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Simple Summary: Neutrophil extracellular traps (NETs) contribute to tumor progression at different
stages, such as primary growth, metastasis, angiogenesis, and cancer-associated thrombosis. The
knowledge of biomolecular mechanisms of this process is crucial to developing strategies to mitigate
tumor progression, mainly, metastasis. NETs promote the activation of proinflammatory pathways
and trigger the epithelial-mesenchymal transition (EMT) process. In this work, we demonstrate
that NETs enhance the expression of tissue factor (TF) in breast tumor cells, thus increasing the
procoagulant activity. NETs also promote protease-activated receptor 2 (PAR2) signaling, leading
to the expression of pro-tumor cytokines and factors associated with EMT. These phenomena are
supported by in silico gene correlation analysis of TF/PAR2 and pro-tumor genes analyzed in samples
from breast cancer patients. Our results suggest that the TF/PAR2 signaling axis contributes to the
pro-cancer effects of NETs in human breast cancer cells.

Abstract: Neutrophil extracellular traps (NETs) have been implicated in several hallmarks of cancer.
Among the protumor effects, NETs promote epithelial-mesenchymal transition (EMT) in different
cancer models. EMT has been linked to an enhanced expression of the clotting-initiating protein,
tissue factor (TF), thus favoring the metastatic potential. TF may also exert protumor effects by
facilitating the activation of protease-activated receptor 2 (PAR2). Herein, we evaluated whether
NETs could induce TF expression in breast cancer cells and further promote procoagulant and
intracellular signaling effects via the TF/PAR2 axis. T-47D and MCF7 cell lines were treated with
isolated NETs, and samples were obtained for real-time PCR, flow cytometry, Western blotting, and
plasma coagulation assays. In silico analyses were performed employing RNA-seq data from breast
cancer patients deposited in The Cancer Genome Atlas (TCGA) database. A positive correlation was
observed between neutrophil/NETs gene signatures and TF gene expression. Neutrophils/NETs
gene signatures and PAR2 gene expression also showed a significant positive correlation in the
bioinformatics model. In vitro analysis showed that treatment with NETs upregulated TF gene
and protein expression in breast cancer cell lines. The inhibition of ERK/JNK reduced the TF gene
expression induced by NETs. Remarkably, the pharmacological or genetic inhibition of the TF/PAR2
signaling axis attenuated the NETs-induced expression of several protumor genes. Also, treatment of
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NETs with a neutrophil elastase inhibitor reduced the expression of metastasis-related genes. Our
results suggest that the TF/PAR2 signaling axis contributes to the pro-cancer effects of NETs in
human breast cancer cells.

Keywords: neutrophil extracellular traps; tissue factor; protease-activated receptor 2; breast cancer;
inflammatory cytokines

1. Introduction

Tissue factor (TF) is a 47 KDa transmembrane glycoprotein with a well-established
role in activating the hemostatic system. TF is constitutively expressed in subendothelial
cells, and after the rupture of a blood vessel, it is exposed and interacts with factor VII,
forming the binary complex TF/FVIIa. Alternatively, TF may be expressed in a variety
of cell types upon specific activation contexts. TF/FVIIa complex activates the extrinsic
blood coagulation cascade, producing fibrin and promoting clot formation [1]. TF also
possesses a non-coagulant function that results in intracellular signaling [2]. The TF/FVIIa
complex binds to coagulation factor X, forming the ternary structure TF/FVIIa/Xa that can
cleave and activate protease-activated receptors (PARs) [2–4]. The signaling mediated by the
interaction between TF/PAR2 leads to the activation of MAPK and PI3K signaling pathways
that regulate numerous cellular processes, including the ones leading to malignancy [5–7].
Increased expression of TF is associated with cancer progression [8–10]. Moreover, the
TF/PAR2 signaling axis plays a role in angiogenesis, tumor growth, cell motility, cell
survival, and the production of proinflammatory molecules [6,11–13].

Epithelial–mesenchymal transition (EMT) is a complex cellular program that regulates
a set of protumor genes related to tumor cell migration, invasion, and metastatic prop-
erties [14,15]. A correlation between EMT and TF expression has been proposed [16–18].
Activation of EMT in breast carcinoma cell lines leads to the augmentation of TF expression,
a phenomenon reversed by the silencing of ZEB1 (Zinc finger E-box-binding homeobox
1), a master regulatory factor of the EMT [18]. More recently, it was observed that the
transmembrane glycoprotein CD44, a cancer stem cell (CSC) marker, which is also associ-
ated with EMT, regulates the expression of TF in breast cancer cells, resulting in enhanced
tumor cell procoagulant activity and metastatic dissemination [19]. TF can also induce
EMT, corroborating the evidence that there is a linkage between them [20]. Blocking of the
TF signaling with a monoclonal anti-human TF antibody reduced EMT and CSC programs
in breast cancer cells, affecting cell invasion and spheroid formation [20].

