ed.; Peters, J., Ed.; McGraw-Hill: New York, NY, USA, 1964;
Volume 3, pp. 15–64.

4. Bur, M.; Zhang, T.; Chen, X.; Kavookjian, H.; Kraft, S.; Karadaghy, O.; Farrokhian, N.; Mussatto, C.; Penn, J.; Wang, G. Interpretable
computer vision to detect and classify structural laryngeal lesions in digital flexible laryngoscopic images. Otolaryngol.-Head Neck
Surg. 2023, 169, 1564–1572. [CrossRef] [PubMed]

5. Raoof, S.S.; Jabbar, M.A.; Fathima, S.A. Lung cancer prediction using machine learning: A comprehensive approach. In
Proceedings of the 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), Bangalore,
India, 5–7 March 2020; pp. 108–115.

6. Raoof, S.S.; Jabbar, M.A.; Fathima, S.A. Lung cancer prediction using feature selection and recurrent residual convolutional neural
network (RRCNN). In Machine Learning Methods for Signal, Image and Speech Processing; River Publishers: Aalborg, Denmark, 2022;
pp. 23–46.

7. Jabbar, M.A. Breast cancer data classification using ensemble machine learning. Eng. Appl. Sci. Res. 2021, 48, 65–72.
8. Wellenstein, D.J.; Woodburn, J.; Marres, H.A.M.; van den Broek, G.B. Detection of laryngeal carcinoma during endoscopy using

artificial intelligence. Head Neck 2023, 45, 2217–2226. [CrossRef] [PubMed]
9. Meyer-Veit, F.; Rayyes, R.; Gerstner, A.O.H.; Steil, J. Hyperspectral wavelength analysis with U-Net for larynx cancer detection.

In Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
(ESANN), Bruges, Belgium, 5–7 October 2022.

10. Gurumoorthy, R.; Kamarasan, M. Computer-aided breast cancer detection and classification using optimal deep learning.
In Proceedings of the International Conference on Sustainable Computing and Data Communication Systems (ICSCDS),
20–22 March 2023; pp. 143–150.

https://doi.org/10.3390/cancers15245890
https://www.ncbi.nlm.nih.gov/pubmed/38136434
https://doi.org/10.1002/ohn.411
https://www.ncbi.nlm.nih.gov/pubmed/37350279
https://doi.org/10.1002/hed.27441
https://www.ncbi.nlm.nih.gov/pubmed/37377069


Cancers 2024, 16, 181 18 of 18

11. Alrowais, F.; Mahmood, K.; Alotaibi, S.S.; Hamza, M.A.; Marzouk, R.; Mohamed, A. Laryngeal Cancer Detection and Classification
Using Aquila Optimization Algorithm with Deep Learning on Throat Region Images. IEEE Access 2023, 11, 115306–115315.
[CrossRef]

12. Zhou, X.; Tang, C.; Huang, P.; Mercaldo, F.; Santone, A.; Shao, Y. LPCANet: Classification of laryngeal cancer histopathological
images using a CNN with position attention and channel attention mechanisms. Interdiscip. Sci. Comput. Life Sci. 2021, 13,
666–682. [CrossRef] [PubMed]

13. Meyer-Veit, F.; Rayyes, R.; Gerstner, A.O.; Steil, J. Hyperspectral endoscopy using deep learning for laryngeal cancer segmentation.
In Proceedings of the International Conference on Artificial Neural Networks, Bristol, UK, 6–9 September 2022; Springer Nature:
Cham, Switzerland, 2022; pp. 682–694.

