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Simple Summary: High-resolution anoscopy (HRA) is crucial for spotting and treating early signs
of anal cancer. The researchers created an artificial intelligence (AI) system to analyze HRA images
and identify high-grade and low-grade lesions accurately. They trained a computer program with
thousands of images, achieving a remarkable accuracy of 94.6%. The AI system proved effective
across different examination methods, such as using acetic acid or lugol iodine, and even after
treatment. This advancement could improve the early detection of anal cancer precursors, potentially
saving lives.

Abstract: High-resolution anoscopy (HRA) plays a central role in the detection and treatment of
precursors of anal squamous cell carcinoma (ASCC). Artificial intelligence (AI) algorithms have
shown high levels of efficiency in detecting and differentiating HSIL from low-grade squamous
intraepithelial lesions (LSIL) in HRA images. Our aim was to develop a deep learning system
for the automatic detection and differentiation of HSIL versus LSIL using HRA images from both
conventional and digital proctoscopes. A convolutional neural network (CNN) was developed based
on 151 HRA exams performed at two volume centers using conventional and digital HRA systems.
A total of 57,822 images were included, 28,874 images containing HSIL and 28,948 LSIL. Partial
subanalyses were performed to evaluate the performance of the CNN in the subset of images acetic
acid and lugol iodine staining and after treatment of the anal canal. The overall accuracy of the
CNN in distinguishing HSIL from LSIL during the testing stage was 94.6%. The algorithm had an
overall sensitivity and specificity of 93.6% and 95.7%, respectively (AUC 0.97). For staining with
acetic acid, HSIL was differentiated from LSIL with an overall accuracy of 96.4%, while for lugol and
after therapeutic manipulation, these values were 96.6% and 99.3%, respectively. The introduction of
AI algorithms to HRA may enhance the early diagnosis of ASCC precursors, and this system was
shown to perform adequately across conventional and digital HRA interfaces.

Keywords: high-resolution anoscopy; anal squamous cell carcinoma; high-grade squamous intraep-
ithelial lesion; low-grade squamous intraepithelial lesion
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1. Introduction

High-resolution anoscopy (HRA) comprises a diagnostic technique using a colposcope
(or a dedicated hardware) for magnification, after the application of acetic acid and lugol
to identify anal lesions [1,2]. In the context of anal squamous cell carcinoma (ASCC),
HRA plays a central role for the identification of precursor lesions, specifically high-grade
intraepithelial lesions (HSIL). The screening of high-risk populations, including men who-
have-sex-with-men living with HIV, history of vulvar cancer, and solid-organ transplant
recipients, is aimed at detecting these high-risk lesions [3–6]. Indeed, the identification
and treatment of these lesions allows one to prevent the development of ASCC, therefore
mitigating the morbidity and mortality associated with ASCC [7,8]. The recently issued
International Anal Neoplasia Society (IANS) guidelines reflect the prognostic importance
of the detection of ASCC precursors and clarify the populations where screening is advis-
able and, importantly, the role of HRA following an initial screening with digital rectal
examination and anal cytology and/or anal high-risk HPV testing [9].