Several lines of evidence implicate neutrophil extracellular traps (NETs) in tumor
progression [21,22]. Composed of double-stranded nuclear DNA decorated with granu-
lar/nuclear/cytoplasmic proteins, NETs were first described as a host defense mechanism
against pathogens [23]. Brinkman and collaborators showed that the DNA web captures
the pathogenic microorganisms while the proteins exert a cytotoxic effect [23]. NET for-
mation was further associated with the progression of numerous non-infectious diseases,
ranging from autoimmunity to thrombosis [24]. In the tumor context, NETs participate in
several stages of tumor establishment and metastasis dissemination [21,22]. Studies have
shown that NETs can improve primary tumor growth [25,26], enhance cell migration [27],
sequester circulating tumor cells, and support metastasis [28,29]. In addition to promot-
ing a tumor-associated inflammatory response [30] and resistance to radiotherapy [31]
and chemotherapy [32], NETs have also been involved with cancer-associated thrombo-
sis [33,34]. Furthermore, NET components can interact with different tumor cell receptors,
activating cell signaling pathways that mediate various protumor responses [21,22,35,36].

We have previously demonstrated that NETs may promote pro-metastatic features in
human breast carcinoma cells through the activation of the EMT process [37]. NETs induced
the gene expression of ZEB1, CD44, and other protumoral and proinflammatory factors. In
this context, this study aimed to evaluate whether NETs can induce TF expression in human
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breast carcinoma cells. Treatment of MCF7 and T-47D cells with isolated NETs promoted
TF expression and enhanced the procoagulant activity of tumor cells. Moreover, it was
observed that the TF/PAR2 axis supports NETs-induced gene expression of protumor
factors but does not regulate the activation of EMT. Together, our results indicate that
NETs enhance the procoagulant properties of breast cancer cells as well as their protumor
features, at least in part, through the TF/PAR2 signaling pathway.

2. Materials and Methods
2.1. Cell Culture and Reagents

The experiments were conducted in vitro using the breast cancer cell lines MCF7,
T-47D, and MDA-MB-231 obtained from the Rio de Janeiro Cell Bank (Rio de Janeiro, RJ,
Brazil). TF-knockout MDA-MB-231 cells and wild-type MDA-MB-231 cells were previously
obtained and characterized [38]. Maintenance of the cells was performed utilizing DMEM
(Dulbecco’s Modified Eagle Medium, Thermo Fisher Scientific, Waltham, MA, USA) with
the addition of 10% fetal bovine serum–FBS (Cultilab, Campinas, Brazil) and 1% peni-
cillin/streptomycin (Thermo Fisher Scientific), which was incubated at 37 ◦C in 5% CO2
atmosphere. Seeded cells were starved for at least 8 h before incubation with NETs to per-
form all experiments. Then, starved cells were treated with isolated NETs (500 ng/mL) for
24 h. Cells were further washed twice with phosphate-buffered saline (PBS) and used in the
assays. A monoclonal anti-human TF antibody, 10H10, was kindly provided by Wolfram
Ruf (Johannes Gutenberg University Medical Center, Mainz, Germany; and Department
of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA).
Phorbol 12-myristate 13-acetate (PMA), 2-(2-Amino-3-methoxyphenyl)-4H-1-benzopyran-
4-one (PD98059), 1,9-Pyrazoloanthrone, Anthrapyrazolone (SP600125), 4-(4-Fluorophenyl)-
2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole (SB203580), and 2-6-Bromo-1,3-
benzodioxol-5-yl)-N-(4-cyanophenyl)-1-[(1S)-1-cyclohexylethyl]-1H-benzimidazole-5-car
boxamide (Az3451) were purchased from Merck (Darmstadt, Germany).

