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Simple Summary: Among head—neck tumors, squamous cell carcinoma is the most frequent histotype
and includes a range of malignancies with different sites of origin as well as different therapeutic
strategies and clinical outcomes. In daily practice, patients with head-neck squamous cell carcinoma
are seen in various clinical settings, requiring a multidisciplinary approach to therapeutic decisions
and clinical care. '8F-FDG PET/CT plays a well-defined role in the management of these tumors
for pre-treatment staging and radiotherapy planning as well as treatment-response assessment and
post-therapy follow-up. This paper is an overview of the standard use of 'F-FDG PET/CT in the
various clinical scenarios of head—neck squamous cell carcinoma. Also, emerging applications will be
reviewed, including the use of radiopharmaceuticals other than I8F_FDG, PET/MRI implementation
in clinical practice, and the use of radiomics and machine learning.

Abstract: This article provides an overview of the use of '®F-FDG PET/CT in various clinical
scenarios of head—neck squamous cell carcinoma, ranging from initial staging to treatment-response
assessment, and post-therapy follow-up, with a focus on the current evidence, debated issues,
and innovative applications. Methodological aspects and the most frequent pitfalls in head—neck
imaging interpretation are described. In the initial work-up, 18F_FDG PET /CT is recommended
in patients with metastatic cervical lymphadenectomy and occult primary tumor; moreover, it
is a well-established imaging tool for detecting cervical nodal involvement, distant metastases,
and synchronous primary tumors. Various F-FDG pre-treatment parameters show prognostic
value in terms of disease progression and overall survival. In this scenario, an emerging role is
played by radiomics and machine learning. For radiation-treatment planning, 18E-FDG PET/CT
provides an accurate delineation of target volumes and treatment adaptation. Due to its high
negative predictive value, 'F-FDG PET/CT, performed at least 12 weeks after the completion of
chemoradiotherapy, can prevent unnecessary neck dissections. In addition to radiomics and machine
learning, emerging applications include PET/MRI, which combines the high soft-tissue contrast of
MRI with the metabolic information of PET, and the use of PET radiopharmaceuticals other than
I8F-FDG, which can answer specific clinical needs.
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1. Introduction

Head-neck (HN) cancer, which is the seventh most common malignancy world-
wide [1] refers to a heterogeneous group of tumors. Squamous cell carcinoma (SCC) is
the most frequent histotype (up to 90% of all HN cancers), including a range of malig-
nancies with different sites of origin as well as different therapeutic strategies and clinical
outcomes [2,3]. Less common types of HN tumors are lymphomas, thyroid, or salivary
gland tumors, paragangliomas, and skin cancers, each with a specific clinical behavior and
treatment [4,5].

Different imaging techniques are available with specific distinctive features that make
their use complementary in the diagnostic work-up of patients with HN tumors. Ultra-
sonography is useful to detect cervical lymph nodes (LNs) and guide fine needle aspira-
tion [6]. Due to the high spatial resolution and tissue contrast, contrast-enhanced computed
tomography (ceCT) and magnetic resonance imaging (MRI) are the techniques of choice for
primary tumor evaluation and loco-regional staging, with preferential indications for each
of them (for example, MRl is preferred over CT to assess skull-base invasion and perineural
spread) [2,7]. However, their role in detecting lymph nodes and distant metastases is
suboptimal, except for lung metastases that are better detected by chest CT [2,8,9]. '8F-
fluorodeoxy-D-glucose positron emission tomography/computed tomography (**F-FDG
PET/CT) is a well-established imaging tool in the management of HNSCC. The National
Comprehensive Cancer Network (NCCN) guidelines support the use of '®F-FDG PET/CT
in patients with advanced-stage disease in different clinical settings [2,3,10-13]. Various
clinical scenarios confirm the versatility and importance of '¥F-FDG PET/CT for the initial
work-up (treatment planning) and treatment-response assessment, as well as for prognostic
evaluation of HNSCC [10-12,14,15]. Among these is its ability to identify the occult primary
tumor in cases of metastatic cervical involvement, thus guiding biopsy on the suspected
site and allowing direct radiotherapy on the selected target only with relevant therapeutic
advantages [16,17]. Moreover, due to its high negative predictive value, '®F-FDG PET/CT
performed 3 months after the completion of chemoradiotherapy, can prevent unnecessary
neck dissections, with fewer complications and adverse effects, an approach that is cost
effective [14,18]. Radiopharmaceuticals other than '®F-FDG are available; they target spe-
cific biological features of HN tumors, such as hypoxia, protein synthesis, cell proliferation,
somatostatin receptor expression, and others, with a potential added value in specific
clinical settings [19-25].

In recent years, PET/CT scanners, which allow the correlation of anatomical with
functional information, have gained important technological innovations resulting from
advances in detector hardware, such as digital systems, and improvements in image recon-
struction algorithms, such as time of flight, providing quick and high-resolution imaging
with increased image quality [26-29]. Most recently, long-axial field of view (LAFOV)
PET/CT systems allow for the simultaneous scanning of a large portion of the body (be-
tween 106 and 194 cm, according to the PET/CT scanner), with higher physical sensitivity
and spatial resolution and reduced acquisition time than standard PET/CT devices [30-34].
Moreover, since the last decade, the integrated functional-anatomic imaging of HN cancers
has been taking advantage of the development of PET/MRI technology, which combines
the high soft-tissue contrast of MRI with the metabolic information on a patient’s disease
status of PET [35]. Finally, the application of radiomics and machine learning is gaining
more and more interest in oncologic imaging, including HN cancer imaging [36,37]. This
article provides a comprehensive overview of the standard use of '¥F-FDG PET/CT in the
various clinical scenarios of HNSCC. Other topics that deserve to be addressed are the use
of PET radiopharmaceuticals other than 8F-FDG in specific clinical settings of HNSCC or
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different histotypes, as well as PET/MRI implementation in clinical practice and the new
perspectives offered by radiomics and machine learning.

2. Methodological Aspects and Pitfalls in Imaging Interpretation

Patient preparation and image acquisition are essential to optimize PET/CT imaging
and interpretation and are performed according to international guidelines [38]. Patients
are advised to fast 4-6 h prior to tracer injection to avoid an increase in glucose levels
and the consequent reduction of '®F-FDG uptake by tumor cells due to the saturation
of glucose transporters on the cell membrane [4]. For routine clinical studies, a plasma
glucose level lower than 200 mg/dL is recommended [38]. When blood glucose levels are
>200 mg/dL, the administration of rapid-acting insulin may be considered. However, an
interval of >4 h between insulin injection and ®F-FDG administration must be respected
to avoid the increased '8F-FDG muscle uptake induced by insulin [38]. For this reason, in
clinical routine, this solution is rarely feasible. In our unit, we have adopted the following
operative procedure:

Blood Sampling  Serum Glucose Level  Prescription

Basal <200 mg/dL 18R FDG injection
200-300 mg/dL. Invite the patient to hydrate and walk for at least

30 min and recheck serum glucose levels
>300 mg/dL Reschedule

After hydration 40 g /L 18F_FDG injection
and walking
Decision of rescheduling or injecting 18E_FDG
made by nuclear medicine physician

Further 1 Reschedule

1 but still >200 mg/dL

1 : decrease; 1 : increase.