The performance of HRA is limited by the low number of certified practitioners
with experience in this field [9]. The proficient performance of this technique requires
extensive training, which limits the widespread application of this technique by experts in
the field. Moreover, although the IANS does not clearly define a minimum HRA number
to ensure proficiency, the IANS recommends a minimum of 100 HRAs per year as an
adequate volume of practice [1]. Indeed, the histological detection of HSIL appears to
be dependent on extensive training and has a long learning curve, with increasing slope
as more procedures are performed. In a study from 2019, Neukam et al. anticipate that
this long learning process could be shortened by the application of artificial intelligence
(AI) algorithms [10]. Indeed, diagnostic techniques based on imaging are expected to
benefit greatly with the development of deep learning algorithms for their automatic
classification. In this regard, convolutional neural networks (CNNs) constitute a deep
learning architecture which is particularly designed for image analysis. This type of
algorithms has shown great potential for the automatic analysis of medical images across
several medical fields [11–14]. The development of AI algorithms for application to HRA
has recently received interest. A pilot study including HRA images from procedures using
a digital videoproctoscope has demonstrated promising results, differentiating HSIL from
low-grade squamous intraepithelial lesions (LSIL) with a sensitivity of 91%, a specificity of
90%, and an overall accuracy of 90% [15]. Nonetheless, the development of deep learning
algorithms for HRA is hampered by the standard use of conventional colposcopes, which
limit the generation of large datasets. Thus, to date, no AI-based algorithms were developed
using images from HRA exams using standard colposcopes, as is predicted as the standard
of practice by the IANS. Moreover, the capability of AI algorithms to be interoperable across
distinct technique variations and device models is pivotal to ensure the clinical applicability
of the AI systems. Therefore, this multicentric study aims to demonstrate the development
of an interoperable AI system for automatic identification of HSIL and its differentiation
from LSIL, using a large dataset of HRA images, comprising both exams with a standard
colposcope and digital videoproctoscope.

2. Materials and Methods
2.1. Study Design and Patient Selection

This study includes patients submitted to HRA between 2020 and 2023 at two special-
ized centers in France (Groupe Hospitalier Paris Saint-Joseph [GHPSJ], Paris, France) and
Brazil (Emílio Ribas Infecciology Institute [ERII], São Paulo, Brazil). The exams from the
latter center were performed using a conventional colposcope (KLP 200 LED®, Kolplast,
Bairro da Mina, Briza) while those from the former were performed using a high-resolution
videoproctoscope THD® HRStation (THD SpA, Correggio, Italy). At both centers, each
procedure was recorded in video format. These videos were stored in “.avi” format and
afterwards were segmented into still images using a VLC media player (VideoLAN, Paris,
France). The images from both centers were retrospectively reviewed. Images represent-
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ing the anal transition zone were selected as images of interest for ultimate classification,
according to a histological confirmation of HSIL and LSIL.

This study was approved by the institutional review board of Groupe Hospitalier Paris
Saint-Joseph (IRB 00012157) and (SPTC 81/2023). This study had a non-interventional de-
sign, and all proceedings of this study’s protocol followed the statements of the declaration
of Helsinki.

2.2. High-Resolution Anoscopy Procedures

For this interoperability study, we developed a dataset including HRA procedures
performed both using a conventional colposcope (KLP 200 LED®, Kolplast) and a high-
resolution videoproctoscopy system (THD® HRStation, THD SpA, Italy). The procedures
were performed by four coloproctologists with expertise in HRA (L.S., N.F., T.M. and
S.N.). The images were included from patients with histologically proven HSIL or LSIL.
This classification was put forward by pathologists at each center with experience in anal
pathology and followed the College of American Pathologists protocol [16]. HRA proce-
dures were conducted with the application of a 5% acetic acid solution followed by a lugol
iodine solution, if needed. We included images from both categories in distinct settings,
specifically previous to any staining, staining with either acetic acid or lugol staining, and
during the therapeutic manipulation of the anal canal (e.g., after radiofrequency ablation,
laser ablation, infrared coagulation, plasma coagulation or surgical ablation).

2.3. Image Processing, Dataset Organization and Development of the Convolutional Neural Network

The main analysis in this study was the capability of the CNN to differentiate between
images showing evidence of HSIL vs. LSIL. At this stage, the full dataset (57,822 images)
was divided into training (n = 46,163) and testing (n = 11,659) datasets, at a rate of 80% and
20%, respectively.

A secondary analysis was performed to assess the influence of staining and therapeutic
intervention on the performance of the CNN. For this stage, four datasets were designed
using images with 5% acetic acid staining (n = 27,191), staining with lugol (n = 10,011) and
after the therapeutic manipulation of the canal anal (n = 11,047). The latter subset of images
included frames collected during in-office therapeutic procedures, at different stages of
completion, which were classified by experts as showing areas compatible residual lesions,
within areas of previously defined HSIL. For each of these subsets, images were divided
into training and testing datasets at a similar ratio used in the main analysis.