2.2. Gene Expression Correlation Analysis

For bioinformatics analysis, a transcriptome database containing 1100 breast cancer
samples available at The Cancer Genome Atlas (TCGA-BRCA) was accessed using the
GEPIA2 online platform—http://gepia2.cancer-pku.cn/#index (accessed on 10 October
2022) [39]. Herein, we analyzed the Spearman rank correlation between the gene expression
of TF (F3) or PAR2 (F2RL1) and a set of neutrophil-related genes previously defined [40] or
two distinct neutrophil extracellular traps gene signatures [41,42].

2.3. Neutrophil Isolation and NETs Obtention

Fresh blood from healthy donors was collected using sodium citrate (3.8%) as an
anticoagulant, at a 1:9 v/v proportion. Neutrophils were purified through density gradient
centrifugation using Histopaque-1077 (Merck, Darmstadt city, Germany). Afterward,
neutrophils were stimulated with PMA (500 nM) for 3 h. NETs were isolated according to
the simplified protocol described by Najmeh et al., 2015 [43]. As seen in the Supplementary
Figure S1, DNA staining with DAPI correlates with citrullinated Histone 3 staining in our
NET preparations. Isolated NETs were kept at 4 ◦C for no more than 24 h. These procedures
were approved by an institutional ethical committee (register 82933518.0.0000.525) from
Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro.

2.4. Quantitative RT-PCR (qRT-PCR)

The total RNA of 5 × 105 cells was extracted using TRIzol Reagent, and 1 µg of RNA
per sample was purified with DNase I at 65 ◦C for 10 min. Then, reverse transcription PCR
was performed using a high-capacity cDNA Reverse Transcription Kit (Applied Biosystems,
Foster City, CA, USA). Real-time polymerase chain reaction (PCR) was assessed to amplify
the complementary DNA (cDNA) using the SYBR Green Real-Time PCR Master Mix on the
StepOnePlus Real-Time PCR System (both from Thermo Fisher Scientific). Supplementary
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Table S1 shows the primer sequences of previously tested primers with reaction efficiencies
in the range of 90–110%. Gene expression was normalized using GAPDH as the reference
gene. To analyze the relative fold change, we employed the 2−∆∆CT method.

2.5. Flow Cytometry Analysis

An amount of 1 × 106 cells/mL suspended in serum-free DMEM medium was washed
twice with cold FACS buffer (PBS containing 0.01% sodium azide and 3% FBS) and la-
beled with PE-conjugated antibody anti-CD142 (TF) (BD Pharmingen, EUA) for 30 min at
room temperature and fixed with 4% paraformaldehyde. The supernatant was discarded,
and cells were resuspended in HT buffer (10 mM N-2-hydroxyethyl piperazine-N′-2-
ethane sulfonic acid (HEPES), 137 mM NaCl, 2.8 mM KCl, 1 mM MgCl2, 6H2O, 12 mM
NaHCO3, 0.4 mM Na2HPO4, 5.5 mM glucose, 0.35% bovine serum albumin (pH 7.4)).
Isotype immunoglobulin G (IgG) conjugated with the same fluorochrome was used as the
negative control. A flow cytometer (BD FACSCalibur, Becton, Dickinson and Company,
Franklin Lakes, NJ, USA) was used, and data were further analyzed using FlowJo software
(Version 10).

2.6. Plasma Clotting Assays

The procoagulant activity of tumor cells was evaluated by recalcification assay using
human platelet-poor plasma (PPP), as previously described [44]. Blood was collected as
described above, and PPP was obtained upon centrifugation at 1000× g for 10 min. Tumor
cells (1 × 105) in 50 µL of PBS were incubated with 50 µL of human PPP. After 1 min
incubation at 37 ◦C, 100 µL of 25 mM CaCl2 was added, and clotting times were monitored
on an Amelung KC-4 Coagulation analyzer (Grifols Diagnostic Solutions Inc., Emeryville,
CA, USA).

2.7. Western Blot

Starved cells (1 × 106 cells/sample) were cocultured with isolated NETs (500 ng/mL)
in serum-free DMEM medium for 24 h. After the treatment, cells were lysed, and proteins
were quantified using the Lowry method (DC protein assay, Bio-Rad, Hercules, CA, USA).
Protein lysates (30–50 µg) were run on 6–10% SDS–PAGE and transferred onto PVDF
membrane, es (GE Healthcare, São Paulo, SP, Brazil). Membranes were blocked and
incubated overnight at 4 ◦C, with the following primary antibodies against phosphor-
ERK (1:1000; #9101; Cell Signaling Technology, Danvers, MA, USA), ERK (1:1000; #9102;
Cell Signaling Technology, Danvers, MA, USA), β-actin (1:1000; #8457; Cell Signaling
Technology, Danvers, MA, USA), fibronectin (1:750; #F3648; Merck, Darmstadt, Germany),
and E-cadherin (1:10,000; #610182; BD Biosciences, Franklin Lakes, NJ, USA). Afterward,
HRP-conjugated secondary antibodies (DakoCytomation, Glostrup, Denmark) were added
at room temperature for 1 h. Immunoblots were detected using a chemiluminescence
substrate, Clarity Western ECL Substrate (Bio-Rad, Hercules, CA, USA).

