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Simple Summary: There are currently limited means by which radiotherapy treatment can be
tailored to individual patient needs based on their tumour biology. Published studies of biomarkers
aiming to predict tumour sensitivity to radiotherapy treatment for the clinic were reviewed. No
gene expression signature biomarkers of sensitivity to radiotherapy are in routine clinical use, have
been tested in advanced trials or are recommended for use in clinical guidelines. A pathway for
future biomarker development that would enable tools for personalised clinical decision-making
is proposed. This focusses on the need to improve the biological understanding of variation in
sensitivity to radiotherapy, develop cost-effective assays and conduct large radiotherapy randomised
controlled trials.

Abstract: Modern advanced radiotherapy techniques have improved the precision and accuracy of
radiotherapy delivery, with resulting plans being highly personalised based on individual anatomy.
Adaptation for individual tumour biology remains elusive. There is an unmet need for biomarkers
of intrinsic radiosensitivity that can predict tumour response to radiation to facilitate individu-
alised decision-making, dosing and treatment planning. Over the last few decades, the use of high
throughput molecular biology technologies has led to an explosion of newly discovered cancer
biomarkers. Gene expression signatures are now used routinely in clinic to aid decision-making
regarding adjuvant systemic therapy. They have great potential as radiotherapy biomarkers. A
previous systematic review published in 2015 reported only five studies of signatures evaluated
for their ability to predict radiotherapy benefits in clinical cohorts. This updated systematic review
encompasses the expanded number of studies reported in the last decade. An additional 27 studies
were identified. In total, 22 distinct signatures were recognised (5 pre-2015, 17 post-2015). Seventeen
signatures were ‘radiosensitivity’ signatures and five were breast cancer prognostic signatures aiming
to identify patients at an increased risk of local recurrence and therefore were more likely to benefit
from adjuvant radiation. Most signatures (15/22) had not progressed beyond the discovery phase of
development, with no suitable validated clinical-grade assay for application. Very few signatures
(4/17 ‘radiosensitivity’ signatures) had undergone any laboratory-based biological validation of
their ability to predict tumour radiosensitivity. No signatures have been assessed prospectively in a
phase III biomarker-led trial to date and none are recommended for routine use in clinical guidelines.
A phase III prospective evaluation is ongoing for two breast cancer prognostic signatures. The
most promising radiosensitivity signature remains the radiosensitivity index (RSI), which is used
to calculate a genomic adjusted radiation dose (GARD). There is an ongoing phase II prospective
biomarker-led study of RSI/GARD in triple negative breast cancer. The results of these trials are
eagerly anticipated over the coming years. Future work in this area should focus on (1) robust
biological validation; (2) building biobanks alongside large radiotherapy randomised controlled
trials with dose variance (to demonstrate an interaction between radiosensitivity signature and dose);
(3) a validation of clinical-grade cost-effective assays that are deliverable within current healthcare
infrastructure; and (4) an integration with biomarkers of other determinants of radiation response.
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1. Introduction

The global burden of cancer is increasing, with 18.1 million new cases and 9.9 million
cancer deaths reported in 2020. Cancers of the breast (12.5%), lung (12.2%), prostate (7.8%),
rectum (4.0%), cervix (3.3%) and oesophagus (3.3%) are amongst the top ten new cancer
diagnoses worldwide [1]. Radiotherapy is an integral component of curative treatment
pathways for these cancers. It is well recognised that half of all cancer patients require
radiotherapy at some point during the course of their treatment [2].

Modern techniques including image-guided radiotherapy (IGRT), magnetic resonance-
guided adaptive radiotherapy (MRgART) and proton beam therapy (PBT) have improved
the precision and accuracy of radiotherapy delivery, with resulting radiotherapy plans
being highly personalised based on individual anatomy [3]. However, the response to
radiotherapy is also dependent on tumour biology [4]. To adapt radiotherapy for biological
factors, they must be reliably measurable in clinic. There is an important unmet need
for validated biomarkers that can predict how a patient will respond to radiation and
adapt their clinical management accordingly. This could facilitate decision-making between
radical radiotherapy versus surgery or identify the need for dose escalation or radiotherapy-
drug combinations for patients with less radioresponsive tumours.

The term ‘intrinsic radiosensitivity’ refers to inherent differences in individual tumour
cell types in their sensitivity to radiation, which is independent of other biological factors
such as hypoxia or proliferation [5]. The complexity and heterogeneity of genetic factors
and pathways determining a tumour’s intrinsic radiosensitivity make this difficult to model.
Therefore, there are fewer intrinsic radiosensitivity markers available than for other factors
determining radiation response and none used as the standard of care.

The surviving fraction after exposure to 2 Gy ionising radiation (SF2) calculated
using clonogenic assay is the gold standard measure of cellular intrinsic radiosensitivity
in vitro [6]. This can be determined in pre-treatment ex vivo tumour specimens and
correlates with clinical outcomes [7] but is not practical for clinical application. Early
attempts to develop a surrogate biomarker to measure intrinsic radiosensitivity largely
explored molecules in pathways involved in the response to DNA damage induced by
ionising radiation. However, single molecule markers (often proteins) are vulnerable to
intra-tumour heterogeneity and the reproducibility of assays across laboratories can be
problematic [8].