For the learning of the CNN, a circular region of interest (ROI) was identified in
white for all images. Parameter optimization of the HoughCircles filter from OpenCV
to one circular ROI was used for each frame [17]. Subsequently, masks, contours, and
crop functions were employed to place the extracted ROI in the center of a black image,
mirroring the original.

The deep learning model was generated using Resnet as its fundamental structure,
with weights trained on ImageNet. We facilitated knowledge transfer to our dataset by
preserving the existing model architecture. The final fully connected layers were excised,
and in their place, new fully connected layers tailored were appended to accommodate
the specific number of classes employed for HRA image classification. Two blocks were
used, each with a fully connected layer, followed by a dropout layer with a drop rate of 0.3.
Subsequently, we included a dense layer with a size defined as the number of categories to
classify. By trial and error, we defined a learning rate of 0.0001, a batch size of 32, and a
number of epochs of 10. Pytorch was used to run the model after preparation of the data
using FFMPEG, Pandas, and Pillow libraries. The analyses were performed with a computer
equipped with a 2.1 GHz Intel® Xeon® Gold 6130 processor (Intel, Santa Clara, CA, USA)
and a single NVIDIA® RTX™ A6000 graphic processing unit (NVIDIA Corporate, Santa
Clara, CA, USA).
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2.4. Model Performance and Statistical Analysis

At each experimental stages, the output provided by CNN was compared to the
gold-standard histology (HSIL vs. LSIL). After training and hyperparameter optimization,
the network computed the probability for each category for every image. The performance
metrics encompass sensitivity, specificity, positive, and negative predictive values (PPV
and NPV, respectively), and accuracy. Furthermore, the discriminative efficacy of each
model was assessed through the analysis of receiver operating characteristic (ROC) curves.
Additionally, the computational efficiency of the Convolutional Neural Network (CNN)
was ascertained by calculating the processing time required for the CNN to generate output
for the entire set of images in the validation image dataset. Sci-Kit learn version 0.22.2 [18]
was used for statistical analysis.

3. Results

A total of 151 HRA exams were performed in 137 patients from both centers. From this
group, 92 patients were included from GHPSJ (n = 106 exams) and 45 patients from ERII
(n = 45 exams). A total of 57,822 images were extracted and used for building and develop-
ing the algorithm, from which 32,497 originated after examinations with a high-resolution
videoproctoscope, and the remaining with a conventional colposcope (n = 25,325). Ulti-
mately, from the total pool of images, 28,874 showed lesions with histological evidence of
HSIL and 28,948 showed LSIL.

Figure 1 represents the evolution the accuracy of the algorithm during training and
validation, demonstrating increasing accuracy with the exposure to a higher volume of data.
During each stage, the CNN would predict the probability of any given frame belonging
to each of the classification categories (i.e., HSIL or LSIL). The category with the highest
probability was outputted as the network’s prediction (Figure 2).
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Figure 2. Output obtained after running the convolutional. (A)—High-resolution videoproctoscope;
(B)—conventional colposcope. HSIL—high-grade squamous intraepithelial lesion; LSIL—low-grade
squamous intraepithelial lesion.

For a first analysis, the performance for the automatic detection and differentiation of
HSIL versus LSIL. For this purpose, the full dataset was divided according to a distribution
of 80% (n = 46,798, from which 23,369 showed HSIL) for training and 20% (n = 11,700, from
which 5843 showed HSIL) for testing of the model. At this first stage, the model achieved
a sensitivity of 93.6%, specificity of 95.7%, PPV of 95.6%, NPV of 93.7%, and an overall
accuracy of 94.6% (AUC 0.97).

