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Simple Summary: This study delves into how the community of microorganisms residing in the
gut, known as the gut microbiome, can aid in understanding and predicting colorectal cancer (CRC).
Through the examination of fecal and blood samples from 142 patients with stage II/III CRC and
91 reference controls, we observed that patients with CRC exhibit distinct gut microbe compositions
in comparison to the control group. Additionally, we pinpoint specific microbial DNA fragments
in the blood of patients with CRC. These findings imply that the gut microbiome could potentially
serve as a marker for detecting CRC and predicting its prognosis. This potential could pave the
way for personalized treatment strategies for patients, potentially diminishing healthcare expenses
and enhancing outcomes. Nonetheless, further research is necessary to validate these findings and
understand how the gut microbiome affects CRC.

Abstract: Background: Colorectal cancer (CRC) significantly contributes to cancer-related mortality,
necessitating the exploration of prognostic factors beyond TNM staging. This study investigates
the composition of the gut microbiome and microbial DNA fragments in stage II/III CRC. Methods:
A cohort of 142 patients with stage II/III CRC and 91 healthy controls underwent comprehensive
microbiome analysis. Fecal samples were collected for 16S rRNA sequencing, and blood samples
were tested for the presence of microbial DNA fragments. De novo clustering analysis categorized
individuals based on their microbial profiles. Alpha and beta diversity metrics were calculated,
and taxonomic profiling was conducted. Results: Patients with CRC exhibited distinct microbial
composition compared to controls. Beta diversity analysis confirmed CRC-specific microbial profiles.
Taxonomic profiling revealed unique taxonomies in the patient cohort. De novo clustering separated
individuals into distinct groups, with specific microbial DNA fragment detection associated with
certain patient clusters. Conclusions: The gut microbiota can differentiate patients with CRC from
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healthy individuals. Detecting microbial DNA fragments in the bloodstream may be linked to
CRC prognosis. These findings suggest that the gut microbiome could serve as a prognostic factor
in stage II/III CRC. Identifying specific microbial markers associated with CRC prognosis has
potential clinical implications, including personalized treatment strategies and reduced healthcare
costs. Further research is needed to validate these findings and uncover underlying mechanisms.

Keywords: colorectal cancer; microbial dysbiosis; gut microbiome; microbial DNA fragments;
prognostic markers

1. Introduction

Colorectal cancer (CRC) accounts for 9% of all adult malignancies and stands as the
primary cause of mortality [1]. Although surgical intervention is feasible in 70–80% of
initial diagnoses, half of these cases relapse and succumb to the disease [2].

Recent decades have witnessed substantial advancements in diagnostic endoscopy
and imaging capabilities, leading to the earlier detection of CRC. Simultaneously, enhance-
ments in surgical procedures, chemotherapy, and radiotherapy, along with better pre- and
postoperative care, have contributed to higher survival rate for patients with CRC. The
TNM staging system, which considers tumor size (T), the number of affected lymph nodes
(N), and the presence of distant metastasis (M) at diagnosis, is the most powerful predictor
of patient survival [3]. Nevertheless, considerable variability in survival persists among
patients [4]. Various factors such as biochemical markers, histopathological features, ge-
nomic profile, microbiota, and immune responses to cancer are expected to independently
influence prognosis, regardless of tumor stage. The specific effects of these factors on tumor
recurrence and mortality in stage II/III CRC remain unclear. Despite ongoing advances in
CRC treatment, the global 5-year survival rate exceeds 60% [1], depending on factors such
as tumor location, stage, and other clinical variables. Treatment typically involves a combi-
nation of surgery, chemotherapy, and radiotherapy tailored to each patient’s individual
circumstances.

Furthermore, it is crucial to develop novel, sensitive, specific, cost-effective, and
minimally invasive prognostic markers and molecular techniques to handle the expected
rise in patient numbers. The necessity of new markers for patients with stage II-III CRC
is paramount in predicting treatment efficacy and identifying individuals who would
benefit from adjuvant therapy. This strategy holds promise in preventing unnecessary
toxic treatments for patients with favorable prognoses, reducing the financial strain of
managing patients with stage II/III CRC, and alleviating the costs linked with managing
treatment-related side effects.

The correlation between cancer and microbiota has been evidenced across diverse
organs [5,6]. Microbiota can influence cancer progression through several mechanisms,
including the modulation of inflammation, activation of DNA damage pathways, facili-
tation of chromosome missegregation, and production of metabolites involved in either
oncogenesis or tumor suppression. Considerable research has investigated the role of
intestinal microflora in CRC, leading to the development of a model of carcinogenesis that
encompasses different aspects of CRC pathogenesis. This includes mutations in epithelial
cells, disruptions in mucosal integrity, changes in microflora composition, and induction of
inflammation [6,7]. A growing area of research focuses on identifying microbes capable of
regulating immune responses within intestinal mucosa. These microbes hold potential as
biomarkers for predicting therapeutic responses and assessing the effectiveness of cancer
immunotherapy [7,8]. Moreover, the presence of microbial DNA fragments in the blood
has been associated with CRC development, disease progression, and ultimately reduced
survival rates among patients [9–11].

Given these factors, the main aim of this investigation was to analyze the composition
of the gut microbiome in the fecal samples of patients with stage II/III CRC, participating
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in the Cologramme project [12]. Additionally, we aimed to detect microbial DNA in the
bloodstream, which could signify microbial translocation.