The ‘omics’ era has led to an explosion in newly identified biomarkers over the last
decade. Gene expression signatures have had great success in breast cancer treatment
and there is now high-level evidence for their use in decision-making regarding adjuvant
systemic therapy [9]. Assays are automated, reproducible, and not subject to inter-observer
variation. Their potential as radiotherapy biomarkers is strengthened by the inclusion of
multiple genes, making them more robust to intra-tumour heterogeneity than gene single
markers [10]. This update to a previously published systematic review [11] is focused on
gene expression signatures that have been evaluated in clinic for their ability to predict
radiotherapy benefit. This work describes the recent large expansion in proposed signatures
and evaluates their use in clinical decision-making.

2. Methods
2.1. Literature Search

This is an update to a previously published systematic review (Forker et al., 2015) [11];
therefore, searches were limited to 5 January 2015–1 January 2024.

A literature search of PubMed using the terms (predict OR prediction OR predictive
OR predictor OR predicts) AND (radiotherapy OR radiosensitivity OR chemoradiother-
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apy) AND (‘radiosensitivity index’ OR gene signature OR molecular signature OR gene
expression profile) was performed.

Searches were supplemented by the hand searching of reference lists of relevant studies
and reviews. Abstracts were reviewed for all relevant titles and full papers obtained if
necessary. This review was performed in accordance with the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) guidelines and has not been registered.

2.2. Exclusion Criteria

Exclusion criteria are summarised in Table 1.

Table 1. Literature search exclusion criteria.

Not original research article (reviews, letters, comments)
Not radiotherapy biomarkers (irrelevant, diagnostic markers, prognostic markers, chemotherapy
benefit, immunotherapy benefit, normal tissue toxicity)
Pre-clinical or mechanistic studies of radiosensitivity
Assessed in a small number of patients (<100)
Not assessed as predictive marker (no non-radiotherapy-treated control cohort)
Predicting benefit of addition of another modality to radiotherapy (hypoxia modification,
concurrent chemotherapy)

2.3. Definitions

Predictive value of radiotherapy benefit was defined as the differential association of
the signature result with one or more clinical outcome measures between radiotherapy-
treated patients and non-radiotherapy-treated patients with the same disease type. Assays
were considered feasible for clinical implementation if the platform/sample type used to
determine gene expression levels was in use in a phase III biomarker-led trial or in routine
clinical practice and if the process used to assign a result can be applied prospectively
(i.e., a whole cohort is not needed).

2.4. Gene Lists

Gene lists were obtained for each identified signature. Overlapping genes common to
multiple signatures were identified and the proposed function of encoded proteins was
obtained from UniProtKB/Swiss-Prot [12].

3. Results

The literature search generated 996 citations plus 3 additional papers identified
through reference lists. A flow diagram and reasons for exclusion are summarised in
Figure 1. A total of 27 studies [13–39] including 19 signatures were found (Table 2). The
previous systematic review covering up to 5 January 2015 yielded five studies [40–44] of
five signatures (Table 3). The 32 studies from both searches included nine tumour types;
the most common were breast (14 studies), glioma (5 studies) and head and neck squamous
cell carcinoma (HNSCC) (3 studies).

Table 2. Studies of gene signatures predictive of radiotherapy benefit.

Signature Derivation
Proposed
Biological

Mechanism

Tumour
Type Cohort N Cohort Type Prognosis/

Prediction Endpoint Assay/Tissue Reference

10-gene
signature (RSI) in vitro Radiosensitivity Prostate Moffitt 618 Validation Prediction Distant

metastasis Microarray/ FF
Torres-Roca

et al.,
2014 [13].

Shanghai 32 Training - -3-gene signature in vivo Cell adhesion
molecules

TNBC Shanghai 166 Validation Prediction RFS Microarray/ FF Wushou et al.,
2015 [14].

24-gene
signature
(PORTOS)

in vivo
DNA damage

repair and
radiation response

Prostate
Mayo Clinic 196 Training Prediction Distant

metastasis Microarray/
FFPE

Zhao et al.,
2016 [15].

Pooled 330 Validation Prediction Distant
metastasis
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Table 2. Cont.