After the F-FDG injection, patients are invited to rest and stay calm to minimize
skeletal muscle uptake. To avoid brown fat activation in the HN region, a warm temperature
in the injection room and a blanket put to cover the neck and thorax are advised [4].
Standard PET/CT imaging extends from the skull base to the upper thighs and is usually
performed by acquiring low-dose unenhanced CT, providing high diagnostic performance
for tumor staging. In selected cases, the use of intravenous contrast media may add
diagnostic information [39,40]. To reduce artifacts on the CT (beam-hardening artifacts) or
those due to attenuation correction on PET images in the HN region, the patient’s arms
should be placed down. The use of dedicated acquisition protocols (e.g., a standard imaging
from the skull base to mid thighs with the patient’s arms above the head followed by a
PET/CT study of the neck with the patient’s arm placed down), as well as reducing artifacts,
may improve the detectability of small lymph nodes [41-43] (Figure 1). PET/CT requires
patient cooperation. To avoid misregistration artifacts and pitfalls in the interpretation of
fused images, HN positioning as well as lack of motion of the HN during image acquisition
are of critical importance. In selected cases, e.g., when the PET/CT study is performed for
radiation planning, a neck immobilization device should be used [28].

In addition to image artifacts, PET/CT image interpretation may be hampered by the
complex anatomy and the small size of the anatomical structures of the HN region, as well
as the physiological and widely variable uptake of '¥F-FDG in normal tissues, including
vocal cords, salivary glands, cervical muscles, lymphoid tissue, and brown fat [43,44].
Various benign tumors, such as Warthin’s tumor, show increased IBE_FDG uptake [45].
Also, inflammatory processes can cause false-positive results due to 8F-FDG uptake by
activated inflammatory cells, particularly those occurring in patients submitted to biopsy,
surgery, or radiotherapy. Additionally, the presence of high-density material, such as metal
dental prostheses or a chemotherapy port, or the presence of calcified lymph nodes, may
further compromise the interpretation of PET/CT images, thus requiring non-attenuation
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corrected PET data evaluation. Also, standardized uptake value (SUV) measurements may
be impaired [44]. A potential pitfall in image interpretation is the presence of perineural
spread of HN cancer, as nuclear medicine physicians could be not familiar with this finding,
which is usually characterized by a linear or curvilinear FDG uptake along the distribution
of a certain cranial nerve [46]. Finally, knowledge of the patient’s medical history, including
oncological history and relevant comorbidities (especially infection/inflammation), as
well as the results of other imaging tests, is of utmost importance for the appropriate
interpretation of PET/CT images. All relevant findings at PET/CT should be reviewed and
discussed by a multidisciplinary team [1,38].

a .!'.') i P

Figure 1. Example of recommended PET acquisition protocol for head-and-neck tumors. Skull base
to proximal thighs scan with arms raised (A) followed by head—neck study with the patient’s arm
placed down (B). The focal uptake in the right parotid gland (arrow) is a reactive lymph node.

3. Pre-Treatment Staging

For HN tumors, the diagnostic process usually starts with a clinical examination by the
specialist physician followed by an endoscopy and biopsies to assess the correct histological
diagnosis. The next step is the accurate staging of the disease, which is necessary to reach
the most appropriate treatment plan and obtain prognostic information.

3.1. Primary Tumor Assessment

Even though '®F-FDG PET/CT is highly sensitive in detecting primary HNSCC
(>95% sensitivity), primary tumor assessment is usually performed with CT and/or
MRI [47]. The main limitation of PET/CT, especially when performed with low-dose
unenhanced CT, is its low spatial resolution, which does not allow for assessing tumor
extension, as well as invasion, of adjacent structures. Conversely, ceCT and MRI have
higher spatial resolution and tissue contrast, with preferred locations for one or another
of these modalities [47]. Indeed, MRI is the preferred imaging modality in nasopharynx,
oropharynx, and oral cavity tumors, as well as for perineural spread and bone marrow
involvement, while ceCT is preferred for larynx tumors and bone cortex invasion [7,8].
Preoperative MRI is also considered the most useful method for evaluating mandibular
invasion, an important issue in surgical treatment planning, which can be excluded due
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to the high negative predictive value (92.3%) of MRI in this setting [7]. The acquisition of
ceCT as part of the combined PET/CT study, in addition to patient convenience, provides
precise anatomic localization and delineation of the primary tumor when compared to
non-enhanced PET/CT. In this context, iodinated contrast material has been shown to give
only minor alterations in SUV measurement [47]. However, discordant results are reported
with respect to nodal staging so that the clear diagnostic improvements of using PET/ceCT
could not be demonstrated [39,40,48,49]. According to the ASCO guideline on “Diagnosis
and management of squamous cell carcinoma of unknown primary in the head and neck”,
I8F_FDG PET/CT is recommended in patients with metastatic cervical lymphadenectomy
when the primary tumor is not evident on clinical examination and ceCT (strength of
recommendation: strong) [16]. Indeed, less than 5% of patients with HNSCC present with
cervical lymph node metastases, without clear evidence of the primary tumor at clinical ex-
amination, morphologic imaging, and panendoscopy [16]. Importantly, for this indication,
PET/CT should be best performed prior to endoscopy, with the double benefit of reduc-
ing false-positive results and guiding biopsy [16,50]. In patients with metastatic cervical
lymphadenectomy and unknown primary tumor at imaging, the detection rate of PET/CT
is up to 42.5% [51-53]. According to a recent meta-analysis, the pooled detection rate
was 40% (95% CI 31-49%) and the pooled false-positive rate was 9% (95% CI 5-13%) [17].
The most common sites of both true-positive and false-positive cases were the palatine
tonsil and the base of the tongue, with false-positive results caused by high physiologic
I8F-FDG activity at sites prone to inflammatory processes, such as the Waldeyer ring in
the oropharynx [17,47]. In patients with an occult primary tumor, PET/CT results can
impact therapeutic management, both by guiding surgical planning or directing individual
changes in radiation-treatment volumes, which will cover only primary tumor sites instead
of more extensive irradiation in case of an unknown primary [16]. Less frequently, a change
in management in patients with an unknown primary is given by PET/CT through the
detection of synchronous primary tumors or distant metastases (Figure 2).

Figure 2. Axial PET, CT, and PET/CT images of a patient with cervical lymph node metastases of
undifferentiated carcinoma, and no clinical evidence of primary lesion in the head—neck district. High
I8F_FDG uptake is seen in enlarged cervical lymph nodes bilaterally (A,B), although more evident
on the left side (red circles in (A,C)), and in the 7th dorsal vertebra (yellow arrow in (D,F)) without
structural alterations at low-dose CT (E). PET/CT scan revealed the otherwise unknown primary
nasopharyngeal tumor, on the left side (long arrow in (G,I)), not apparent on low-dose CT (H).
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3.2. Cervical Lymph Node Assessment

In patients with HNSCC, cervical LN involvement is one of the most important
prognostic factors, as the presence of nodal metastases at initial diagnosis is the strongest
predictor for nodal recurrence and the eventual development of distant metastases [54].
Survival is reduced by 50%, even with occult nodal involvement [55]. When LN metastases
are documented, the disease is upstaged to stage III, even with T1/T2 primary lesions,
thus requiring a multimodality therapeutic approach, i.e., surgery followed by adjuvant
concurrent chemotherapy and radiotherapy or exclusive chemoradiotherapy [54]. HNSCC
patients who are node negative can be spared from neck dissection, a surgical intervention
that is associated with morbidity, particularly with damage to cranial nerves and shoulder
dysfunction [56,57].