2. Results
2.1. Patients’ Characteristics

From January 2019 to December 2021, a total of 142 patients with stage II/III CRC were
enrolled in the study. Their median age was 67 years (range: 42–86 years). The majority
were males (67.6%) and <70 years old (66.7%). All patients had an Eastern Cooperative
Oncology Group Performance Status (ECOG PS) of 0–1, 53.3% had colon cancer, and 32.1%
presented right-sided colon cancer. Of the enrolled patients, 22.4% and 77.6% exhibited
stage II and stage III CRC, respectively. All patients were diagnosed with adenocarcinoma
(Table S1). Microbial fragments related to 16S rRNA, E. coli, B. fragilis, and C. albicans were
identified in 71 (50.0%), 35 (24.6%), 46 (32.4%), and 76 (53.5%) occurrences, respectively
(Tables 1, S1 and S2).

Table 1. Detection of microbial fragments among colorectal cancer patients.

DNA Gene Target Detection No (%)

Microbial DNA
fragments

16S rRNA Positive 71 (50.0%)
Negative 71 (50.0%)

E. coli Positive 35 (24.6%)
Negative 107 (75.4%)

B. fragilis Positive 46 (32.4%)
Negative 96 (67.6%)

C. albicans Positive 76 (53.5%)
Negative 66 (46.5%)

2.2. Taxa Refinement and Downstream Analysis
2.2.1. Normalization

The relative abundances for all operational taxonomic units (OTUs) (provided in an
OTU table) were calculated based on normalized values. Rarefaction curves were generated
to estimate the sufficiency of sequencing depth for each sample. After normalization, five
samples with inadequate sequencing depth (less than 5000 reads) were removed from the
OTU table.

2.2.2. Alpha and Beta Diversity Calculation

As demonstrated, the average number of species in each sample was 121.4 (Richness
range: 12–219 species per sample), with an average of 30.9 dominant species (Shannon
effective range: 1.8–86.2).

Beta diversity calculation was performed to quantify the similarity of microbial com-
munities among various samples using the OTU table. This calculation relied on permu-
tational multivariate analysis of variances (PERMANOVA), employing multiple distance
matrices based on phylogenetic distances between observed samples. The results revealed
significant differences between patients and healthy cohorts (p < 0.001, Figure 1). The
constructed phylogram illustrates the relationships among the various sample sets, clearly
showing a distinct separation between patients and healthy individuals (Figure 2).
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community (Figure 3). Additionally, it was observed that six taxonomies were exclusively 
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Bacteria; Firmicutes; Clostridia; Peptostreptococcales-Tissierellales; Peptoniphilus 85 59.9 

Bacteria; Firmicutes; Clostridia; Peptostreptococcales-Tissierellales; Fenollaria 51 35.9 
Bacteria; Firmicutes; Clostridia; Peptostreptococcales-Tissierellales; Anaerococcus 58 40.8 

Bacteria; Firmicutes; Clostridia; Peptostreptococcales-Tissierellales; Finegoldia 91 64.1 
Bacteria; Firmicutes; Clostridia; Peptostreptococcales-Tissierellales; Ezakiella 46 32.4 

Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Porphyromonadaceae; Porphyromonas 59 41.5 

Figure 1. Multi-dimensional scaling (MDS) of patients (red) and healthy (blue) individuals.

Cancers 2024, 16, x FOR PEER REVIEW 4 of 18 
 

 

 
Figure 1. Multi-dimensional scaling (MDS) of patients (red) and healthy (blue) individuals. 

 
Figure 2. Phylogram presents the sample construction via hierarchical clustering. 

2.2.3. Taxonomic Binning 
In terms of taxonomic profiling, Rhea offers a comprehensive view of sample-specific 

relative abundances across all taxonomic levels, from kingdom to family, and in many 
cases down to genus (Supplementary Table S2). A taxonomic profiling analysis has been 
conducted specifically focusing on the cumulative relative abundance (%) at the family 
level. This analysis aims to provide insights into the collective proportional representation 
of the taxa within a particular taxonomic family in comparison to the entire microbial 
community (Figure 3). Additionally, it was observed that six taxonomies were exclusively 
detected in the gut of patients from the cohort (Table 2). 

Table 2. Taxonomies present in the cohort of patients but not in the heathy group. 

Taxonomy Patients (N = 142) % 
Bacteria; Firmicutes; Clostridia; Peptostreptococcales-Tissierellales; Peptoniphilus 85 59.9 

Bacteria; Firmicutes; Clostridia; Peptostreptococcales-Tissierellales; Fenollaria 51 35.9 
Bacteria; Firmicutes; Clostridia; Peptostreptococcales-Tissierellales; Anaerococcus 58 40.8 

Bacteria; Firmicutes; Clostridia; Peptostreptococcales-Tissierellales; Finegoldia 91 64.1 
Bacteria; Firmicutes; Clostridia; Peptostreptococcales-Tissierellales; Ezakiella 46 32.4 

Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Porphyromonadaceae; Porphyromonas 59 41.5 

Figure 2. Phylogram presents the sample construction via hierarchical clustering.