2.8. ELISA

Supernatants from 5 × 105 cells cultured in the absence or presence of NETs in a 6-well
plate were quantified by enzyme-linked immunosorbent assay (ELISA) using a commercial
kit for IL-8 (PeproTech, Inc, Cranbury, NJ, USA) following the manufacturer’s protocol.

2.9. Statistical Analysis

GraphPad Prism 5 (GraphPad Prism 5 Software, San Diego, CA, USA) was applied
for statistical analysis. Data are shown in bar graphs representing the mean and standard
deviation. To determine the statistical significance of the treatment with NETs in the qPCR,
ELISA, and migration assays, the unpaired t-test was performed. One-way ANOVA using
Tukey post-test was performed in the qPCR, and Western blotting analysis comparing cells
treated with NETs in the presence or absence of inhibitors of MEK, p38, JNK, TF, PAR2, and
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NE. The non-parametric Spearman test was used to correlate the RNA-seq values (FPKM).
Statistical significance was considered if the p-value was ≤0.05.

3. Results
3.1. NET Signatures Are Positively Correlated with Gene Expression of TF and PAR2 in Breast
Cancer Patients

In a previous study, we observed significant correlations between EMT-related genes
and neutrophil-related genes using in silico analysis [37]. Considering that TF expression
has been associated with the EMT process [16–19], we once more assessed the TCGA
mRNA database of 1100 breast cancer patients to interrogate whether neutrophil/NET
gene signatures correlate with TF or PAR2 mRNA expression. As seen in Figure 1, both
TF and PAR2 were positively correlated with an eight-gene neutrophil signature [40]. We
further employed two distinct proposed NET signatures for comparative analysis. The
first NET signature, composed of six genes, was used in a head and neck squamous cell
carcinoma study [41]. The second proposed NET signature is composed of 23 genes, and it
has been used in multiple cancer types from various databases [42]. Through the GEPIA2
online platform (available at http://gepia2.cancer-pku.cn/#index, accessed on 10 October
2022), Spearman rank was performed.
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Figure 1. A NET gene signature is positively correlated with the gene expression of TF and PAR2
in breast cancer samples. Spearman’s correlation analysis between TF (F3) or PAR2 (F2RL1) and
neutrophil/NET gene signatures. Neutrophil-related gene signature (left) based on systemic lupus
erythematosus, NET gene signature validated in head and neck squamous cell cancer (middle), and
NET gene signature for pan-cancer prognosis (right). RNAseq data based on 1085 breast cancer
patient samples deposited at TCGA. R = rank correlation. p-value < 0.001 is statistically significant.

The analyses indicate that both the neutrophil-gene signature and the NET-gene
signatures presented a significant positive correlation with TF (F3) and PAR2 (F2RL1)
expression, with a Rank correlation in the range of 0.17 to 0.37 (Figure 1). These analyses
demonstrate a possible association between the presence of NETs in the malignant tissue
and the expression of TF and PAR2 in breast tumors.

3.2. NETs Induce TF Expression and Enhance the Procoagulant Activity in Tumor Cell Lines

MCF7 and T-47D cells, which poorly expresses TF, were treated for 24 h with isolated
NETs. Further, TF expression was evaluated by the qRT-PCR approach. We observed a
significant increase in the TF gene expression in both cell lines (Figure 2A,D). Also, we
detected a higher TF protein labeling in both MCF7 and T-47D cells treated with NETs, as
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assessed by flow cytometric analysis (Figure 2B,E). In accordance with qRT-PCR and FACS
analyses, NET-treated cells accelerated the plasma coagulation. Together, these results
suggest that NETs increase TF expression, thus altering the coagulant activity of cultured
breast cancer cells.
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Figure 2. NETs increase TF expression and procoagulant activity in breast cancer cell lines. MCF7 and
T-47D cells were starved and stimulated with NETs (500 ng/mL) for 24 h. TF mRNA expression was
evaluated by qRT-PCR, and GAPDH was used as a reference gene. The relative expression of mRNA
was calculated using the ∆∆CT method (A,D). Flow cytometry was performed using PE-conjugated
antibody anti-CD142 (B,E). A clotting assay was carried out using platelet-poor plasma incubated
with breast cancer cells. The reaction was initiated with CaCl2 (C,F). Values represent the mean
± standard deviation of 3 independent experiments. Statistical analysis was performed using the
unpaired t-test. n.s., without significance and *** p-value < 0.001.