To detect nodal involvement in clinically negative patients (cNO), various imaging
modalities can be used, including ultrasonography, ceCT, MRI, and '8F-FDG PET/CT, all
showing suboptimal sensitivity and ranging between 52 and 71% [9]. In this setting, the role
of sentinel node biopsy (SNB) in the clinically negative neck is more and more recognized.
When compared with standard imaging modalities, SNB is the best-performing diagnostic
tool for staging patients with cNO HNSCC [58,59], with a negative predictive value of
96% [60] and a specificity of up to 99% [61]. Two large phase III randomized controlled
trials confirmed that neck dissection can be safely avoided when SNB is negative, without
affecting survival [62,63]. Despite these positive results, the widespread application of this
procedure comes up against several limitations for its routine use in HN oncology, including
the need for appropriate equipment and trained personnel; moreover, a multidisciplinary
team including surgeons, nuclear medicine physicians, and pathologists is required [59].

The literature data support the superiority of 8F-FDG PET/CT over ceCT and MRI in
detecting LN involvement and defining its extent, with an overall sensitivity and specificity
of 79-89% and 86%, respectively [56,64]. A clear advantage of functional imaging is that the
size and structural criteria for LN involvement, which are applied for morphologic imaging
are not required to visualize lesions by PET/CT, which detects metabolic changes in tumor
cells. Due to its higher sensitivity in small nodal disease, '®F-FDG PET/CT allows for a
better definition of the clinical target volume when primary exclusive chemoradiotherapy is
indicated, with a higher dose on the involved nodal echelon. When the primary treatment is
going to be surgery, nodal staging by '®F-FDG PET/CT allows for avoiding undertreatment
and modifying the surgical planning, for example, by detecting positive LN(s) contralateral
to the primary tumor in oral cavity SCC, thus leading to bilateral neck dissection (Figure 3),
or occult retropharyngeal nodes in patients with oropharyngeal SCC, which would be
missed by conventional neck dissection [56,65].

Figure 3. PET/CT images showing intense '®F-FDG uptake in a large hypopharyngeal cancer and an
enlarged lymph node on the right cervical side; another sub-centimetric cervical lymph node with a
mild increase in '8F-FDG uptake is seen contralaterally (arrows).
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Another situation when 8F-FDG PET/CT can be particularly useful for nodal staging
is malignancies with an “intermediate” propensity to neck metastasis (regional relapse rate
between 10 and 20% if the cNO neck is not dissected) as SCC arising in the nasal vestibule.
In these cases, the high sensitivity of 8F-FDG PET/CT would increase the reliability of
nodal clinical staging. Moreover, when negative, it would allow a safer indication to
observation, avoiding at the same time unnecessary neck dissections, which carry a risk of
high morbidity due to the close anatomic relationship of the marginalis mandibulae nerve to
the elective metastatic echelon (level IIB) [66,67]. However, both false-positive results in the
case of inflammatory nodes and false-negative results in the case of necrotic or microscopic
LNs are encountered. Indeed, necrotic LNs can escape from visualization at non-enhanced
PET/CT as central necrosis, which is considered a reliable sign of metastatic LN and is
clearly defined by ceCT, does not show FDG uptake [40,68] (Figure 4).

Figure 4. PET/CT images showing an enlarged and hypodense left cervical lymph node metastasis
with no significant increase in 18F-FDG uptake due to necrotic changes (arrow).

Therefore, in selected cases, particularly human papillomavirus (HPV)-associated
HNSCCs (most commonly oropharyngeal) or metastasis from an unknown primary in
whom necrotic LNs are more frequently present, the acquisition of cePET/CT may be
useful [40,68]. Also, microscopic LNs may be missed by PET/CT, [69] due to the finite
spatial resolution of PET/CT scanners (2—4 mm with last-generation scanners) [26]. Indeed,
in cNO patients, the reported sensitivity of PET/CT in detecting LN involvement decreases
to 50-71%, with significantly better results than ceCT or MRI in a few series only [56,63]. In
the prospective, nonrandomized, multicenter trial of the American College of Radiology
Imaging Network (ACRIN) 6685, in T2-T4 HNSCC, a high negative predictive value (about
87% for visual analysis and about 94% for SUV analysis) was shown, with a change in
surgical planning in 22% of cases, thus suggesting that PET/CT results may help the
clinician in deciding on the best therapeutic approach for cNO HNSCC patients [70,71].
With a more widespread use of LAFOV systems, which are characterized by higher physical
sensitivity and spatial resolution than standard scanners, a higher detection rate for micro-
metastatic LNs in various tumors, including HNSCC, is expected [34,72].

3.3. Distant Metastasis Assessment

In HNSCC, the overall incidence of distant metastases at initial diagnosis is low,
ranging from 2% to 18% [56]. Screening for distant metastases is critical in patients with
advanced disease, particularly those with nodal involvement, in naso- and hypopharyngeal
carcinomas, since the detection of distant metastasis prevents unnecessary aggressive
surgery, and in recurrent disease. The most common sites are the lungs, bone, and liver. In
this setting, according to the NCCN guidelines, '¥F-FDG PET/CT is the preferred technique
for patients with locoregionally advanced cancer (i.e., T3-T4 primary tumor and >N1
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nodal staging) [2]. In this context, ¥ F-FDG PET/CT shows a high accuracy, particularly in
detecting those bone metastases that can escape from CT detection. Exceptions are small
lung lesions, which are better detected by a chest CT [2]. Also, brain metastases cannot be
evaluated by 'F-FDG PET/CT due to the intense physiologic tracer uptake in the brain.
However, they are a rare occurrence in HNSCC (less than 1%) [73]. In those cases, in
whom these lesions are suspected (i.e., mucosal melanoma, neuroendocrine carcinoma, or
adenocarcinoma), contrast-enhanced brain MRI should be performed [2].

3.4. Second Primary Tumor Assessment

Second primary tumors, which can arise simultaneously (synchronous tumors) or
subsequently (metachronous tumors), occur in 5-10% of HNSCC patients, mainly those
who are smokers and HPV negative [74,75]. The most frequent sites of origin are the
HN region, esophagus, and lungs (Figure 5); the less frequently reported sites are the
thyroid, colon, breast, bile duct, and prostate [76]. The detection of a second primary
tumor does impact patient treatment and management and requires a well-coordinated
multidisciplinary approach. 8F-FDG PET/CT is an accurate method to detect second
primary tumors, with a high negative predictive value of up to 100% [77].