2.2.3. Taxonomic Binning

In terms of taxonomic profiling, Rhea offers a comprehensive view of sample-specific
relative abundances across all taxonomic levels, from kingdom to family, and in many
cases down to genus (Supplementary Table S2). A taxonomic profiling analysis has been
conducted specifically focusing on the cumulative relative abundance (%) at the family
level. This analysis aims to provide insights into the collective proportional representation
of the taxa within a particular taxonomic family in comparison to the entire microbial
community (Figure 3). Additionally, it was observed that six taxonomies were exclusively
detected in the gut of patients from the cohort (Table 2).

Table 2. Taxonomies present in the cohort of patients but not in the heathy group.

Taxonomy Patients (N = 142) %

Bacteria; Firmicutes; Clostridia; Peptostreptococcales-Tissierellales; Peptoniphilus 85 59.9
Bacteria; Firmicutes; Clostridia; Peptostreptococcales-Tissierellales; Fenollaria 51 35.9

Bacteria; Firmicutes; Clostridia; Peptostreptococcales-Tissierellales; Anaerococcus 58 40.8
Bacteria; Firmicutes; Clostridia; Peptostreptococcales-Tissierellales; Finegoldia 91 64.1
Bacteria; Firmicutes; Clostridia; Peptostreptococcales-Tissierellales; Ezakiella 46 32.4

Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Porphyromonadaceae;
Porphyromonas 59 41.5
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2.2.4. De Novo Clustering Analysis

The analysis in question utilized de novo clustering of both reference and test sam-
ples, which were grouped into distinct clusters using the Partitioning Around Medoid
(PAM) algorithm. Specifically, the control dataset was clustered into three distinct groups
consisting of 44, 39, and 8 individuals, respectively (p < 0.001). Simultaneously, patients
were grouped into two clusters, comprising 89 and 53 samples, respectively (p = 0.0047)
(Figure 4). Subsequently, correlations were conducted among these various groups based
on the dominant microbial flora (Figure 5 and Table 3). Additionally, taxonomic profiling
was performed to examine the cumulative relative abundance (%) and distribution of
microbial families within each group (Figure 6). In summary, no statistically significant
differences were observed among the control groups (Control 1 vs. 3, p = 0.3081; Control 1
vs. 2, p = 0.3292; Control 2 vs. 3, p = 0.5913). Conversely, significant differences were evident
when comparing the control groups to the patient cohorts (Control 1 vs. Patient 1, p < 0.001;
Control 2 vs. Patient 1, p < 0.001; Control 3 vs. Patient 1, p < 0.001; Control 1 vs. Patient 2,
p < 0.001; Control 2 vs. Patient 2, p < 0.001; Control 3 vs. Patient 2, p < 0.001). Notably, a
significant distinction was also observed between the two patients’ groups (Table 3).

Aiming to investigate differences in the abundances of microbial populations among
the groups of patients, boxplots were created using Rhea, and the taxa with significant
differences in the relative abundance (%) are presented in Figure 7. In brief, microbial
taxa belonging to the families of Bacteroidacea, Lachnospiraceae, Oscillospiraceae, and Ru-
minococaceae were more abundant in the Patient 1 cluster, whereas Anaerococcus and Pep-
toniphilus were more abundant in the Patient 2 cluster. Additionally, when comparing the
patients with the reference controls, all taxa belonging to Bacteroidaceae, Oscillospiraceae,
Rikinellaceae, Ruminococcaceae, and Veillonellaceae families presented a higher relative
abundance in the reference controls, even though the effective richness was higher in
patients (Figure 8).



Cancers 2024, 16, 1923 6 of 18

Cancers 2024, 16, x FOR PEER REVIEW 6 of 18 
 

 

abundance in the reference controls, even though the effective richness was higher in pa-
tients (Figure 8). 

Furthermore, an additional analysis was conducted to examine the distribution and 
prevalence of specific zero-radius OTUs (zOTUs) within the samples, particularly focusing 
on those with abundances surpassing 0.25% (Figure 9). By grouping the samples based on 
the clusters they belong to, the study aimed to identify patterns and associations between 
zOTUs and their respective clusters. Additionally, the analysis sought to provide insight 
into the taxonomic classification of these zOTUs at the species level, utilizing the EzBio-
Cloud database for reference. Overall, the analysis aimed to elucidate the composition and 
characteristics of microbial communities within the samples, with a specific focus on the 
identified zOTUs. In brief, the plot consists of individual data points, each representing a 
sample from the dataset. The green samples have an abundance of certain microbial taxa, 
specifically zOTUs, that exceed 0.25%. This suggests that these microbial taxa are relatively 
abundant in these samples compared to others. Based on the obtained plot, it can be in-
ferred that zOTU117 (Aristeaella hokkaidonensis) and zOTU396 (an unknown species be-
longing to the Oscillospiraceae family) are most prevalent in the healthy setting (Figure 9). 
Conversely, Peptoniphilus urinae, Fenollaria massiliensis, Anaerococcus vaginalis, Finegoldia 
magna, Ezakiella coagulans, Streptococcus salivarius, Peptoniphilus faecalis, and Porphyromonas 
asaccharolytica were exclusively detected in patients with CRC, with a higher abundance 
observed in the Patient 2 cluster. The sole exception is Str. salivarius, which was also present 
in the Control 2 cluster but at a much lower abundance than in the patient cluster. 

 
Figure 4. Multi-dimensional scaling (MDS) presenting the groups that have formed the de novo 
clustering of the reference (control - green) and the test (patients - orange) samples. 

 
Figure 5. Boxplots demonstrate the distribution of the distances from their nearest reference me-
doid. Each column represents the cluster that has been derived from the de novo clustering of the 
reference (green) and test samples (orange). 