3.3. MAPK Signaling Pathways Regulate NET-Induced TF Expression

The mitogen-activated protein kinase (MAPK) cascades are intracellular signal trans-
duction pathways involved in the cell response to mitogens and stress-related stimuli.
Extracellular signal-regulated kinase 1 and 2 (ERK1/2), p38, and c-Jun N-terminal kinase
(JNK) have been consistently described as MAPK cascades regulated in the tumor pro-
gression [45,46]. Firstly, we evaluated the ERK phosphorylation (p-ERK) generated by
NET treatment in MCF7 cells (Figure 3A). We observed an increase in the p-ERK levels
(approximately 25%) in NET-treated cells compared to non-stimulated cells. We employed
commercial pharmacological inhibitors to evaluate the possible involvement of MAPK
pathways in NET-induced TF expression. PD98059, an MEK inhibitor, strongly suppressed
the NET-driven TF upregulation (Figure 3B). MCF7 cells treated with NETs in the presence
of SP600125 (JNK inhibitor) also showed an attenuated TF gene expression (Figure 3C).
However, treatment with SB03580, a p38 inhibitor, did not impair the effect of NETs on
the TF gene expression (Figure 3D). Therefore, the results suggest that NETs modulate TF
expression through the activation of ERK/JNK MAP kinases.
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Figure 3. MAPK signaling pathways are required for NET-induced TF expression in MCF7 cells.
Western blotting analysis of the p-ERK levels after 24 h of treatment with NETs (500 ng/mL) in
MCF7 cells. Total ERK protein was used as the loading control. Densitometry was performed using
Image J (A). MCF7 cells were previously incubated for 1 h with the following inhibitors: 50 µM
PD98059 (B), 50 µM SP600125 (C), and 10 µM SB203580 (D). Then, they were incubated for 24 h
with NETs (500 ng/mL), and TF mRNA expression was analyzed by qRT-PCR. GAPDH was used
as an endogenous gene, and the ∆∆Ct method was performed. Graphs represent the mean of three
Western blotting and three qRT-PCR independent experiments ± standard deviation. Statistical
analysis was performed in GraphPad Prisma using the unpaired t-test (A) or one-way ANOVA (B–D).
* p-value < 0.05, ** p-value < 0.01, and ns = no significance.

3.4. TF Signaling Contributes to the Protumor Effects of NETs

Beyond the procoagulant effect, TF can promote various protumor responses through
cell signaling, mediated or not, by the PAR2 receptor [2–4,7]. To assess a possible role
of TF signaling in breast cancer cells treated with NETs, we employed the monoclonal
antibody, 10H10, which blocks the TF/PAR2 signaling without significant effect on TF
procoagulant activity [11]. As seen in Figure 4, treatment with 10H10 prior to exposure to
NETs strongly prevents the gene expression of the proinflammatory cytokines, interleukin
8 (CXCL8) and interleukin 6 (IL6), in MCF7 and T-47D cells. In MCF7, but not in T-47D
cells, 10H10 attenuated the NET-induced expression of CD44, a marker of tumor stemness.
In contrast, 10H10 decreased the gene expression of ZEB1, an EMT-related transcription
factor, in T-47D, but not in MCF7 cells.