Figure 5. Axial 8F-FDG PET (A,C,E), CT (G), and fused PET/CT images (B,D,F) for staging in a
patient with oropharyngeal carcinoma. Increased '8F-FDG uptake is seen in the primary tumor (A,B)
with bilateral pharyngeal involvement (>on the left), as well as in bilateral cervical lymph nodes
(yellow and green arrows in (C,D,E,F)). The focal BE_FDG uptake in the esophagus (red arrow in (H))
was confirmed as a synchronous primary. Slight uptake by a pseudo-nodular left lung consolidation
(white triangle in (H)) was due to inflammatory changes.

As previously reported, to evaluate lung lesions, the standard workup of primary HN-
SCC includes a chest CT. However, differentiating second lung primaries from metastatic
pulmonary nodules can be a challenge. Multiple lung nodules in the absence of ad-
vanced /recurrent nodal disease should be considered in the first instance as metastasis
from another primary rather than from the known HNSCC. This is not an uncommon
clinical scenario, one for which F-FDG PET/CT offers the incomparable advantage of
detecting the second primary malignancy that, in these cases, is mostly located in the
gastroenteric tract, namely the esophagus and colon. However, false-positive PET/CT
findings are possible, such as inflammation and benign hyperplasia in the HN region or
other sites that can concentrate 8E-FDG [10].
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3.5. Prognostic Significance of Pre-Treatment PET/CT

Despite the recent advances in therapeutic strategies, the prognosis of patients with
HNSCC remains poor, with a high recurrence rate (30-40%) [15]. Therefore, the identifi-
cation of factors holding prognostic or predictive significance is of critical importance in
guiding patient management. Patients with unfavorable prognostic factors may require
more aggressive treatment, and patients with predictive biological markers may bene-
fit from specific therapeutic strategies [78]. Traditionally recognized prognostic and/or
predictive factors include tumor site and size, tumor grade and differentiation, depth of
invasion, lympho-vascular and perineural invasion, and LN metastases [78]. More recently,
biological markers, such as HPV detection in oropharyngeal SCC and Epstein—Barr virus
detection in nasopharyngeal carcinomas, as well as specific genetic changes, have been
applied (see below Section 3.6) [78]. In this context, the prognostic and predictive value of
various 8F-FDG pre-treatment parameters in patients with HNSCC has been extensively
investigated. Indeed, it is well known that '8F-FDG uptake into tumor cells is determined
by many factors, such as the up-regulation of glucose transporters and hexokinase enzymes,
neo-angiogenesis, and other factors, that reflect tumor aggressiveness and proliferative
activity [79]. Among conventional imaging parameters, such as maximum, mean, peak
standardized uptake values (SUVmax, SUVmean, and SUVpeak, respectively), metabolically
active tumor volume (MTV), and total lesion glycolysis (TLG), the volumetric parameters
MTYV and TLG showed to be independent prognostic factors in most of the studies, with
a higher prognostic value than SUV a3« in terms of disease progression and overall sur-
vival [15]. In this scenario, an emerging role is played by radiomics, i.e., the extraction and
analysis of various quantitative features from medical images including PET, which reflect
tumor FDG distribution and, therefore, its heterogeneity. This topic is separately discussed
in this review (see “Application of radiomics and machine learning”).

3.6. Proper Clinical Assessment and the Issue of HPV Involvement

Despite the histological homogeneity, HNSCCs are an extremely heterogeneous group
of malignancies from a clinical point of view. Such heterogeneity must be taken into full
account when interpreting PET/CT findings. Therefore, the more accurate the clinical
staging, the more reliable will be the PET/CT report. In this context, the most relevant
aspects are the primary site (for example, the retropharyngeal nodal metastasis as peculiar
to the pharyngeal primaries, therefore, in these cases, an 'F-FDG uptake at that level should
be always considered) and the virus-induced carcinogenesis. As previously mentioned,
HPV-positive oropharyngeal SCC is characterized by a series of features that can deeply
influence the interpretation of PET findings, in particular:

the high rate of cystic/necrotic neck metastasis with a typical low 8F-FDG uptake [68];
the low rate of second primary tumors (mainly lung and esophagus) [75];

the slow response with a longer persistence of increased SUV, particularly in neck
nodes, even in case of complete response after chemoradiotherapy [14].

Therefore, the correct definition of HPV-driven carcinogenesis as part of the work-up
is of paramount importance, and the possibility of false-positive findings at sole p16-
immunohistochemistry should not be underestimated [80,81]. In populations with a rate of
HPV-driven SCC in the oropharynx below 40%, p16 overexpression should be integrated
with nucleic acid detection to confirm HPV-driven carcinogenesis and draw proper clinical
considerations [82,83].

4. Radiotherapy Planning

PET/CT imaging, particularly with 8F-FDG, has emerged as a cornerstone in en-
hancing radiation-treatment planning in locally advanced HN cancers by defining patient
selection and the goal of radiation treatment, as well as through accurate delineation of
target volumes and treatment adaptation, facilitating intended management and dose
escalation, and potentially reducing treatment-related toxicity (Table 1) [84].
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Table 1. Role of PET/CT for radiotherapy planning.

PET/CT and Radiotherapy Planning Clinical Examples

Treatment (local disease) versus non-treatment

Patient selection and intended management .
8 (distant metastases)

Goal of treatment From curative to palliative and vice versa
- Detection of occult primary tumor (see text)
Selection and delineation of GTV - Tumor extension not defined on CT or MRI
(see Figure 3)
Dose painting based on biological tumor Dose escalation to '8F-FDG avid or hypoxic
features sub-volumes
Adaptive radiotherapy Escalation or de-escalation during treatment

GTV: gross tumor volume; CT: computed tomography; MRI: magnetic resonance imaging.

As described above, a well-known distinctive advantage of I8F_-FDG PET/CT is its
ability to detect hidden primary tumors in patients with metastatic cervical LNs from
unknown primaries. This reduces the radiotherapy target volume, minimizing treatment
side effects [16,17]. Moreover, technological innovations, with the development of PET/CT
devices with higher physical sensitivity and spatial resolution, can lead to increased de-
tection rates of small nodal metastases, altering tumor load in the target volumes and
impacting radiotherapy dosing with the inclusion of low-volume disease in high-dose
volumes [85]. In clinical routine, visual analysis with manual contouring is the most used
segmentation method, even though its use is hampered by display windowing and the
subjective nature of the analysis. Other methods include the use of quantitative parameters
derived from 18F-FDG PET/CT, such as SUVmay, MTV, and TLG [85,86]. These parameters
can be considered in the choice of personalized doses and volumes in radiotherapy treat-
ment planning, as demonstrated in “dose painting” by numbers studies, in which the dose
delivered to each voxel of the target is based on the signal intensity of that voxel on the
PET image [87]. PET/CT can potentially modify initial radiotherapy planning in a consid-
erable fraction of patients due to its enhanced accuracy in delineating gross tumor volumes
(GTV), sometimes offering a more defined GTV compared to those obtained from ceCT
or MRI [88-91]. However, the primary limitation of this approach arises from the absence
of standardized methods for segmenting functional volumes, significantly impacting the
resulting GTV and shape [88,89]. International consortia have been established to define
shared contouring guidelines, identifying and distinguishing—by the co-registration of
PET/CT images with CT images for radiation-treatment planning—a high-risk volume, an
intermediate-risk volume, and a low-risk volume with different prescription doses [88,89].
Furthermore, '8F-FDG PET/CT may not reliably detect small superficial tumor deposits or
nodal micrometastases, emphasizing the importance of clinical assessment and the need
for further improvements in imaging technologies for radiation-treatment planning in
HNSCC [92].