Signature Derivation
Proposed
Biological

Mechanism

Tumour
Type Cohort N Cohort Type Prognosis/

Prediction Endpoint Assay/Tissue Reference

7-gene signature
(Oncotype Dx

DCIS)
in vitro Proliferation DCIS Ontario DCIS 1260 Validation Prediction LRR qRT-PCR/FFPE

Rakovitch
et al., 2017

[16].
26-gene

signature in vivo Radiosensitivity STS TCGA 253 Training/
Validation Prediction OS RNA-Seq/FF Tang et al.,

2017 [17].
65-gene

signature in vivo Radiosensitivity STS TCGA 218 Training/
Validation Prediction OS RNA-Seq/FF Tang et al.,

2017 [18].
11-gene

signature in vivo Radiosensitivity Gastric TCGA 371 Training/
Validation Prediction OS RNA-Seq/FF Zhou et al.,

2017 [19].
TCGA 553 Training - -
TCGA 154 Training Prognosis OS
TCGA 153 Validation Prognosis OS miRNA-Seq/FF Chen et al.,

2018 [20].
5-miRNA
signature in vivo Not stated HNSCC

TCGA 509 Validation Prediction OS
31-gene

signature +
PD-L1

in vivo Cell junction and
adhesion Glioma TCGA 511 Validation Prediction OS RNA-Seq/FF Jang et al.,

2018 [21].

10-gene
signature (RSI) in vitro Radiosensitivity Breast Sweden 307 Validation Prediction LR Nanostring/FF Sjöström et al.,

2018 [22].
16-gene

signature
(Oncotype Dx) *

in vitro
Prognostic
signature Breast

NCDB 7332 Validation Prediction OS
RT-PCR/FFPE Goodman

et al., 2018 [23].SEER 3087 Validation Prediction OS
30-gene

signature in vivo Radiosensitivity Breast TCGA 700 Training/Validation Prediction OS RNA-Seq/FF Ji et al.,
2018 [24].

34-gene
signature in vivo Radiosensitivity Breast

GSE30682 343 Training Prognosis LRFS

Microarray/FF Cui et al.,
2018 [25].

NKI 319 Validation Prognosis RFS
GSE2034 286 Validation Prognosis RFS

METABRIC 262 Validation Prediction DSS
GSE30692 343 Training Prognosis LR Microarray/FF

NKI 228 Training Prognosis LR Microarray/FF
GSE103746 106 Training Prognosis LR Microarray/FF

27-gene
signature
(ARTIC)

in vivo Not stated Breast

SweBCG91-RT 748 Validation Prediction LRR Microarray/FFPE

Sjöström et al.,
2019 [26].

10-gene
signature (RSI) in vitro Radiosensitivity Endometrial Moffitt 204 Validation Prediction Pelvic control Microarray/FFPE

Mohammadi
et al., 2020

[27].
30-gene

signature in vitro Cell junction and
adhesion GBM TCGA 399 Validation Prediction OS RNA-Seq/FF Jang et al.,

2020 [28].

10-gene
signature (RSI) in vitro Radiosensitivity Prostate Manchester 386 Validation Prediction PFS Microarray/FFPE

Thiruthane-
eswaran et al.,

2020 [29].
TCGA 182 Training Prognosis OS
ICGC 94 Validation Prognosis OS RNA-Seq/FF

Nara 145 Training Prognosis OS
Kumamoto 112 Validation Prognosis OS

10-gene
signature (RSI) in vitro Radiosensitivity PDAC

pre-NACRT
cohort 56 Validation Prediction Pathological

response

RT-PCR/FFPE

Nishiwada
et al., 2021 [30].

46-gene
signature
(PAM-50)

in vivo Prognostic
signature Breast ABCSG-8 1204 Validation Prediction LR Nanostring/FF Fitzal et al.,

2021 [31].

TCGA 976 Training Prediction OS RNA-Seq/FF4-gene signature in vivo
Transcriptional

regulation Breast METABRIC 1798 Training/Validation Prediction OS Microarray/FF
Yan et al.,
2021 [32].

3-gene signature in vivo Radiosensitivity/
immune status

HNSCC
TCGA 236 Training Prediction OS RNA-Seq/FF Sun et al.,

2021 [33].TCGA 156 Validation Prediction OS
31-gene

signature in vitro Cell junction and
adhesion HNSCC TCGA 288 Validation Prediction OS RNA-Seq/FF Dai et al.,

2021 [34].
185-gene
signature in vivo Various Cervix

TCGA 9 Derivation - PFS RNA-Seq/FFPE Kim et al.,
2022 [35].TCGA 273 Validation Prediction PFS RNA-Seq/FF

TCGA 937 Training Prediction PFS11-gene
signature in vivo Not stated Breast E-TABM-158 130 Validation Prediction PFS RNA-Seq/FF Shen et al.,

2022 [36].
12-gene

signature in vivo Radiosensitivity Glioma
CGGA 748 Validation Prediction OS RNA-Seq/FF Wu et al.,

2022 [37].TCGA 647 Validation Prediction OS
SweBCG91-RT 243 Training Prediction LRR
SweBCG91-RT 354 Validation Prediction LRR Microarray/FFPE16-gene

signature
(POLAR)

in vivo Not stated Breast Princess
Margaret 132 Validation Prediction LRR Microarray/FF

Sjöström et al.,
2023 [38].

9-gene signature in vitro/in vivo Not stated Glioma/
GBM

GSE7696 84 Derivation - - RNA-Seq/FF

Zhang et al.,
2023 [39].