To further explore the role of TF signaling in NET-mediated effects, we next employed
TF-knockout (KO) MDA-MB-231 cells. As seen in Figure 5, the exposure of wild-type (WT)
MDA-MB-231 to NETs, for 24 h, promoted an increased expression of CXCL8, IL1B, IL6,
MMP9 (metalloproteinase 9), and PTGS2 (cyclooxygenase 2) genes. In contrast, most of
these genes have not been modulated by NETs in KO MDA-MB-231 cells. Accordingly, high
levels of secreted IL-8 were observed in WT MDA-MB-231 cells, but not in KO MDA-MB-231
cells treated with NETs (Figure 5B). Interestingly, blocking TF expression in the MDA-MB-
231 cell was not sufficient to prevent the effect of NETs on cell migration (Supplementary
Figure S2).
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Figure 4. TF participates in the protumor response induced by NETs. MCF7 cells (A) and T-47D
cells (B) were starved and further treated for 60 min with 10H10 antibody (50 µg/mL). Afterward,
500 ng/mL NETs were added for 24 h. Gene expression was evaluated by qRT-PCR using the ∆∆CT
method. The analyzed genes were CXCL8 (interleukin 8), IL6 (interleukin 6), CD44, and ZEB1.
GAPDH was used as the reference gene. Columns represent means ± SD of three independent
experiments. Statistical analysis was performed using a one-way ANOVA test. * p < 0.05, ** p < 0.01,
*** p-value < 0.001, and ns = no significance.
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Figure 5. TF silencing suppresses NETs-driven protumor and proinflammatory responses in MDA-
MB-231 cells. (A) MDA-MB-231 cells TF knockout (TF KO) or transfected with empty vector (TF
WT) were treated with NETs (500 ng/mL) for 24 h and evaluated by qRT-PCR. The analyzed genes
were CXCL8 (interleukin 8), IL1β (interleukin 1β), MMP9 (metalloproteinase 9), IL6 (interleukin 6),
and PTGS2 (cyclooxygenase 2). GAPDH was used as an endogenous gene, and the ∆∆Ct method
was performed. (B) IL-8 antigen levels in the conditioned media of MDA-MB-231 TF WT or TF KO
cells treated with NETs (500 ng/mL) for 24 h were determined using an enzyme-linked immunosor-
bent assay. Values represent the mean ± standard deviation of three independent experiments.
* p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, and ns = no significance (unpaired t-test).
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3.5. PAR2 Contributes to NET-Mediated Protumor Effects

Activation of PAR2 in the tumor microenvironment may be elicited by various pro-
teases, including TF/FVIIa complex, therefore generating intracellular responses that have
been linked to proliferation, cell migration, cytokine production, angiogenesis, and other
protumor responses [2,3,47]. Therefore, we next evaluated the possible contribution of
PAR2 activation to the effects of NETs on tumor cells. A commercial PAR2 antagonist,
Az3451 [48], abrogated the NET-induced expression of TF in both cell lines (Figure 6A,B).
A similar inhibitory profile was observed in the CD44 gene expression, which was partially
impaired in MCF7 cells and entirely abolished in T-47D cells. Interestingly, CXCL8 gene
expression was not affected by the presence of PAR2 antagonist in MCF7 cells but signifi-
cantly inhibited in T-47D cells treated with NETs. A similar pattern was observed for ZEB1
gene transcription. Our results point to PAR2 as a mediator of some of the NET protumor
responses in breast cancer cells.
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Figure 6. PAR2 participates in the NET-induced protumor response. MCF7 cells (A) and T-47D
cells (B) were starved and further treated for 60 min with 10 µM Az3451. Afterward, 500 ng/mL
NETs were added for 24 h. Gene expression was evaluated by qRT-PCR using the ∆∆CT method.
The analyzed genes were F3 (TF), CXCL8 (interleukin 8), CD44, and ZEB1. GAPDH was used as a
reference gene. Values represent the mean ± standard deviation of three independent experiments.
* p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, and ns = no significance (one-way ANOVA).

3.6. TF and PAR2 Play a Minor Role in NET-Induced EMT

Previously, Bourcy and colleagues demonstrated that EMT activation could regulate
the TF expression and the procoagulant activity in the breast cancer cell line, MDA-MB-
468 [18]. We sought to evaluate whether the TF induced by NETs can regulate the EMT
activation as a positive feedback loop. After 24 h of treatment with NETs, we assessed the
protein expression of EMT markers, and, as expected, MCF7 cells increased the fibronectin
protein level and decreased E-cadherin expression (Figure 7A,B). However, we were unable
to detect any effect of the 10H10 antibody or the PAR2 antagonist, Az3451, on both EMT
markers modulated by NETs in this cell line. We have also investigated the capacity of
NETs to induce EMT in T-47D cells. As seen in Figure 7C,D, we failed to detect minor
effects of NETs on both EMT markers in T-47D cells.
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Figure 7. TF and PAR2 do not regulate the NET-driven EMT program. Western blotting analysis of
the EMT markers (E-cadherin and fibronectin) in MCF7 (A) and T-47D (C) cells treated with Az3451
(10 µM) or 10H10 antibody (50 µg/mL) for 1 h, followed by stimulation with NETs (500 ng/mL)
for 24 h. β-actin was used as the loading control. Representative image from three independent
experiments. Densitometry was performed using Image J and graphs represent the mean ± standard
deviation ((B)—MCF7 cells, (D)—T-47D cells). * p-value < 0.05 (one-way ANOVA).