Loco-regional failure is a common event in locally advanced HN cancer, with up to
50% of patients having a poor prognosis [93]. Most of the loco-regional failures in patients
undergoing intensity-modulated radiation therapy (IMRT) occur within areas receiving the
highest prescribed radiation dose [94]. While an increased radiation dosage can enhance
local control due to a dose-response relationship, intensified treatment targeting the entire
GTV may increase toxicity, necessitating cautious consideration [95]. Tumor sub-volumes
with increased metabolism and hypoxia often exhibit increased radio resistance, making
them more resistant to standard treatment approaches, as documented in several stud-
ies where PET/CT with specific hypoxia tracers was used to personalize radiotherapy
doses [96-98]. Boosting radiotherapy to specific tumor sub-volumes, such as hypoxic or
resistant areas, may lead to improved local control and patient outcomes. The FiGaRO
trial evaluated the safety and feasibility of using '®F-FDG PET/CT-based dose painting
with intensity-modulated radiotherapy to administer a boost to the F-FDG-avid primary
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tumor in locally advanced high- and intermediate-risk oropharyngeal cancers, showing
comparable late toxicity rates to standard-dose chemo-IMRT and suggesting improved
3-year survival rates for high-risk patients [99]. '8F-FDG PET-guided dose escalation has
been investigated in multiple phase 1 trials and a recently published phase 3 trial [100].
The latter study, performed in a mixed population with locally advanced HNSCC showed
no significant improvement in locoregional control, progression-free survival, or overall
survival. A comparable two-year toxicity rate with respect to conventional treatment was
observed. However, the sub-group analysis of patients with oropharyngeal and stage NO-1
cancer treated with 8F-FDG PET-guided dose redistribution showed improved locore-
gional control compared to the control group. These preliminary results should be further
investigated by analyzing treatment efficacy and outcome after "®F-FDG PET-guided dose-
escalation according to different tumor sites and stages [100].

Tracers like 8F-fluoromisonidazole (*¥F-FMISO) and '8F-fluoroazomycin-arabi-
nofluranoside (!8F-FAZA) are under investigation for their ability to provide quantitative
evaluations of tissue hypoxia [101]. This topic is separately discussed in this review (see
“PET radiopharmaceuticals other than 8F-FDG”).

PET/CT can play a central role in the complex topic of replanning in radiotherapy.
Indeed, radiotherapy adaptation through replanning is a useful procedure for correcting
patient anatomical changes related to possible weight loss during therapy, or it could be
necessary when target volumes need to be redefined due to a relevant clinical response of
the disease. In these cases, PET/CT imaging during treatment can lead to personalized care
by considering the clinical behavior of the tumor. The mid-treatment metabolic imaging
can guide strategies of dose and volume modulation to propose treatment personalization
through a new radiotherapy plan that considers the biological response of the tumor; the re-
duction of GTV revealed by '8F-FDG PET/CT at mid-treatment evaluation potentially leads
to changes in the radiation dose with decreased toxicity and improved local control [102].
Moreover, mid-treatment assessments using '®F-FDG PET/CT scans offer valuable insights
into treatment-response prediction, shaping the blueprint for adaptive clinical trials [103].
A recent randomized phase II trial demonstrated the efficacy of a PET-based adapted
dose escalation approach in enhancing local control of HN cancer over traditional IMRT,
supporting the need for further exploration in larger phase III trials [104].

5. Treatment-Response Assessment

Current international guidelines support the use of imaging 3-6 months after the pri-
mary treatment in patients with locally advanced HN cancer to assess treatment response,
identify residual tumors, and have a baseline post-treatment imaging examination [1,2,105].
Because of its high negative predictive value (94-97%) with optimal performance approxi-
mately 3 months after the end of the treatment, I8F-FDG PET/CT can reduce the number
of unnecessary invasive procedures or therapeutic interventions [1,18,106-108]. A prospec-
tive, randomized, controlled trial in more than 550 patients with HNSCC and N2 or N3
disease found that '8F-FDG PET/CT after primary chemoradiotherapy was associated
with a reduction in neck dissections, fewer surgical complications, and adverse effects and,
finally, with lower treatment costs [14]. Currently, neck dissection is not recommended
in cases of negative ®F-FDG PET/CT and normal-size LNs 3 months after chemoradio-
therapy [1]. '8F-FDG PET/CT performed 3-6 months after the primary treatment is also
correlated with overall and disease-free survival [105,109,110]. Early 8E_-FDG PET/CT,
3 months after the end of radiotherapy, is associated with significant false-positive rates
and is not recommended in the absence of signs of recurrence or progression [2]. Early after
chemoradiotherapy, the positive predictive value and specificity are lower, possibly due to
the increased vascularity, edema, and inflammatory changes related to treatment. However,
diffuse '8F-FDG uptake at the primary site and in the neck is more consistent with inflam-
mation related to post-therapy changes, whereas intense and focal '®F-FDG uptake is more
likely related to residual disease (Figure 6). Several criteria have been proposed to evaluate
treatment response to 'F-FDG PET/CT in patients with HN cancer, including the Hopkins
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and the Head and Neck Imaging Reporting and Data System criteria (NI-RADS) [111,112]
(Table 2). According to the Hopkins criteria, the lesions are classified according to a five-
point scale relative to physiologic '8F-FDG avidity in reference structures, the internal
jugular vein, and the liver. In NI-RADS, the '8F-FDG PET/CT results are combined with
anatomical imaging findings, and the scores range from zero to four. However, NI-RADS
demonstrated many indeterminate cases, most likely due to the absence of a reference
standard for '8F-FDG uptake, which may lead to poor inter-reader reproducibility [113].
Treatment response can be assessed qualitatively or semi-quantitatively by the calculation
of several PET metrics (e.g., SUV, MTV, and TLG). Both methods can be used to interpret
PET scans with a reliable degree of accuracy [87,107].

Figure 6. Baseline (A,B) and post-chemotherapy (C,D) F-FDG PET/CT in a patient with bilateral
cervical lymph node metastases from nasopharyngeal carcinoma. Marked reduction in entity and
extent of 3F-FDG, as well as in size, was observed in all the involved lymph nodes, with a persistent
inhomogeneous uptake and no evidence of new active lesions (partial response).

Quantitative evaluation allows a more objective comparison of metabolic activity in
the same lesion over time and is commonly used in clinical trials to predict outcomes.
Quantitative analysis has typically been used to evaluate the ability of *F-FDG PET/CT to
predict early response during chemoradiotherapy or radiotherapy to intensify treatment
in case of non-response or to reduce the intensity of the remaining therapy in patients
who achieve a complete response [104,114]. At interim PET, reduction of SUVnax or an
MTV higher than 50% in the primary tumor was associated with higher 2-year overall
survival and locoregional control [103,115], and an SUVp,x reduction ratio < 0.64 resulted
in lower 2-year overall survival and disease-free survival [116]. However, larger sample-
sized studies and external validation of metabolic parameters are needed to implement
adaptative treatment guided by functional imaging.
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Table 2. Standardized reporting systems for '8F-FDG PET/CT: Hopkins criteria and Neck Imaging

Reporting and Data System [111,112].