Figure 4. Multi-dimensional scaling (MDS) presenting the groups that have formed the de novo
clustering of the reference (control—green) and the test (patients—orange) samples.

Cancers 2024, 16, x FOR PEER REVIEW 6 of 18 
 

 

abundance in the reference controls, even though the effective richness was higher in pa-
tients (Figure 8). 

Furthermore, an additional analysis was conducted to examine the distribution and 
prevalence of specific zero-radius OTUs (zOTUs) within the samples, particularly focusing 
on those with abundances surpassing 0.25% (Figure 9). By grouping the samples based on 
the clusters they belong to, the study aimed to identify patterns and associations between 
zOTUs and their respective clusters. Additionally, the analysis sought to provide insight 
into the taxonomic classification of these zOTUs at the species level, utilizing the EzBio-
Cloud database for reference. Overall, the analysis aimed to elucidate the composition and 
characteristics of microbial communities within the samples, with a specific focus on the 
identified zOTUs. In brief, the plot consists of individual data points, each representing a 
sample from the dataset. The green samples have an abundance of certain microbial taxa, 
specifically zOTUs, that exceed 0.25%. This suggests that these microbial taxa are relatively 
abundant in these samples compared to others. Based on the obtained plot, it can be in-
ferred that zOTU117 (Aristeaella hokkaidonensis) and zOTU396 (an unknown species be-
longing to the Oscillospiraceae family) are most prevalent in the healthy setting (Figure 9). 
Conversely, Peptoniphilus urinae, Fenollaria massiliensis, Anaerococcus vaginalis, Finegoldia 
magna, Ezakiella coagulans, Streptococcus salivarius, Peptoniphilus faecalis, and Porphyromonas 
asaccharolytica were exclusively detected in patients with CRC, with a higher abundance 
observed in the Patient 2 cluster. The sole exception is Str. salivarius, which was also present 
in the Control 2 cluster but at a much lower abundance than in the patient cluster. 

 
Figure 4. Multi-dimensional scaling (MDS) presenting the groups that have formed the de novo 
clustering of the reference (control - green) and the test (patients - orange) samples. 

 
Figure 5. Boxplots demonstrate the distribution of the distances from their nearest reference me-
doid. Each column represents the cluster that has been derived from the de novo clustering of the 
reference (green) and test samples (orange). 

Figure 5. Boxplots demonstrate the distribution of the distances from their nearest reference medoid.
Each column represents the cluster that has been derived from the de novo clustering of the reference
(green) and test samples (orange).

Table 3. Wilcoxon rank sum test—pairwise—to identify significant differences between various
patient and control cohorts grouped based on de novo clustering.

Groups p-Value

Control 1–Control 3 0.3081
Control 1–Control 2 0.3292
Control 2–Control 3 0.5913
Patient 1–Control 1 0.0000
Patient 1–Control 2 0.0000
Patient 2–Control 1 0.0000
Patient 2–Control 2 0.0000
Patient 2–Control 3 0.0000
Patient 1–Control 3 0.0006
Patient 1–Patient 2 0.0000

Furthermore, an additional analysis was conducted to examine the distribution and
prevalence of specific zero-radius OTUs (zOTUs) within the samples, particularly focusing
on those with abundances surpassing 0.25% (Figure 9). By grouping the samples based
on the clusters they belong to, the study aimed to identify patterns and associations
between zOTUs and their respective clusters. Additionally, the analysis sought to provide
insight into the taxonomic classification of these zOTUs at the species level, utilizing the
EzBioCloud database for reference. Overall, the analysis aimed to elucidate the composition
and characteristics of microbial communities within the samples, with a specific focus on
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the identified zOTUs. In brief, the plot consists of individual data points, each representing
a sample from the dataset. The green samples have an abundance of certain microbial
taxa, specifically zOTUs, that exceed 0.25%. This suggests that these microbial taxa are
relatively abundant in these samples compared to others. Based on the obtained plot, it can
be inferred that zOTU117 (Aristeaella hokkaidonensis) and zOTU396 (an unknown species
belonging to the Oscillospiraceae family) are most prevalent in the healthy setting (Figure 9).
Conversely, Peptoniphilus urinae, Fenollaria massiliensis, Anaerococcus vaginalis, Finegoldia
magna, Ezakiella coagulans, Streptococcus salivarius, Peptoniphilus faecalis, and Porphyromonas
asaccharolytica were exclusively detected in patients with CRC, with a higher abundance
observed in the Patient 2 cluster. The sole exception is Str. salivarius, which was also present
in the Control 2 cluster but at a much lower abundance than in the patient cluster.
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2.2.5. Correlation of De Novo Clustering with Microbial Fragment Detection

After conducting numerous correlation analyses using various factors available at
the time, no statistical significance was found in the relationship between the de novo
clustering and gender or age of the enrolled patients. However, when examining patient
clustering in relation to the detection of microbial DNA fragments, significant findings
emerged. Specifically, it was found that the detection of 16S rRNA occurred more frequently
in patients belonging to Group 2 compared to those in Group 1 (65.4% vs. 42.9%, p = 0.008).
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Similarly, the detection of 5.8S rRNA, inherent to C. albicans, was more prevalent in patients
of Group 2 compared to those in Group 1 (67.3% vs. 45.5%, p = 0.012). Conversely, no
statistical significance was found in the relationship between patient clustering and the
detection of E. coli or B. fragilis (Tables 4 and S1). Additionally, a significant association
was observed among the co-occurrence of 16S rRNA with E. coli, B. fragilis, and 5.8S rRNA
of C. albicans (p < 0.001 for each association; Table S1). Similarly, a significant association
was noted among the co-occurrence of 5.8S rRNA of C. albicans with E. coli and B. fragilis
(p < 0.001 for each association; Table S1).