3.7. Neutrophil Elastase Present in NETs Can Modulate the Protumor Gene Expression

Finally, we sought to assess whether the effect of NETs on the modulation of protu-
mor genes occurs through the action of neutrophil elastase (NE). NE is one of the main
components present in NETs and, according to previous evidence, a potential PAR2 acti-
vator [49,50]. Indeed, the treatment of tumor cells with a commercial NE inhibitor (NEi)
changed the NET-induced gene expression profile in both cell lines. In MCF7 cells, the
NEi reduced the effect of NETs in CD44, IL6, and F3 gene expression, but not ZEB1 and
CXCL8 (Figure 8A). In contrast, NEi impaired the NET-induced expression of almost all
genes (except for ZEB1) in T-47D cells (Figure 8B). In conclusion, these results demonstrate
that NE present in NETs can regulate the protumor gene expression in cultured breast
cancer cells.
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Figure 8. Inhibition of the neutrophil elastase impairs NET-triggered protumor response. MCF7
(A) and T-47D (B) cells were starved and treated with NEi (10 µM) for 1 h before NET treatment
(500 ng/mL). After 24 h, samples were obtained to perform qRT-PCR analysis. The analyzed genes
were F3 (TF), CXCL8 (interleukin 8), CD44, ZEB1, and IL6 (interleukin 6). GAPDH was used as a
reference gene. ∆∆Ct method was performed. Values represent the mean ± standard deviation of
three independent experiments. * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, and ns = no
significance (one-way ANOVA).

4. Discussion

Over the last decade, the role of NETs in tumor biology has been extensively investi-
gated. In this context, the participation of NETs in tumor biology is well established [21,22].
Recent studies have supported a role for NETs in tumor progression, not only as a physical
structure for sequestering circulating cancer cells but also as an inducer of the intracellular
response in tumor cells [21,35,36]. We previously provided evidence that NETs activate the
EMT program in human breast cancer cells and promote the acquisition of a prometastatic
profile [37]. Consistent with our data, in vitro experiments demonstrated that NETs pro-
mote EMT activation in pancreatic, gastric, and colon cancer cells [51–53]. NET inhibitors
blocked EMT activation and reduced metastasis in a murine breast cancer model [32].

Previous studies have demonstrated that EMT drives TF expression in vitro in different
carcinoma models [16–19]. In a murine model, TF or ZEB1 silencing impaired the metastatic
niches in the lungs [18]. Accordingly, Sun and co-workers showed the regulation of
TF expression by the miR200a/ZEB1 axis in glioma cells [54]. In addition, Villard and
collaborators showed that CD44, a CSC marker, controls the TF expression in the MDA-
MB-468 breast cancer cell line, and, consequently, its procoagulant activity [19]. Therefore,
EMT has been linked to an increase in TF-dependent procoagulant properties and tumor
progression. Considering our previous findings that NETs increase gene expression of
ZEB1 and CD44 in MCF7 breast cancer cells [37], we hypothesized that NETs could induce
EMT activation through TF upregulation. In fact, here we demonstrated that exposure of
cultured breast cancer cell lines to isolated NETs increases TF expression, thus enhancing
their procoagulant activity.

A number of studies have demonstrated that NETs activate the MAPK pathways in
different tumor cell types, including diffuse large B-cell lymphoma, colorectal, and gastric
cancer cells [55–57]. MAPKs are key signal transducers that regulate a variety of processes,
including cell proliferation, apoptosis, cell differentiation, and stress response [58]. In mam-
mals, four different MAPK cascades have been identified: ERK1/2, JNK, p38, and ERK5.
The ERK5 cascade is less studied and less understood than the others [58]. Interestingly,
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the JNK and the ERK1/2 signaling pathways induce TF gene expression in glioblastoma
cell lines by enhancing AP-1 transcriptional activity [59]. Indeed, the basal human TF pro-
moter (−250 to +1) contains two AP-1 binding sites [59]. Here, we employed commercial
inhibitors to investigate the role of each MAPK pathway in the response mediated by NETs.
PD98059 inhibitor is highly selective against MEK, upstream of ERK1/2, and SP600125
is a specific inhibitor of JNK. SB203580 inhibits specifically the p38 catalytic activity. We
observed the contribution of ERK and JNK MAP kinases, but not p38, in the TF gene
regulation induced by NETs.