In the second experiment, the subsets of images were organized to assess the perfor-
mance of the algorithm according to different procedure stages during HRA procedures.
These subsets were constituted by HRA images after acetic acid staining (n = 27,191),
after lugol iodine staining (n = 10,011) and during therapeutic interventions (n = 11,047).
For each subset of images, training and validation sets were organized using a similar
distribution as previously referred to for the first experiment.

The confusion matrices for the testing dataset for each subanalysis group are shown
in Figure 3. In the testing dataset, when evaluating frames showing the squamocolumnar
area stained with 5% acetic acid, the CNN reached a sensitivity of 96.7%, a specificity of
96.1%, a PPV of 95.9%, a NPV of 96.9%, and an overall accuracy of 96.4%. The AUC for the
differentiation between both categories was 0.98. For images stained with lugol iodine, the
CNN differentiated HSIL from LSIL with a sensitivity of 95.8%, a specificity of 97.2%, a
PPV and NPV of 96.4% and 96.7%, respectively, and an accuracy 96.6%. Within this subset
of images, the algorithm achieved an AUC of 0.99. Finally, in the setting after therapeutic
procedures during HRA exams, the algorithm detected and differentiated HSIL from LSIL
with a sensitivity of 99.6%, a specificity of 98.0%, a PPV and NPV of 99.4% and 98.8%,
respectively, and an overall accuracy of 99.3% (AUC 1.00).
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4. Discussion

The increasing prevalence in the description of new deep learning algorithms in the
field of gastroenterology opens a new window into the optimization of optical diagnosis
during endoscopic procedures [19–21]. While these algorithms are steadily receiving regu-
latory approval and entering clinical practice in the case of systems applied to conventional
gastrointestinal endoscopy, the development of AI algorithms for anorectal diagnostic meth-
ods remain scarcely explored [15]. Moreover, there are significant challenges hampering
the integration of AI algorithms in clinical practice. One of the most significant challenges
concerns the lack of interoperability between different diagnostic systems, therefore restrict-
ing the access of patients to medical care and clinical information, as well as limiting the
access to high-quality real-world data for clinical and translational investigation [22,23].

To our knowledge, this is the first study to develop a deep learning algorithm which is
capable of working simultaneously on distinct HRA platforms, with significant procedural
and system requirements, therefore addressing the issue of interoperability. This system
extends the scope of the system that has been previously described by our group [15].
Indeed, this extension is particularly relevant in the field of HRA, as most Proctology centers
perform HRA using conventional colposcopes. Thus, the redefinition of the algorithm to
accommodate HRA performed with conventional colposcopes will expand the reach of
this technology, which has been shown, in this study, to have an adequate performance
when considering both HRA systems. This algorithm was developed by complying with
methods that will allow its communication with multiple devices. This, in line with the
FAIR principles, which were issued in 2016 to serve as a guide for data management and
stewardship [24]. These principles indicate that data should be made findable, accessible,
interoperable and reusable. Indeed, in this study efforts were instituted to ensure the
compliance with these principles. For example, we standardized the collection of data
using single-entry anonymized records, which are easily found within this study’s database.
This also contributes to ensuring easy access to patients’ data by the study investigators,
simultaneously safeguarding the privacy of data. For the first time, our group addressed the
interoperability issue by developing an AI model capable of working across several systems.
The topic of interoperability has derived from data management and several studies
have advocated the importance of its application to the development of AI algorithms in
medicine [22,25].

The identification of HSIL is of particular importance as its presence implies a greater
risk of the development of ASCC. This risk is particularly higher in vulnerable segments
of the population, most significantly people living with HIV [26]. The pivotal ANCHOR
study has provided robust evidence on the outcome benefit of identifying and treating
patients with this ASCC precursor lesions. This study has shown that, in a population of
adults living with HIV, those for whom HSIL had been identified and treated had a 57%
lower risk of progressing to ASCC [8]. The dual role of HRA, providing detection and the
possibility of treatment of precursor lesions are the main justifications for the reduction in
the risk of ASCC. Nonetheless, the technique requires extensive training and has limited
availability [27,28]. Indeed, the IANS acknowledges that these limitations may hamper the
applicability of its practice recommendations [9].