Table 4. Correlation between patient clustering and microbial DNA fragment detection, along with
gender and age.

Group 1 (N = 89) Group 2 (N = 53) p-Value

Gender Males 60 (68.2%) 34 (65.4%) 0.733
Females 28 (31.8%) 18 (34.6%)

Age ≥70 15 (33.3%) 9 (36.0%) 0.822
<70 30 (66.7%) 16 (64.0)

16S rRNA Positive 37 (42.0%) 34 (65.4%) 0.008
Negative 51 (58.0%) 18 (34.6%)

E. coli Positive 22 (25.0%) 13 (25.0%) 1.000
Negative 66 (75.0%) 39 (75.0%)

B. fragilis Positive 31 (35.2%) 15 (28.8%) 0.437
Negative 57 (64.8%) 37 (71.2%)

C. albicans Positive 40 (45.5%) 35 (67.3%) 0.012
Negative 48 (54.5%) 17 (32.7%)

3. Discussion

CRC continues to pose a significant global health challenge. Despite the reliability of
TNM staging as a prognostic tool, there remains considerable variation in patient outcomes.
This study investigates the intriguing potential of the gut microbiome and microbial DNA
fragments as potential prognostic factors for stage II/III CRC. It aligns with the growing
body of research exploring the relationship between microbiota and cancer. The human gut
microbiota plays a crucial role in maintaining gut balance and influencing various aspects
of health and disease [13–15]. Recent studies have increasingly linked microbial dysbiosis—
characterized by alterations in the composition and function of the gut microbiome—to the
development and progression of CRC [16,17].

Alpha diversity metrics, like species richness and Shannon diversity, provide insights
into the microbial diversity present in the gut. Our finding of distinct alpha diversity
in patients with CRC is consistent with prior research, which suggests that variations in
microbial diversity correlate with disease states. These changes in diversity could result
in the depletion of beneficial microorganisms and the expansion of potentially harmful
ones, thereby contributing to CRC pathogenesis [18,19]. Our findings of distinct microbial
compositions in patients with CRC confirms earlier research, endorsing the hypothesis
that the gut microbiota could be a distinguishing factor in CRC [20,21]. The variances
between patients with CRC and healthy individuals may be due to several factors, including
diet, lifestyle, and/or genetic predispositions, which can impact the gut microbiome [22].
Moreover, the distinct microbial profiles seen in patients with CRC support the idea that
changes in the microbiota might play a role in tumorigenesis [23]. The gut microbiota
plays a significant role in modulating inflammation, DNA damage pathways, and the
production of oncogenic metabolite, which offers plausible mechanisms for its impact
on CRC development [24–26]. The phenomenon described in the current study indicates
that although the patients exhibited a higher effective richness of microbial taxa, certain
specific families of microbes, including Bacteroidaceae, Oscillospiraceae, Rikinellaceae,
Ruminococcaceae, and Veillonellaceae, were more abundant in the reference controls than
in the patients. This suggests that the composition and distribution of microbial populations
vary between patients and healthy individuals. Despite the greater diversity observed in
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patients, particular families of microbes seem to thrive more in the healthy state, potentially
indicating a dysbiosis or imbalance in the microbial community associated with CRC.
This finding underscores the complexity of the microbiome and its potential role in health
and disease. For sure, further research is needed to elucidate the mechanisms underlying
these differences and their implications for CRC development and progression. Another
key finding in this study is the identification of specific microbial taxa found exclusively
in patients with CRC. These taxa could potentially serve as microbial biomarkers for
individuals with stage II/III of CRC. Specifically, microbial taxa such as Porphyromonas,
Peptoniphilus, Fenollaria, Finegoldia, and Ezakiella that were identified solely in the patient
cohort have been previously significantly associated with the initiation of CRC [17,27–31].
The use of microbial biomarkers for CRC diagnosis and prognosis has gained attention in
recent years due to their non-invasive nature and their ability to enhance early detection and
risk assessment. The findings of this study regarding the composition of gut microbiome
and the presence of microbial DNA fragments in patients with stage II/III CRC align with
and build upon previous research in the field. Various aspects of this study’s results can be
compared with the existing literature, providing a comprehensive understanding of the
current knowledge. The observation of decreased alpha diversity in patients with CRC
is consistent with numerous previous studies [18,19]. Reduced microbial diversity has
been associated with CRC, suggesting that a loss of beneficial commensal bacteria and an
overgrowth of potentially harmful species may indeed contribute to CRC pathogenesis.
The identification of specific microbial taxa exclusively present in the gut of patients with
CRC confirms the findings from many studies that have reported altered abundances of
specific bacteria in the CRC setting [20,32]. For instance, an overabundance of certain
genera such as Fusobacterium and Bacteroides has been extensively linked to CRC [33–37].