TCGA -GBM 152 Training/
Validation Prediction PFS RNA-Seq/FF

TCGA-low
grade glioma 616 Training/

Validation Prediction PFS RNA-Seq/FF

SMU-NFH 31 Validation Prediction PFS RNA-Seq/FFPE
CGGA 501 Validation Prediction OS RNA-Seq/FF

miRNA = micro RNA; PD-L1 = programmed death-ligand 1; RSI = radiosensitivity index; TNBC = triple negative
breast cancer; DCIS = ductal carcinoma in situ; STS = soft tissue sarcoma; HNSCC = head and neck squamous
carcinoma; GBM = glioblastoma multiforme; PDAC = pancreatic ductal adenocarcinoma; OS = overall survival;
LRFS = local recurrence free survival; RFS = recurrence free survival; DSS = disease specific survival; LRR = locore-
gional recurrence; PFS = progression free survival; TCGA = The Cancer Genome Atlas; NCDB = National Cancer
Database; SEER = Surveillance, Epidemiology, and End Results Program; NKI = Netherlands Cancer Institute;
METABRIC = Molecular Taxonomy of Breast Cancer International Consortium; ICGC = International Cancer
Genome Consortium; CGGA = Chinese Glioma Genome Atlas; NACRT = Neoadjuvant Chemoradiotherapy;
FF = fresh-frozen; FFPE = formalin-fixed, paraffin-embedded. * There have been prospective trials using Oncotype
Dx (21-gene recurrence score) but not specifically assessing prediction of benefit of radiotherapy.
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Figure 1. Literature search flow diagram. Citations identified and numbers excluded according to
criteria in Table 1.

Twenty-two distinct signatures (3–185 genes per signature) evaluated for their ability
to predict radiotherapy benefit in clinical cohorts were identified in total. Seventeen
signatures were described as ‘radiosensitivity’ signatures and five are prognostic breast
cancer signatures. The 22 signatures contained 599 unique genes; 35 genes appeared in
2 signatures and 2 genes appeared in 4 signatures (Table 4).

Table 3. Studies of gene signatures predictive of radiotherapy benefit (pre-2015).

Biomarker Derivation
Proposed
Biological

Mechanism
Tumour

Type Cohort n Cohort
Type

Prognosis/
Prediction Endpoint Clinical Assay Reference

7-gene signature in vitro
IFN-related

DNA damage
resistance

Breast
Multiple

(meta-
analysis)

1573 Validation Prediction LRC Microarray/FF Weichselbaum
et al., 2008 [40].

Karolinska 159 Validation Prediction RFS10-gene
signature (RSI) in vitro Radiosensitivity Breast Erasmus 344 Validation Prediction MFS Microarray/FF Eschrich et al.,

2012 [41].
70-gene

signature
(Mammaprint) *

in vivo Prognostic
signature Breast NKI 1053 Validation Prediction LRR Microarray/FFPE Drukker et al.,

2014 [42].

DBCG82bc 191 Training Prediction LRR Microarray/FF7-gene signature
(DBCG-RT) in vivo Not stated Breast DBCG82bc 112 Validation Prediction LRR qRT-PCR/FFPE

Tramm et al.,
2014 [43].

31-gene
signature in vitro Radiosensitivity Glioma GSE16011 263 Validation Prediction OS RNA-Seq/FF Meng et al.,

2014 [44].TCGA 463 Validation Prognosis OS Microarray/FF

RSI = radiosensitivity index; OS = overall survival; LRC = loco-regional control; RFS = recurrence free survival;
MFS = metastasis free survival; LRR = locoregional recurrence; OS = overall survival; NKI = Netherlands Cancer
Institute; DBCG = Danish Breast Cancer Cooperative Group; TCGA = The Cancer Genome Atlas. * There have
been prospective trials using Mammaprint but not specifically assessing prediction of benefit of radiotherapy.
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Table 4. Genes common to identified gene signatures.

Gene Signatures (n) Function References

ACTN1 2
F-actin cross-linking protein which is thought to

anchor actin to a variety of intracellular structures.
This is a bundling protein.

Meng et al., 2014 [44], Kim et al., 2022 [35].

ANLN 2 Required for cytokinesis. Zhao et al., 2016 [15], Fitzal et al., 2021
(Prosigna PAM-50) [31].

BAG1 2
Acts as a nucleotide-exchange factor promoting the
release of ADP from the HSP70 and HSC70 proteins
thereby triggering client/substrate protein release.

Goodman et al., 2018 (Oncotype Dx) [23],
Fitzal et al., 2021 (Prosigna PAM-50) [31].

BCL2 2
Regulates cell death by controlling the

mitochondrial membrane permeability. Appears to
function in a feedback loop system with caspases.

Goodman et al., 2018 (Oncotype Dx) [23],
Fitzal et al., 2021 (Prosigna PAM-50) [31].

BTG3 2 Overexpression impairs serum-induced cell cycle
progression from the G0/G1 to S phase.

Cui et al., 2018 [25], Sjöström et al.,
2019 [26].