Criteria

HOPKINS  '8F-FDG uptake pattern at the primary site and nodes Response category
1 focal uptake less than IJV Complete metabolic response
2 focal uptake, greater than IJV but less than liver Likely complete metabolic response
3 diffuse uptake greater than IJV or liver Likely inflammatory changes
4 focal uptake greater than liver Likely residual tumour
5 focal and intense uptake Residual disease
NI-RADS Primary site response Management recommendations
0 Incomplete and baseline imaging not available Assign score after availability of prior scan
1 No evidence of recurrence Routine surveillance, CECT
Questionable recurrence: Direct visual inspection
a. Superficial abnormality (skin, mucosal surface, etc.) Short interval follow-up PET/CECT
2 b. Deep abnormality < 1 cm with mild/intermediate '8F-FDG Short interval follow-up or biopsy if clinically
c. Deep abnormality > 1 cm with mild/intermediate '8F-FDG indicated
5 ;Iigh suspic'ion of recurrence: new discrete nodule or mass, Biopsy if clinically needed
F-FDG avid
4 Known recurrence, biopsy proven Clinical management
Node response
1 No evidence of nodal disease recurrence Routine surveillance
Questionable nodal recurrence or residual nodal disease: .
2 a. <1.5 cm with mild/intermediate '®F-FDG Slllrvelllance .
b. >1.5 cm with mild/intermediate '®F-FDG Biopsy or short-interval follow-up
3 High suspicion of recurrence (new, enlarging, FDG avid) Biopsy if clinically needed
4 Known recurrence, biopsy proven Clinical management

IJV: internal jugular vein; NI-RADS: Neck Imaging Reporting and Data System.!'8F-FDG PET/CT is effective for
detecting early asymptomatic lesions generally occurring at distant sites [117]. Whether earlier detection leads to
improved disease-specific survival is not established. In patients with negative '®F-FDG PET/CT at 3 months
post-treatment, subsequent surveillance should be tailored according to tumor type, stage, prognostic factors,
symptoms, and physical exam changes.

6. Long-Term Follow-Up (>6 Months to 5 Years Post-Treatment)

Approximately 50% of patients with locally advanced HNSCC relapse after primary
treatment with distant metastases and/or local or regional disease in the first 2 years [118].
Post-treatment imaging is recommended if symptoms appear, if there are abnormalities on
clinical examination, or if detection of the tumor may be difficult by clinical examination or
direct inspection only [2]. There are no consensus guidelines on the frequency and modality
of routine post-treatment imaging in asymptomatic patients. The literature data show that
I8F-FDG PET/CT performed 1 year after treatment can reveal recurrent or second primary
cancers in approximately 10% of patients, and 2-years '®F-FDG reveals these findings in
approximately 5% of treated patients [105].

7. Cost-Effectiveness Analysis

As previously described, current guidelines support the adoption of a PET/CT-guided
approach into routine clinical practice for HN cancer patients treated with chemoradio-
therapy, i.e., avoidance of neck dissection in patients with negative PET/CT performed at
3 months after completion of chemoradiotherapy [2]. This approach, in addition to showing
clinical utility in terms of outcome, also has economic implications. Initial non-randomized
studies—one performed according to Australian health care [119] and three according
to United States health care [120-122]—found that 3F-FDG PET/CT is a cost-effective
alternative to neck dissection. These observations were confirmed by the large United
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Kingdom clinical trial PET-Neck, a phase III prospective, randomized, controlled trial
performed on patients with loco-regionally advanced HN cancer (oropharyngeal, laryn-
geal, oral, hypopharyngeal, or occult, with stage N2 or N3 and MO disease) who received
chemoradiotherapy for primary treatment. This study demonstrated that PET/CT-guided
surveillance, when compared to neck dissection, was cost-effective over a short-term period
(at least 2 years follow-up post-randomization), resulting in far fewer operations (about 80%
of patients were spared from surgery) and in saving GBP 1492 (approximately USD 2190)
per person [14]. The quality of life was similar in the two groups. Comparable results
were subsequently reported by extrapolating the data over a long-term period (additional
follow-up up to 5 years) [123].

8. PET Radiopharmaceuticals Other Than 8F-FDG

In the last years, more tumor-targeted PET radiopharmaceuticals, which reflect bio-
logic characteristics of HN tumors have been proposed, either in specific clinical settings or
in different histotypes (Table 3) [19]. These radiopharmaceuticals may overcome the most
relevant drawbacks of 18F-FDG, like non-specific uptake due to inflammation, which could
hamper its diagnostic worth in terms of specificity and positive predictive value (especially
after radiotherapy), or high physiological uptake by anatomical structures usually harbor-
ing HN cancer, which leads to a reduced tumor-to-background ratio. This is of clinical
significance in patients with an unknown primary neoplasm or for detecting skull-base
invasion or brain/skull metastases. '®F-FDG also suffers from very low uptake in some
well-differentiated histotypes, including their metastases and, therefore, is not suitable for
staging, restaging, and treatment efficacy evaluation in these patients.

Table 3. PET radiopharmaceuticals other than 8F-FDG.

Radiopharmaceutical Molecular Target Main Indications Clinical Application
I8E-FMISO
18F-FAZA .
18 Staging
F-EF5 . . .
18 Hypoxia Response evaluation Experimental
F-FETNIM Adaptive Radiothera
18F_Hx4 P Py
64Cu-ATSM
68(n_ .
18Ga FA.PI Fibroblast Activating  Staging .
FeFAPi Protein (FAP) Unknown primar Experimental
AISE-NOTA-FAPi primaty
HUC-MET Protein synthesis Adaptive radiotherapy -y, oo
Response evaluation
I8E_FET Protein synthesis Staging—Restaging Experimental
Staging—Restaging
IBE-FLT Cell proliferation Response evaluation Experimental
Adaptive radiotherapy
%8Ga-DOTATOC Staging—Restaging
%8Ga-DOTANOC SSTR-expression Response evaluation Clinical
%8Ga-DOTATATE Targeted therapy
Neurotransmitter
18 - . - . P
F-DOPA transportation Staging—Restaging Clinical