Furthermore, the de novo clustering analysis, which unveils distinct microbial profiles
among patient clusters, aligns with the concept of inter-individual variation in the gut
microbiome [38]. This diversity highlights the necessity for personalized approaches to
managing CRC. Additionally, an in-depth analysis was conducted to explore the distri-
bution and prevalence of specific zOTUs. Through the grouping of samples based on the
clusters they belong to, the study sought to uncover patterns and associations between the
identified zOTUs and their respective clusters. This approach allowed for the identification
of microbial taxa that exhibited distinct prevalence patterns across different sample clusters.
The results of the analysis revealed notable differences in the prevalence of certain microbial
taxa between healthy individuals and patients with colorectal cancer (CRC). Specifically,
several microbial taxa including P. urinae, F. massiliensis, A. vaginalis, F. magna, E. coagulans,
Str. salivarius, P. faecalis, and P. asaccharolytica were exclusively detected in patients with
CRC. Among these, a higher abundance was observed in the Patient 2 cluster, suggesting a
potential association with CRC. This observation underscores the complexity of microbial
community dynamics and highlights the importance of considering relative abundance
levels in addition to taxonomic presence. Overall, the findings from this analysis provide
valuable insights into the microbial composition of the sampled communities, shedding
light on the potential biomarkers or indicators of health and disease states.

The correlation between microbial clustering and the presence of particular microbial
markers could also offer insights into various CRC subtypes or clinical phenotypes. Sub-
typing CRC based on the gut microbiota has been suggested in previous research [39]. The
detection of microbial DNA fragments in the bloodstream, as demonstrated in our study,
suggests a possible phenomenon of microbial translocation from the gut to the systemic
circulation. This finding is in line with an increasing body of research exploring the concept
of microbial translocation and its potential role in cancer progression [23]. The presence
of microbial DNA fragments in the bloodstream has been linked to adverse outcomes in
patients with CRC [9–11,40]. This raises the intriguing possibility of employing microbial
DNA detection as a non-invasive prognostic marker for CRC, offering clinical benefits
such as early intervention and treatment stratification. The potential use of microbial
markers as prognostic indicators in patients with CRC is in accordance with the broader
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concept of microbial signatures for predicting patient outcomes [41–45]. Identifying high-
risk patients who could benefit from more aggressive treatment is a common objective.
Tailoring CRC treatment according to the composition of the gut microbiota aligns with
the emerging field of precision oncology, where treatment decisions are personalized to
individual patients [46–49]. Personalized interventions have the potential to improve
treatment efficacy. The notion of modulating the gut microbiome as a therapeutic strategy
in CRC is in line with the growing interest in microbiome-based interventions, such as
fecal microbiota transplantation, probiotics, selective antibiotics, or bacteriophages [50,51].
These interventions aim to restore a healthy balance in the microbiome. For patients with
favorable prognoses, identifying specific microbial markers can be crucial in guiding clini-
cal decisions. Such markers enable the avoidance of unnecessary aggressive treatments,
alleviating the financial burden on patient and healthcare systems. Moreover, adopting
a more refined treatment strategy has the potential to enhance the overall quality of life
for these individuals. Conversely, high-risk patients with CRC can benefit substantially
from intensified therapeutic approaches. Microbial markers that signify increased risk can
serve as guides for implementing more aggressive treatments. This proactive approach
may ultimately enhance treatment efficacy and clinical outcomes for this subset of patients.
In the context of this study, the detection of 16S rRNA and 5.8S rRNA of C. albicans in
patients with CRC emerges as particularly intriguing. This finding prompts questions
about potential associations between microbial profiles and specific clinical characteristics
or disease subtypes within the CRC patient population. The presence of 16S rRNA and
5.8S rRNA of C. albicans in patients with CRC is an intriguing finding and adds to the
growing list of potential microbial biomarkers for CRC [52–55]. The link between patient
clustering and the presence of 16S rRNA and 5.8S rRNA of C. albicans suggests a phe-
nomenon where certain microbial species or their genetic material may translocate from the
gut to the bloodstream. This intriguing possibility suggests a mechanism through which
systemic inflammation could be triggered and CRC progression influenced. Furthermore,
the co-occurrence of these microbial markers, notably the correlation between 16S rRNA
and E. coli or B. fragilis, underscores the potential for complex interactions between different
microbial species in the context of CRC. These complex interactions may play a role in the
intricate landscape of CRC development and progression, warranting further investigation.

Acknowledging the inherent study limitations, such as a relatively modest sample size
and its cross-sectional design, it is important to acknowledge that these constraints restrict
our capacity to ascertain causality or unravel the temporal dynamics between microbial
dysbiosis and CRC. Consequently, there is a compelling imperative for future investigations
that encompass more substantial cohorts, longitudinal studies, and in-depth functional
experiments, which can provide the necessary validation of our findings. Furthermore,
there remains a pressing need to delve into the underlying mechanisms that elucidate the
profound influence of the microbiota on CRC prognosis, as this endeavor holds paramount
importance for advancing our comprehension of the disease.