A correlation between TF expression levels and tumor cell aggressiveness has been
consistently demonstrated in breast cancer cell lines [60,61]. Further, in breast cancer
patients, TF expression was shown to be increased in both primary tumor and plasma
samples compared to normal controls, pointing to an important role in breast cancer
progression [8]. Ünlü and colleagues recently demonstrated that TF inhibition in breast
cancer cells reduces EMT activation [20]. In this context, the blockade of TF signaling with a
monoclonal antibody impaired EMT activation in vitro and reduced metastasis in vivo [20].

In addition to TF, PAR2 has been also linked to EMT programs in cancer cells [62,63].
PAR2 receptor is activated by proteases that can cleave at different sites of its extracellular
NH2-terminal. Depending on the cleavage site, distinct signals are evoked, and the intracel-
lular responses are distinct (biased agonism). Studies indicate that NE cleaves PAR2 at the
Ser68–Val69 site, which activates the MAPK signaling pathway, unlike cathepsin G, which
cleaves the Phe65–Ser66 site and does not activate the MAPK pathway [49,50]. Indeed,
neutrophil elastase is a major serine protease associated with NETs [64]. In the tumor con-
text, NE has been implicated in tumorigenesis, primary tumor growth, and establishment
of metastasis, regulating the EMT program in pancreatic tumor cells [65,66]. Albrengues
and colleagues demonstrated that NE and MMP9, both present in NETs, cleave laminin,
inducing the proliferation of dormant cancer cells [67]. In colorectal cancer cells treated with
NETs, NE activated TLR4, promoting tumor growth [25]. Here, we demonstrate that NE is
one of the possible effectors of NETs in regulating the expression of TF and other protumor
genes. Interestingly, all genes downregulated by Az3451 (PAR2 inhibitor) were also modu-
lated by NEi. We suggest that NE can act, at least in part, through PAR2 cleavage/activation.
However, further studies are needed to confirm this hypothesis. Remarkably, the inhibition
of either TF or PAR2 signaling was insufficient to prevent cell migration (Supplementary
Figure S2) and EMT activation. A possible role of the TF/PAR2 signaling axis for EMT in-
duced by NETs will require more investigation. A possible explanation for this observation
relies on the several NET components that may elicit TF/PAR2-independent cell signaling
pathways [21]. For example, in pancreatic cancer, NETs promoted cell migration, invasion,
and subsequent EMT activation via the EGFR/ERK pathway [27]. Other receptors have
also been identified as mediators between NETs and protumor effects, such as RAGE [36],
toll-like receptors (TLRs) [25,30,57], and integrins [68].

In summary, our findings indicate that components of NETs activate ERK/JNK path-
ways resulting in increased expression of TF and procoagulant activity. Furthermore, NETs
stimulate gene expression of protumor factors (such as IL1β, IL6, and CXCL8) through the
TF/PAR2 axis (Figure 9).

The understanding is that NETs are not just scaffolds but are also structures capable of
triggering intracellular responses, and modulating the behavior of cancer cells is funda-
mental in tumor biology. The elucidation of protumor NET components, their tumor cell
receptors, and major signaling pathways may pave the way for the development of novel
therapeutic strategies.
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Figure 9. Schematic model connecting NETs and TF in tumor biology. Schematic representation of
the NETs-triggered signaling in breast tumor cells through the interaction between components, such
as neutrophil elastase, and PAR2, generating the expression of TF, and proinflammatory cytokines.

5. Conclusions

Our findings demonstrate that NET-induced TF expression plays a role in regulating the
expression of protumor genes and procoagulant activity in human breast carcinoma cells.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cancers16010005/s1, Supplementary Table S1. qPCR primer
sequences. Supplementary Figure S1: Characterization of isolated NETs with DAPI and immunos-
taining with anti-citrullinated Histone. Supplementary Figure S2: NETs trigger TF-independent
migratory capacity. Supplementary Figures S3–S5: Uncropped blots presented in the study.
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