CCNB1 4 Essential for the control of the cell cycle at the G2/M
(mitosis) transition.

Goodman et al., 2018 (Oncotype Dx) [23],
Cui et al., 2018 [25], Sjöström et al., 2019

[26], Fitzal et al., 2021 (Prosigna
PAM-50) [31].

CDC5L * 2

DNA-binding protein involved in cell cycle control.
May act as a transcription activator. Plays a role in

pre-mRNA splicing as core component of
precatalytic, catalytic and post-catalytic

spliceosomal complexes.

Tang et al., 2017 [17], Tang et al., 2017 [18].

CENPF 2 Required for kinetochore function and chromosome
segregation in mitosis.

Sjöström et al., 2019 [26], Fitzal et al., 2021
(Prosigna PAM-50) [31].

CKB 2 Reversibly catalyses the transfer of phosphate
between ATP and various phosphogens.

Fitzal et al., 2021 (Prosigna PAM-50) [31],
Shen et al., 2022 [36].

CLGN 2

Functions during spermatogenesis as a chaperone
for a range of client proteins that are important for

sperm adhesion onto the egg zona pellucida and for
subsequent penetration of the zona pellucida.

Cui et al., 2018 [25], Sun et al., 2021 [33].

DAG1 2

The dystroglycan complex is involved in a number
of processes including laminin and basement

membrane assembly, sarcolemmal stability, cell
survival, peripheral nerve myelination, nodal

structure, cell migration, and epithelial polarisation.

Meng et al., 2014 [44], Ji et al., 2018 [24].

DRAM1 2 Lysosomal modulator of autophagy that plays a
central role in p53/TP53-mediated apoptosis. Zhao et al., 2016 [15], Tang et al., 2017 [17]

DTL 2

Substrate-specific adapter of a DCX
(DDB1-CUL4-X-box) E3 ubiquitin-protein ligase

complex required for cell cycle control, DNA
damage response and translesion DNA synthesis.

Drukker et al., 2014 (MammaPrint) [42],
Zhao et al., 2016 [15].

ERBB2 2 Protein tyrosine kinase that is part of several cell
surface receptor complexes.

Goodman et al., 2018 (Oncotype Dx) [23],
Fitzal et al., 2021 (Prosigna PAM-50) [31].

ESR1 2 Nuclear hormone receptor. Goodman et al., 2018 (Oncotype Dx) [23],
Fitzal et al., 2021 (Prosigna PAM-50) [31].

GNG11 2 G-protein transmembrane signalling. Zhao et al., 2016 [15], Sjöström et al., 2023
(POLAR) [38].

HCLS1 2

Substrate of the antigen receptor-coupled tyrosine
kinase. Plays a role in antigen receptor signalling for

both clonal expansion and deletion in lymphoid
cells. May also be involved in the regulation of

gene expression.

Meng et al., 2014 [44], Zhao et al., 2016 [15].

KNTC2 2

Acts as a component of the essential
kinetochore-associated NDC80 complex, which is
required for chromosome segregation and spindle

checkpoint activity.

Drukker et al., 2014 (MammaPrint) [42],
Fitzal et al., 2021 (Prosigna PAM-50) [31].

KPNA2 2 Functions in nuclear protein import as an adapter
protein for nuclear receptor KPNB1.

Cui et al., 2018 [25], Sjöström et al., 2023
(POLAR) [38].
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Table 4. Cont.

Gene Signatures (n) Function References

KRT14 2
The nonhelical tail domain is involved in promoting

KRT5-KRT14 filaments to self-organise into
large bundles.

Zhao et al., 2016 [15], Fitzal et al., 2021
(Prosigna PAM-50) [31].

KRT15 2

The keratins are intermediate filament proteins
responsible for the structural integrity of epithelial

cells and are subdivided into cytokeratins and
hair keratins.

Sun et al., 2021 [33], Kim et al., 2022 [35].

MDM2 2
E3 ubiquitin-protein ligase that mediates
ubiquitination of p53/TP53, leading to its

degradation by the proteasome.

Cui et al., 2018 [25], Fitzal et al., 2021
(Prosigna PAM-50) [31].

MELK 2
Serine/threonine-protein kinase involved in various
processes such as cell cycle regulation, self-renewal

of stem cells, apoptosis and splicing regulation.

Drukker et al., 2014 (MammaPrint) [42],
Fitzal et al., 2021 (Prosigna PAM-50) [31].

MKI67 2
Required to maintain individual mitotic

chromosomes dispersed in the cytoplasm following
nuclear envelope disassembly

Goodman et al., 2018 (Oncotype Dx) [23],
Fitzal et al., 2021 (Prosigna PAM-50) [31].

MMD 2
Involved in the dynamics of lysosomal membranes

associated with microglial activation following
brain lesion.

Cui et al., 2018 [25], Kim et al., 2022 [35].

MMP11 4 May play an important role in the progression of
epithelial malignancies.