Hypoxia is a common event and the main cause of local failure after radiotherapy
in HN cancer [124,125]. Hypoxic volumes measured using ®F-FMISO and 8F-FAZA
PET/CT at staging are more prone to loco-regional recurrence regardless of primary tumor
grading, and also in HPV-positive patients. Non-invasive detection of hypoxia is useful
for tumor “dose painting”, that is, dose escalation to the PET-depicted hypoxic volumes,
without an increased risk of damage to neighboring critical structures [20,101,126-128] and
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possibly carrying a lower risk of loco-regional recurrence in comparison with standard
protocols [20]. Indeed, hypoxic sub-volumes may be unevenly distributed throughout
the gross tumor volume visible on a CT or an MRI. Therefore, the extent of the disease
amenable to receive a dose boost may be much lower, and with a completely different
distribution, than the anatomical lesion. This makes it possible to spare sensitive struc-
tures (e.g., nerves, vessels. ..) anatomically enclosed by the tissue. However, variations
in tumor size and geographical distribution of hypoxic volumes during radiotherapy,
coupled with radiation-induced inflammation or edema, and re-oxygenation phenomena,
may reduce the effectiveness of dose escalation protocols on local and/or distant disease
control [101,129,130]. In this view, performing serial PET/CT scans during radiotherapy
may identify patients with worse local control who exhibit persistent hypoxia just 2 weeks
after radiotherapy started [131]; also, tumor sub-volumes at higher risk of recurrence are
identified, which are persistently hypoxic across baseline and during-treatment PET/CT
imaging [129]. Interestingly, in most HN cancer lesions, hypoxic volumes depicted us-
ing '8F-FMISO are not correlated spatially to the areas with the highest 8F-FDG uptake.
Therefore, '8F-FDG should not be used as a surrogate to predict hypoxia [132].

A clear advantage of fibroblast-activating protein inhibitors (FAPi) over 8F-FDG is
their high tumor-to-background contrast that allows an exceptionally clear tumor delimi-
tation in districts with high BEFDG background uptake (e.g., brain, liver, spleen, bowel,
and tonsils) [133]. As reported in a recent systematic review and meta-analysis [134], FAPi
PET/CT is very useful for detecting unknown primary HN tumors in patients with cervical
LN metastases, thanks to higher uptake than surrounding healthy tissue, and is better
than 8F-FDG in assessing skull-base invasion due to negligible brain uptake (superior
performance than MRI in patients with nasopharyngeal carcinoma) [135]. Moreover, FAPi
PET/CT is helpful for detecting cervical LN metastases from HN cancer, with acceptable
sensitivity (80-90%, false-negative findings in lesions < 5 mm) and higher specificity than
I8E-FDG (93.3% vs. 81.3%) due to less inflammatory false-positive nodes [21,136]. FAPi
PET/CT is superior to F-FDG in detecting distant metastases, especially in the bone and
brain [133,135].

Methionine is an essential amino acid incorporated into proteins; when labeled with
carbon-11 (C-MET), it may be used as a radiopharmaceutical for detecting protein syn-
thesis in malignant and benign conditions. Its ability to detect response to conventional
radiotherapy and carbon-ion therapy in adenocarcinomas, adenoid cystic carcinomas, and
even more uncommon histologies (e.g., mucosal melanoma) has been confirmed in the last
30 years [22,137,138]. In patients undergoing radiotherapy or carbon-ion therapy, higher
residual C-MET uptake at post-treatment PET/CT predicts an increased risk of local re-
currence and, in patients with mucosal melanoma, also of distant metastases [137-139].
Moreover, patients with suspected HN cancer recurrence may benefit from the higher
specificity of C-MET (76% vs. 56%) after equivocal '®F-FDG PET/CT, thus reducing the
need for targeted biopsies [23].

Fluorine-18 labeled amino acid-based radiopharmaceuticals have been proposed,
particularly, O—2-ﬂu0ro—18(F)—ethyl—L-tyrosine (18F-FET), which enters tumoral cells using
an over-expressed trans-membrane transport system. However, since its first reported use
in 2006 [140], it has demonstrated lower sensitivity than BE_FDG and is, therefore, not
suitable as an alternative to !8F-FDG in the evaluation of HN cancer patients [141]. Also,
18F-FDG detects more primary tumors than '8F-FET, as well as more distant metastases and
second primitive lesions than '®F-FET. On the other hand, '®F-FET has higher specificity,
especially in lymph nodes, due to negligible uptake in inflammation sites [140-142].

A labeled modified thymidine-derived nucleoside, 3'-deoxy-3'-!8F-fluorothymidine
('8F-FLT), may be used as an in vivo marker of cell proliferation. The ¥F-FLT uptake
intensity within the lesion is associated with a worse prognosis and, therefore, may impact
on patients’ treatment [124]. In agreement with this finding, HPV-negative patients exhibit
higher SUVpax on IBE_FLT PET/CT and have worse prognosis [143]. Moreover, base-
line '8F-FLT uptake and metabolic volume predict local and distant disease control after
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chemoradiotherapy [144] and are better predictors of overall survival than IBE_FDG [144]
thanks to the negligible inflammatory uptake [145]. '¥F-FLT PET/CT may also be used for
monitoring the early response to radiotherapy in HN cancer, allowing dose escalation in
sites of residual '8F-FLT uptake after the first treatment, with the achievement of complete
tumor regression [24].

PET/CT imaging specifically designed for investigating HN neuroendocrine tumors
includes somatostatin analogs against over-expressed somatostatin receptors (SSTR), like
%8Ga-DOTATOC, ¥Ga-DOTANOC, and %8Ga-DOTATATE, or norepinephrine precursors
such as 18F-DOPA. Particularly, PET/CT with SSTR ligands exhibits higher accuracy in de-
tecting HN paragangliomas and their metastases over morphological imaging, particularly
very small lesions [25,146-148]. Loss of SSTR expression because of tissue de-differentiation
explains most false-negative findings and is associated with a worse prognosis; these le-
sions are amenable to detection using '8F-FDG. The NCCN guidelines recommend PET/CT
with SSTR ligands to exclude distant metastases in patients with HN paraganglioma, while
EANM guidelines consider PET/CT with SSTR ligands as the first-choice functional imag-
ing in sporadic and hereditary HN paragangliomas and, as the second choice, PET/CT
using F-DOPA or '8F-FDG [149-151].

9. The Role of PET/MRI

PET/MRI scanners combine the high accuracy of MRI in the evaluation of the primary
tumor (local extent, perfusion, and structural characteristics) with the high sensitivity of
PET for distant metastases, nevertheless with lower radiation exposure (only from the PET
component). In the evaluation of a primary tumor, 'F-FDG PET/MRI using gadolinium-
enhanced T1-weighted sequence has a clear advantage over PET/CT in detecting the
infiltration of neighboring structures and peri-neural spread [152-156], especially in pha-
ryngeal and oral lesions, whereas MRI is less prone to artifacts from dental hardware than
PET/CT [157,158]. Moreover, gadolinium contrast-enhanced PET/MRI has been demon-
strated to perform better than cePET/CT in early detection of peri-neural spread [157],
which is a well-known negative prognostic factor for disease progression. PET/MRI also
has the ability to better distinguish tumor uptake from sites of physiological accumulation
compared to PET/CT, due to a clearer definition of anatomic structures [159,160], especially
when PET and MRI are acquired simultaneously (fewer misregistration artifacts) [161].