4. Materials and Methods
4.1. Patients and Healthy Controls

From January 2019 to December 2021, a comprehensive investigation was conducted,
involving 157 individuals drawn from the network centers affiliated with the Gastroin-
testinal Cancer Study Group (GIC-SG; www.emkapes.gr, accessed on 10 September 2023).
This cohort, all of whom were above the age of 18 years, had recently received a diag-
nosis of stage II/III CRC, a diagnosis that was histologically confirmed. However, it is
important to note that the study experienced a reduction in its cohort pool due to certain
circumstances. Specifically, six patients were excluded from the study because of the identi-
fication of metastatic sites, while nine patients were lost to follow-up. Consequently, the
study focused on a cohort of 142 patients who presented with stage II/III CRC and met
the eligibility criteria. None of these patients had a prior history of other malignancies.
Furthermore, to serve as a control group, the study also included a total of 91 healthy young

www.emkapes.gr
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individuals, aged over 18 years. Stool samples from 91 healthy young adults were collected
anonymously after informed consent. Based on their answers to a detailed questionnaire,
none of the donors had been taking antibiotics in the past 3 months, had any illness, or had
been taking any long-term medication. The adult reference sample raw data are publicly
available at the European Nucleotide Archive under the accession of “PRJEB47555”.

4.2. Blood Samples and Microbial DNA Fragment Amplification

Peripheral blood samples (5 mL in EDTA) were collected, and the process of DNA
extraction was carried out utilizing the QIAamp DNA Blood Mini Kit (QIAGEN, Hilden,
Germany), following the protocols stipulated by the manufacturer. DNA quantification was
performed using the NanoDrop ND-1000 v3.3 spectrophotometer (Thermo Fisher Scientific,
Eugene, OR, USA). The methodologies pertaining to the amplification of microbial DNA
have been comprehensively elucidated by our research team and have been previously
documented [9–11]. The approach involved the utilization of a series of four primer pairs
designed to target specific genes for the identification of bacterial genomic DNA. These
genes encompassed the 16S rRNA gene present in bacteria, the glutamine synthase gene of
B. fragilis, the β-galactosidase gene of E. coli, and the 5.8S rRNA gene inherent to C. albicans.
The integrity of the DNA extracted from the samples was verified utilizing the human
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene as a reference. Furthermore, for the
purpose of discerning bacterial DNA within the blood samples, the 16S rRNA gene was
employed as a reference marker. All primers, enzymes, and reagents, along with the PCR
conditions for each of the above targets, have been previously described by our group [10].

4.3. Fecal Samples

Fecal samples were collected using sterile cotton swabs and immediately stored at
−80 ◦C [56]. The process of DNA extraction was carried out utilizing the QIAamp PowerFe-
cal Pro DNA Kit (QIAGEN) following the manufacturer instructions. DNA quantification
was performed using the Qubit Fluorometer and the Qubit dsDNA HS Assay Kit (Thermo
Fisher Scientific). All samples were collected from patients that were not exposed to any
antibiotics, probiotics, bowel preparations, or other factors that might confound the results
for at least 6 weeks.

4.4. 16S rRNA Sequencing Library Preparation and Microbiome Analysis

After the extraction fecal DNA, the subsequent step involved the preparation of
amplicons for the 16S rRNA gene intended for the Illumina MiSeq sequencing system
(Illumina, San Diego, CA, USA). The specific genetic sequences employed in this procedure
were designed to focus on the 16S V3 and V4 regions. These sequences were extracted from
the research work by Klindworth et al. [57] due to their discerned potential as a bacterial
primer pair. In the 16S rRNA sequencing of samples, variable region PCR amplification was
concluded by 2 × 300 bp paired-end sequencing of amplicons and at least 100,000 reads
per sample.

4.5. Amplicon Sequence Analysis

The sequencing data underwent preprocessing utilizing the integrated microbial next-
generation sequencing (IMNGS) implementation [58]. In brief, the original fastq files from
the sequencing run, along with a mapping file containing barcodes and index informa-
tion required for demultiplexing, were submitted to the IMNGS platform. This platform
operates on the UPARSE [59] algorithm from the USEARCH11 (32-bit) package [60]. Sub-
sequent to processing, an operational taxonomic unit (OTU) table, the sequences, and a
phylogenetic tree were provided. For read quality enhancement, five nucleotides were
removed from the 5′ end of the R1 and from the 3′ end of the R2 read (trim score 5), while
adhering to an anticipated error rate of 1. Following demultiplexing, the reads from the
distinct samples were merged and subjected to clustering at 97% similarity, employing the
UPARSE approach [59]. OTUs presenting with a relative abundance of <0.25% across all
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samples were removed to exclude spurious OTUs [61]. The OTU sequences were reclassi-
fied with the online RDP classifier version 2.10.2 and confirmed by referencing the SILVA
database [62].

4.6. Taxa Refinement and Downstream Analysis

An attempt was made to refine the taxonomic classification of the OTU table, aiming
to enhance the precision of taxonomic assignment and associated statistical analysis. To
achieve this, the utilization of sequences acquired from the IMNGS platform was impera-
tive. The taxonomic categorization of each OTU was accomplished by selecting the most
accurate match from the SILVA database [62,63]. Subsequent to the process of alignment,
classification, and tree construction (ACT) facilitated by the SILVA database, a new fasta file
comprising the aligned sequences was generated. To validate the alignment derived from
SILVA database, the MEGA X alignment explorer [64] was employed in a manual capacity.
However, the OTU–taxonomy table yielded by SILVA exhibited certain instances of absent
information pertaining to taxonomic classification, signifying that not all OTUs possessed
comprehensive details encompassing kingdom–phylum–class–order–family-genus. To
this end, the EZBioCloud database [65] was employed to identify bacterial isolates corre-
sponding to the provided 16S rRNA sequences, thereby extending the identification to the
genus level.