Goodman et al., 2018 (Oncotype Dx) [23],
Fitzal et al., 2021 (Prosigna PAM-50) [31],
Kim et al., 2022 [35], Sjöström et al., 2023

(POLAR) [38].

MORF4L2 2

Component of the NuA4 histone acetyltransferase
complex which is involved in transcriptional

activation of select genes principally by acetylation
of nucleosomal histone H4 and H2A.

Kim et al., 2022 [35], Shen et al., 2022 [36]

MX1 2
Interferon-induced dynamin-like GTPase with
antiviral activity against a wide range of RNA

viruses and some DNA viruses.

Weichselbaum et al., 2008 [40], Kim et al.,
2022 [35].

NAT1 2 Participates in the detoxification of a plethora of
hydrazine and arylamine drugs.

Tang et al., 2017 [17], Fitzal et al., 2021
(Prosigna PAM-50) [31].

ORC6L 2 Component of the origin recognition complex (ORC)
that binds origins of replication.

Drukker et al., 2014 (MammaPrint) [42],
Fitzal et al., 2021 (Prosigna PAM-50) [31].

PGR 2

The steroid hormones and their receptors are
involved in the regulation of eukaryotic gene

expression and affect cellular proliferation and
differentiation in target tissues.

Goodman et al., 2018 (Oncotype Dx) [23],
Fitzal et al., 2021 (Prosigna PAM-50) [31].

PLK2 2
Tumour suppressor serine/threonine-protein kinase
involved in synaptic plasticity, centriole duplication

and G1/S phase transition.

Zhao et al., 2016 [15], Zhang et al.,
2023 [39].

POSTN 2 Induces cell attachment and spreading and plays a
role in cell adhesion. Kim et al., 2022 [35], Zhang et al., 2023 [39].

PYGB 2 Glycogen phosphorylase that regulates glycogen
mobilisation. Meng et al., 2014 [44], Cui et al., 2018 [25].

RGS4 2
Inhibits signal transduction by increasing the

GTPase activity of G protein alpha subunits thereby
driving them into their inactive GDP-bound form.

Tang et al., 2017 [17], Kim et al., 2022 [35].

SCUBE2 2

SHH long-range signalling by binding to the dually
lipid-modified SHH (ShhNp) and by promoting

ShhNp mobilisation, solubilisation and release from
the cell membrane.

Drukker et al., 2014 (MammaPrint) [42],
Goodman et al., 2018 (Oncotype Dx) [23].

STAT1 2

Signal transducer and transcription activator that
mediates cellular responses to interferons (IFNs),

cytokine KITLG/SCF and other cytokines and other
growth factors

Weichselbaum et al., 2008 [40], Eschrich
et al., 2012 [41].

* Duplicate in two signatures published by the same group derived in the same dataset.
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Three radiosensitivity signatures were derived in vitro using whole transcriptome data
from cell lines with known SF2 values and validated in clinical datasets for prognostic and
predictive value. The remaining fourteen signatures were identified through bioinformatic
studies using in vivo data from patients treated with radiotherapy. Genes were selected
based on their ability to predict the outcome in patients treated with radiotherapy.

Three signatures were known as commercially available prognostic breast cancer
signatures (Oncotype Dx/Oncotype DCIS, MammaPrint and Prosigna PAM-50) and two
signatures were new prognostic breast cancer signatures designed specifically to identify
patients likely to benefit from adjuvant radiotherapy.

3.1. Radiosensitivity Signatures Developed In Vitro
3.1.1. Radiosensitivity Index (RSI) and Genomic-Adjusted Radiation Dose (GARD)

Torres-Roca et al. first proposed that gene expression could be used to predict radiosen-
sitivity in vitro (SF2 measured using clonogenic assay) in 2005 [45]. The radiosensitivity
index (RSI) is a score representing SF2 that is calculated from expression levels of ten genes
using a rank-based linear algorithm. Forty-eight cell lines representing nine cancer types
from the National Cancer Institute 60 (NCI-60) panel were used to develop the model,
which was then shown to correctly predict SF2 in five of the nine remaining solid cancer cell
lines [46]. The initial clinical evaluation demonstrated lower RSI in rectal cancer (n = 14) and
oesophageal cancer (n = 12) patients responding to pre-operative chemoradiotherapy and
an association of lower RSI with improved 2-year loco-regional control in HNSCC patients
(n = 92) treated with radiotherapy and concurrent cisplatin-based chemotherapy [47].

The search criteria identified five studies in which RSI demonstrated predictive value
in cohorts with n ≥ 100 patients including patients treated both with and without radio-
therapy [prostate cancer [13] (n = 618), breast cancer [41] (two cohorts, n = 503), breast
cancer [22] (n = 307), endometrial cancer [27] (n = 204), pancreatic ductal adenocarci-
noma [30] (n = 589, prediction assessed in n = 56)]. A further study was included in which
all patients were treated with radiotherapy for localised prostate cancer (n = 386) treated at
a single institution, but with some patients receiving a relatively high dose with a high-dose
rate (HDR) brachytherapy boost. RSI was able to identify patients more likely to benefit
from higher dose radiotherapy [29].