The IANS has developed practice standards for the practice of HRA [1]. These clinical
practice guidelines contemplate the performance of the technique using conventional
colposcopes. Nevertheless, despite the technical advantages provided by the use of high-
resolution videoproctoscopes, these systems have not received such endorsement. This
study extends the findings of previous studies by our group where a system design to
be applied to a single high-resolution videoproctoscope system was designed. That deep
learning algorithm achieved an overall accuracy for the detection of HSIL and its distinction
from LSIL [15]. In the present study, our group has modified the algorithm to also be
applicable to standard HRA systems. Indeed, this system has been shown to have a high-
performance level, with a sensitivity and specificity of 94% and 96%, respectively, and an
overall accuracy of 95%. This incremental step is extremely relevant as it represents the
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extension of the algorithm to an IANS-endorsed diagnostic technique. Moreover, in this
multicenter study, we provide an extension of the system to the standard HRA technique,
therefore allowing to demonstrate the performance of these innovative algorithms applied
to a widely used technique. This preliminary step is required for the future application
of this software for all HRA settings. Finally, integrating images from both types of HRA
system, the algorithm retained an adequate discriminating capability between HSIL and
LSIL, across the different subanalyses: staining with acetic acid, lugol iodine and during
therapeutic interventions. From a technical perspective, the analysis of the subset of images
during therapeutic interventions for the treatment of HSIL opens the perspective that the
real-time application of these algorithms may help to identify areas where residual lesion
is more probable. Moreover, besides its potential in facilitating the diagnosis, this type
of algorithm may contribute to increased HRA availability and potentiate the learning of
typical patterns, which is particularly relevant in low-volume settings [29]. Finally, the
increase in diagnostic capacity should be accompanied by additional efforts in engaging
with this group of patients, so that more effective screening is followed by the adequate
management of ASCC precursors [30].

Despite its merits, this study has some limitations. First, despite its multicentric matrix,
this study has a retrospective design. This study has the ultimate goal of translating the
results of the newly developed algorithm encompassing in its dataset images from different
HRA systems. Despite this significant methodological leap, this study is not intended
to evaluate the clinical impact of this technology. Second, while we advocate that the
algorithm will be most helpful for real-time assistance during HRA exams, and that the
ambition will be to increase the yield of HRA-guided biopsies, these analyses described in
this study area were based on the evaluation of imagens and not during real-time exams.
Finally, comparing the performance of the algorithm independently for imagens from
conventional colposcope versus images from high-resolution videoproctoctopes would be
helpful to further evaluate the model.

High-resolution anoscopy is expected to benefit greatly from the integration of AI
technologies. AI holds significant potential to enhance the accuracy, efficiency, and accessi-
bility in the screening for ASCC precursors. Through advanced image analysis algorithms,
AI can assist in the detection and characterization of lesions with greater precision than
traditional methods alone. These AI models, trained on the vast datasets of HRA images,
have the potential to recognize the subtle patterns indicative of ASCC precursors. This
could lead to earlier detection and intervention, ultimately improving patient outcomes
and reducing healthcare costs.

In this study, a deep learning algorithm was developed to detect HSIL and differentiate
this ASCC precursor from LSIL. The system showed high-performance levels, which were
sustained across different staining protocols and after therapeutic procedures. Moreover,
our system was interoperable across different HRA systems, both using a conventional
colposcope and a high-resolution videoproctoscope. The interoperability is crucial for
effective integration into clinical practice.

5. Conclusions

The application of AI to HRA can aid healthcare providers in interpreting HRA
findings, offering real-time guidance and increasing diagnostic confidence. Overall, the
integration of AI into HRA holds promise for revolutionizing anal cancer screening and
management, paving the way for more personalized and effective patient care.
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