More specifically, the Rhea pipeline, implemented in the R programming language [66],
was employed for the subsequent assessment of the enhanced output. Initiated with the
refined OTU table, the pipeline encompasses a series of six R scripts that conduct typ-
ical analysis involving microbial profiles. These include the normalization of the OTU
table, determination of the alpha and beta diversity, and depiction of the outcomes via
multi-dimensional scaling (known as Principal Coordinates Analysis or PCoA), along
with taxonomic binning and statistical analysis. To this end, the abundance values of
the input OTU table were normalized, enabling comparability among the samples [67].
After normalization, only the normalized sequence counts were used to calculate species
richness within each sample [61,68]. For this, only OTUs with counts above 0.5 were
considered. Beta-diversity provides an assessment of the degree of resemblance among
distinct microbial profiles as delineated within the OTU table. The prevalent methodologies
employed for quantifying the resemblance among these microbial profiles encompass the
Bray–Curtis dissimilarity index and the UniFrac distance [69,70]. Notably, the Bray–Curtis
exclusively factors in the shared compositional elements across samples, whereas the
UniFrac distance incorporates the phylogenetic dissimilarity amidst OTUs and was promi-
nently employed in the Rhea pipeline [70]. The process of rendering the multi-dimensional
distance matrix within a two-dimensional space was executed through the utilization of
multi-dimensional scaling (MDS) [71]. A permutational multivariate analysis of variance
was executed employing distance matrices through the vegan::adonis procedure for each
instance. This analysis was undertaken to ascertain the statistical significance of group
separations, both as a collective entity and in pairwise comparisons [72]. Furthermore, a
dendrogram representing all samples was constructed via hierarchical clustering, utilizing
Ward’s minimum variance method, thereby affording an alternative perspective on the
positioning of individual samples [73].

The taxonomic categorization of OTUs permits their combination into more inclusive
taxonomic ranks for the purpose of assessing the taxonomic makeup of samples. This
process entails the summation of the proportional sequence abundances of all OTUs that
share common assignment at a specific taxonomic rank. It is important to note that the
accuracy of this classification significantly impacts the resultant taxonomic composition,
particularly when dealing with lower taxonomic levels, such as genera. There are many
ways to classify OTUs to known taxonomies, including the Bayesian classifier of RDP [74]
and the Lowest Common Ancestor (LCA) used in SILVA [63]. Then, DivCom, a distance-
based tool that compares phylogenetic distances among observed organisms, was utilized.
DivCom employs the Partitioning Around Medoid (PAM) algorithm [75], for sample
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clustering, whereas the default distance metric employed was the generalized Unifrac [70].
This approach is designed to enhance the efficiency and granularity of comparisons among
different groups, while elucidating their interrelationships. The script initiates the process
by executing de novo clustering, followed by a comparative evaluation of these clusters
based on their inter-cluster distances. Consequently, all distances between the remaining
test samples and those pre-selected representative points are computed and assessed. This
facilitated the derivation of conclusions regarding the extent of divergence between the
control and test samples.

4.7. Bioinformatic and Statistical Analyses

Statistical analyses were conducted using the Rhea software pipeline [66] and SPSS
v26.0 (SPSS, Chicago, IL, USA). The patients’ epidemiological, clinical, and pathological
characteristics were assessed using various statistical tests. For quantitative variables, the
independent sample t-test and Wilcoxon rank sum test were employed, while for quali-
tative characteristics, the Fisher–Freeman–Halton and Fisher exact tests were used. The
assessment of diversity metrics encompassed both alpha (species richness, Shannon, Simp-
son, evenness) and beta (Bray–Curtis, generalized UniFrac v1.1) diversity were calculated
using OTU counts.

To visualize the dissimilarity matrix in a two-dimensional space, the multi-dimensional
scaling technique was employed, along with its more robust and non-metric version
(NMDS). Subsequently, a permutational multivariate analysis of variance (PERMANOVA)
was performed using distance matrices (vegan package and adonis R function). This anal-
ysis was conducted both collectively and pairwise to ascertain the significance of group
separations. Furthermore, a dendrogram was conducted to display the relationship among
all samples. Hierarchical clustering was executed using the Ward’s minimum variance
method, and the Euclidian distance matrix of log2-transformed abundances was employed
to determine sample distances. Additionally, the samples clustered into groups based on
different categories, employing the nearest medoid assignment to minimize dissimilarities.
The optimal number of clusters (k) was determined by the Calinski–Harabasz (CH) Index.
Statistical significance was determined by a p-value of <0.05.

Additionally, the Kruskal–Wallis rank sum test was used to assess differences in the
relative abundances of taxa between the groups and clusters. Pairwise comparisons were
conducted using the Wilcoxon rank sum test in cases where the adjusted p-value reached
the cutoff of 0.05. All p-values were adjusted using the Benjamini–Hochberg method.
Finally, pairs were selected in which the adjusted p-values were less than 0.001.

5. Conclusions

In conclusion, our investigation underscores the significance of the gut microbiome
and microbial DNA fragments in stage II/III CRC prognosis. These findings emphasize
the need for further research to elucidate the underlying mechanisms through which
the gut microbiota and microbial translocation influence CRC prognosis. Additionally,
the validation of these findings in larger cohorts and diverse populations is essential.
Integrating microbiota-related markers into clinical practice could represent a significant
step toward more personalized and effective CRC management.
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