More recently, it has been proposed that RSI can be integrated with the linear quadratic
model, which is used clinically to estimate the biological effect of different dose-fractionation
schedules. RSI is simply substituted for SF2 in the linear quadratic model of survival after
d = 1 doses of n = 2 Gy to generate a tumour-specific α for an individual patient. This can
then be used in the effect equation with the intended dose and fractionation to calculate
a genomic-adjusted radiation dose (GARD). For a given radiotherapy dose, GARD will
be higher for radiosensitive versus radioresistant tumours [48]. GARD was tested in a
pooled, pan-cancer analysis of 11 previously published cohorts (seven cancer types) of
1615 patients treated with and without radiotherapy. GARD as a continuous variable was
associated with overall survival (OS) and an interaction test demonstrates that this was
dependent on whether a patient was treated with radiotherapy. An actual prescribed dose
of radiation was not associated with clinical outcomes [49].

3.1.2. 31-Gene Radiosensitivity Signature

The 31-gene radiosensitivity signature was also developed using the NCI-60 panel
of cell lines and published data regarding their associated SF2 values were measured
using clonogenic assay. Whole transcriptome data were obtained from four publicly
available microarray studies and a linear regression model was used to identify genes
whose expression correlated with SF2. A total of 31 genes were common to all microarray
platforms and formed the final signature [50]. The first reported clinical evaluation was
identified using the original literature search. This was a study of two cohorts of patients
with primary brain tumours [Glioma—GSE16011 (n = 276, 193 received radiotherapy);
Glioblastoma—the Cancer Genome Atlas (TCGA) (n = 463, all received radiotherapy)] [44].
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The result was assigned as radiosensitive or radioresistant using hierarchical cluster analysis
based on the expression of the 31 genes. Patients with radioresistant tumours had worse OS
in radiotherapy-treated and non-radiotherapy-treated groups for GSE16011 on univariate
analysis. This did not remain significant in the non-radiotherapy group after adjusting for
age and performance status. The 31-gene signature was an independent predictor of OS in
the TCGA cohort.

This updated systematic review revealed a further four studies of the 31-gene signa-
ture. For all the studies, the result was assigned using a cluster-based analysis of whole
transcriptome data for entire cohorts. An HNSCC study included 288 patients from the
TCGA (n = 214 radiotherapy, n = 74 no radiotherapy) and demonstrated that patients
with radioresistant tumours determined by the 31-gene signature had worse OS in the
radiotherapy-treated group only [34]. There were two studies that used the 31-gene sig-
nature in combination with programmed death ligand 1 (PD-L1) status (determined by
CD274 expression) to classify tumours as PD-L1 high/radioresistant versus other in glioma
(n = 511; n = 302 radiotherapy, n = 209 no radiotherapy) [21] and glioblastoma (n = 399;
n = 284 radiotherapy, n = 115 no radiotherapy) [28] patients from the TCGA. Patients with
PD-L1 high/radioresistant tumours had worse OS only in the radiotherapy-treated groups.
The final study combined the 31-gene signature and RSI to create a new 12-gene signature
containing 11 genes from the 31-gene signature and one gene from RSI [37]. The 31-gene sig-
nature and RSI were prognostic in both radiotherapy-treated and non-radiotherapy-treated
patients from the TCGA (n = 647) and Chinese Glioma Genome Atlas (n = 741) cohorts.

3.1.3. Interferon-Related DNA Damage Resistance Signature

The interferon-related DNA damage resistance signature (IRDS) was identified in the
original literature search. This is a 7-gene signature that classifies a tumour as IRDS+ (DNA
damage resistant) or IRDS− (DNA damage sensitive) [40]. Signature genes were identified
in vitro and selected for their association with radiotherapy or chemotherapy resistance. A
meta-analysis of multiple cohorts of breast cancer patients (n = 1573) showed a significantly
higher importance score for the IRDS signature in the prediction of loco-regional recurrence
in radiotherapy-treated versus non-radiotherapy-treated patients.

3.2. Radiosensitivity Signatures Developed In Vivo

Fourteen radiosensitivity signatures were developed largely using in vivo data
(13 purely in vivo, 1 incorporated in vitro data into gene selection). Two studies (prostate
cancer [15] and breast cancer [26]) were notable, as they included the retrospective valida-
tion of a clinical-grade assay using FFPE tissue in multiple cohorts.

3.2.1. Post-Operative Radiation Therapy Outcomes Score (Decipher PORTOS)

The 24-gene post-operative radiation therapy outcomes score (Decipher PORTOS) [15]
was developed in training (n = 196) and validation (n = 330) cohorts formed from five
published studies of prostate adenocarcinoma patients treated with radical prostatectomy
with or without post-operative radiotherapy. Exact matching (1:1) was performed between
patients treated with or without post-operative radiotherapy using a Gleason score, prostate-
specific antigen (PSA) concentration, surgical margin, extracapsular extension, seminal
vesicle involvement, lymph node involvement and treatment with androgen deprivation
therapy. Gene expression data were generated using a microarray analysis of RNA extracted
from FFPE tissue in a Clinical Laboratory Improvement Amendments (CLIA)-certified
clinical laboratory.