The diagnostic advantage of PET/MRI over PET/CT or MRI alone in the nodal
staging of patients with nasopharyngeal and hypopharyngeal cancer is not fully estab-
lished [162-164], despite fewer false-positive findings in assessing N2-3 status being re-
ported using PET/MRI over the standard diagnostic work-up [165]. In some papers,
including mixed HN cancer histology, PET/MRI results are as accurate as cePET/CT in
N-staging [166-171] and can be considered a valid tool in patients with allergy, renal failure,
or other contraindications to iodinated contrast medium [157]. PET/MRI performs well
in detecting distant metastases (mostly in the lungs), possible second primary tumors,
or an otherwise occult primary lesion in the head and neck. Particularly, the very high
NPV of PET in lung nodules overcomes the well-known limitations of MRI in studying
lung parenchyma, therefore excluding lung metastases with high reliability. In addition,
new MRI sequences designed for studying pulmonary parenchyma may detect nodules
even smaller than 4 mm [172-174]. ¥F-FDG PET/MRI is more sensitive and specific than
PET/CT in patients with cervical unknown primary [175,176]. In this setting, there is inter-
est in applying PET/MRI for the delineation of the radiotherapy field by using PET-derived
(e.g., SUVmax % threshold or SUVnax absolute value) and MRI-derived (GTV from contrast-
enhanced T1 and T2 sequences, or from T1-weighted VIBE or Dixon sequences) volumes,
with better soft-tissue contrast and lower radiation exposure [177,178]. However, despite
technological advances, PET/MRI still overestimates, or sometimes partially misses, patho-
logical GTV, especially in patients with smaller lesions [179]. PET/MRI is useful for the
detection of tumor persistence or recurrence after treatment thanks to the high soft-tissue
contrast of MRI, which discriminates pathological tissue from post-treatment alterations,
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and the high NPV of PET. Moreover, PET/MRI exhibits a significantly higher diagnostic
accuracy than MRI alone in detecting the recurrence of low-FDG uptake malignancies, such
as adenoid cystic carcinoma, especially in detecting peri-neural spread and metastases in
small lymph nodes which were deemed reactive on an MRI [180].

Although “functional” MRI techniques (diffusion weighted, dynamic contrast en-
hanced, or spectroscopy) may provide additional information for tissue characterization,
response prediction, and outcome, the real usefulness in the clinical practice is questionable,
since PET already provides much of this information [181,182]; moreover, spectroscopy
is time-consuming and needs a specialized team [183]. The main drawback of widely
using PET/MRI in clinical practice is the need for an alternative technique for PET photon
attenuation correction (MRI is not a measure of tissue density unlike CT). Therefore, an
attenuation map should be obtained from MRI sequences (as T1-weighted DIXON) to
segment the patient’s tissues into air, lungs, soft tissue, and fat. Then, an anatomic atlas
is applied to add bone segmentation. Moreover, an MRI is time-consuming, and at least
attenuation-correction MRI sequences should be acquired simultaneously with PET images
to avoid exceedingly long-lasting examinations. Additional diagnostic MRI sequences of
the head and neck should be performed at the end of PET acquisition, therefore taking
more time away, and it is difficult to apply them systematically when facing a busy patient
list. In addition, performing PET/MRI is more expensive than PET/CT, and a two-hand re-
porting (nuclear medicine physician and radiologist) is needed for all patients undergoing
PET/MRI [165].

10. Application of Radiomics and Machine Learning

Although semi-quantitative parameters consider the volumetric extent of active areas,
like MTV or TLG, and adequately mirror the tumor heterogeneity, which is a well-known
negative prognostic factor in HN cancer, their effectiveness and reproducibility for predict-
ing a clinical outcome may be hampered by the need for an “a priori” established SUV
threshold for lesion contour [184]. Radiomics is an advanced “data mining” technique able
to extract information from high-resolution images by measuring the transitions of intensity
between adjacent voxel values and their mutual relationships not visible to the naked eye.
By this, radiomics detect a subtle heterogeneity in uptake distribution across the lesion,
exploring non-invasively its complex structure and biological characteristics in detail [185].
Moreover, the ever-increasing computational performances achieved in recent years have
led to the development of informatic systems able to imitate human intelligence, so that
they may learn from provided data, build up artificial neural networks, and perform their
tasks without further man-initiated instructions. This is how machine-learning models
work, and, when applied to radiomics, they can analyze quickly the usually high number
of extracted features and find possible relationships among them or specific patterns for
prognosis prediction [36,186,187].

Recent studies and meta-analyses have demonstrated a reasonable performance for
outcome models obtained from radiomics analysis in HNC [19], confirming that more
homogeneous tumors have a better prognosis [188-191] and that the combination of ra-
diomics and clinical information excellently predicts PFS and OS [192]. Moreover, in
patients with ongoing radiotherapy, baseline to post-treatment differences in PET/CT ra-
diomics may predict PFS and OS, irrespective of clinical parameters and T and N stage [193].
Radiomics analysis also performs better than clinicopathological factors in predicting cer-
vical lymph node metastases [194]. Several studies have explored the ability of ¥ F-FDG
PET/CT radiomics-based machine-learning analysis for predicting treatment outcomes in
HN cancer [190,195-202], reporting a good performance of the radiomic features (alone
or combined with genomic data and T and N stage) in predicting loco-regional progres-
sion, PFS, 3-year OS, or recurrence-free survival [196,203,204], with higher accuracy than
SUV and TLG in distinguishing local recurrence from post-treatment inflammation and
predicting local failure [196,205,206]. Deep learning applied to PET/CT in HN cancer has
demonstrated high diagnostic accuracy, sensitivity, and PPV in differentiating treatment
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control and failure, better reflecting the disease-free survival rate than T stage, clinical stage,
SUVmax, SUVmean, MTV, and TLG [37,207]. In addition, in the view of delivering more
dose to the radio-resistant part of the tumor (“dose painting”), the feasibility of applying
radiomics analysis to 1®F-FDG PET/CT scans at baseline and during/after chemo-radiation
in HN cancer patients has been explored, finding it is clinically suitable to distinguish radio-
resistant and radio-sensitive volumes within the same lesion [208]. The main limitations
to the widespread application of radiomics and machine learning in evaluating patients
with HN cancer rely on the lack of standardized acquisition and reconstruction parameters,
which may vary when using different scanners and, therefore, potentially reducing their
clinical reliability and lowering intra- and inter-institutional reproducibility [209]. More-
over, the use of non-standardized segmentation techniques for the lesions and organs at
risk may interfere with the subsequent features extraction and the selection phase (this is of
particular relevance in patients amenable to radiotherapy) [210]. Finally, specific training
for the clinical personnel is required to ensure adequate management and interpretation of
the results [211].

11. Conclusions

8F-FDG PET/CT is the standard of care for patients with advanced stage head—
neck squamous cell carcinoma, having a significant impact on patient management and
outcome. Current international evidence-based guidelines support its use in various clinical
settings of this tumor, ranging from initial staging and radiotherapy planning to treatment-
response assessment and detection of recurrence, due to its higher sensitivity over clinical
examination and conventional morphologic imaging. The use of standardized methods
for reporting therapy response and the excellent negative predictive value of post-therapy
I8F-FDG PET/CT further contribute to the significant impact of this imaging modality
on clinical practice. A wider diffusion of PET/MRI and the technological innovations
by LAFOV PET/CT systems, as well as the use of PET radiopharmaceuticals other than
I8F_FDG and the implementation of radiomics and machine learning, will answer specific
clinical needs, further improving patient management and outcome.
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