14. You, Z.; Han, B.; Shi, Z.; Zhao, M.; Du, S.; Yan, J.; Liu, H.; Hei, X.; Ren, X.; Yan, Y. Vocal cord leukoplakia classification using deep
learning models in white light and narrow band imaging endoscopy images. Head Neck 2023, 45, 3129–3145. [CrossRef] [PubMed]

15. Ayyaz, M.S.; Lali, M.I.U.; Hussain, M.; Rauf, H.T.; Alouffi, B.; Alyami, H.; Wasti, S. Hybrid deep learning model for endoscopic
lesion detection and classification using endoscopy videos. Diagnostics 2021, 12, 43. [CrossRef] [PubMed]

16. Kwon, I.; Wang, S.G.; Shin, S.C.; Cheon, Y.I.; Lee, B.J.; Lee, J.C.; Lim, D.W.; Jo, C.; Cho, Y.; Shin, B.J. Diagnosis of Early Glottic
Cancer Using Laryngeal Image and Voice Based on Ensemble Learning of Convolutional Neural Network Classifiers. J. Voice,
2022; in press. [CrossRef] [PubMed]

17. Lubrano, M.; Bellahsen-Harrar, Y.; Berlemont, S.; Atallah, S.; Vaz, E.; Walter, T.; Badoual, C. Diagnosis with confidence: Deep
learning for reliable classification of laryngeal dysplasia. Histopathology 2024, 84, 343–355. [CrossRef] [PubMed]

18. Huang, P.; He, P.; Tian, S.; Ma, M.; Feng, P.; Xiao, H.; Mercaldo, F.; Santone, A.; Qin, J. A ViT-AMC network with adaptive model
fusion and multiobjective optimization for interpretable laryngeal tumor grading from histopathological images. IEEE Trans.
Med. Imaging 2023, 42, 15–28. [CrossRef] [PubMed]

19. Ihsan, R.; Marqas, R. A median filter with evaluating of temporal ultrasound image for impulse noise removal for kidney
diagnosis. J. Appl. Sci. Technol. Trends 2020, 1, 71–77. [CrossRef]

20. Hussain, A.; Ul Amin, S.; Fayaz, M.; Seo, S. An Efficient and Robust Hand Gesture Recognition System of Sign Language
Employing Finetuned Inception-V3 and Efficientnet-B0 Network. Comput. Syst. Sci. Eng. 2023, 46, 3509–3525. [CrossRef]

21. Akinola, O.A.; Ezugwu, A.E.; Oyelade, O.N.; Agushaka, J.O. A hybrid binary dwarf mongoose optimization algorithm with
simulated annealing for feature selection on high dimensional multi-class datasets. Sci. Rep. 2022, 12, 14945. [CrossRef] [PubMed]

22. Liu, X.; Wang, Y.; Wang, X.; Xu, H.; Li, C.; Xin, X. Bi-directional gated recurrent unit neural network based nonlinear equalizer for
a coherent optical communication system. Opt. Express 2021, 29, 5923–5933. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2023.3324880
https://doi.org/10.1007/s12539-021-00452-5
https://www.ncbi.nlm.nih.gov/pubmed/34138403
https://doi.org/10.1002/hed.27543
https://www.ncbi.nlm.nih.gov/pubmed/37837264
https://doi.org/10.3390/diagnostics12010043
https://www.ncbi.nlm.nih.gov/pubmed/35054210
https://doi.org/10.1016/j.jvoice.2022.07.007
https://www.ncbi.nlm.nih.gov/pubmed/36075802
https://doi.org/10.1111/his.15067
https://www.ncbi.nlm.nih.gov/pubmed/37872676
https://doi.org/10.1109/TMI.2022.3202248
https://www.ncbi.nlm.nih.gov/pubmed/36018875
https://doi.org/10.38094/jastt1217
https://doi.org/10.32604/csse.2023.037258
https://doi.org/10.1038/s41598-022-18993-0
https://www.ncbi.nlm.nih.gov/pubmed/36056062
https://doi.org/10.1364/OE.416672
https://www.ncbi.nlm.nih.gov/pubmed/33726124

	Introduction 
	Literature Works 
	The Proposed Method 
	Preprocessing 
	EfficientNet-B0 Model 
	DMO-Based Hyperparameter Tuning 
	Classification Using MBGRU 

	Performance Validation 
	Conclusions 
	References