A gene list (n = 1800) was curated from gene ontology and gene set enrichment analysis
related to DNA damage response and radiation. A Cox proportional hazards model was
used in the training cohort to select 24 genes associated with radiotherapy benefit using
distant metastasis as the clinical endpoint. The model was locked before application in
the validation cohort. In both cohorts, patients with PORTOS-high tumours had a lower
incidence of distant metastasis at 10 years when treated with radiotherapy, whereas an
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incidence of distant metastasis did not differ between patients treated with or without
radiotherapy in those with PORTOS-low tumours.

3.2.2. Adjuvant Radiotherapy Intensification Classifier (ARTIC)

The adjuvant radiotherapy intensification classifier (ARTIC) [26] is a 27-gene signature
developed in three publicly available cohorts of breast cancer patients and validated in the
phase III SweBCG91-RT trial (n = 748), which randomised women who underwent breast
conserving surgery (BCS) with negative margins for stage I–II, node-negative breast cancer
between post-operative radiotherapy or no radiotherapy.

Genes were selected for their association with radiotherapy response (based on an
endpoint of local recurrence) in one of the training cohorts (n = 343) and then refined to a
linear model using a 27-gene signature and age in the remaining cohorts (n = 228, n = 106).
The model was locked before external validation in SweBCG91-RT.

In SweBCG91-RT, patients with low ARTIC scores gained a greater benefit from
radiotherapy (10-year local recurrence rate 6% with radiotherapy versus 21% without
radiotherapy, p < 0.001) than those with high ARTIC scoffers (10-year local recurrence
rate 25% with radiotherapy versus 32% without radiotherapy), p = 0.23). This study did
not show a predictive effect for any of the eight other published signatures including
MammaPrint, Oncotype Dx and RSI.

3.2.3. Other In Vivo Derived Radiosensitivity Signatures

Seven studies used TCGA data only to generate signatures for soft tissue sarcoma
(STS) (n = 2) [17,18], gastric cancer (n = 1) [19], HNSCC (n = 2) [20,33], breast cancer
(n = 1) [24] and cervix cancer (n = 1) [35]; four of these used a cross-validated adaptive
signature design (CVASD) approach to derive and validate the signature within the same
dataset, two split the TCGA cohort into training and validation and one used the TCGA
to validate a signature derived in a very small independent cohort. The remaining five
studies used multiple publicly available microarray/RNA-Seq cohorts to derive signatures
for breast cancer (n = 4) [14,25,32,36] and glioma/glioblastoma (n = 1) [39]. None of these
have been externally validated.

3.3. Breast Cancer Prognostic Signatures

The literature search revealed four studies assessing the ability of existing commer-
cially available prognostic breast cancer signatures to predict the radiotherapy benefit
(MammaPrint [42], Oncotype DCIS [16], Oncotype Dx [23] and Prosigna PAM-50 [31])
and two studies that aimed to derive and validate new breast cancer signatures prog-
nostic for local recurrence [Danish breast cancer cooperative group radiotherapy profile
(DBCG-RT) [43] and the profile for the omission of local adjuvant radiation (POLAR) [38]].

3.3.1. MammaPrint

MammaPrint is a 70-gene signature developed to predict the risk of distant recur-
rence in localised breast cancer [51,52]. There is high-level evidence for its use in guiding
decision-making regarding the benefit of adjuvant chemotherapy (EORTC 10041/BIG 3-04
MINDACT) [53] and it is recommended for this purpose in international clinical guide-
lines [54]. In the original studies, the signature was measured using microarray with
fresh-frozen or FFPE tissue; however, this has now been successfully transferred to an
RNA-Seq platform for FFPE tissue [55].

A study of MammaPrint was identified via the original literature search. This in-
cluded patients with T1–3 N0–1 M0 breast cancer treated with BCS or mastectomy with
or without post-operative radiotherapy (n = 1053). MammaPrint was an independent
prognostic factor for loco-regional recurrence risk (LRR). In patients treated with mastec-
tomy without radiotherapy (n = 501), the 10-year LRR was 13.2% versus 5.8% (p = 0.002) in
high-risk versus low-risk patients, respectively. There was no statistically significant differ-
ence in 10-year LRR in patients treated with mastectomy plus post-operative radiotherapy
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[12.9% versus 9.2% (p = 0.302) in high-risk versus low-risk patients]. MammaPrint may
identify patients at a risk of local as well as distant recurrence who are more likely to
benefit from post-operative radiotherapy.

3.3.2. Danish Breast Cancer Cooperative Group Radiotherapy Profile (DBCG-RT)

DBCG-RT is a 7-gene signature developed in the DBCG82bc cohort of patients with
high-risk breast cancer treated with mastectomy, axillary dissection, and randomised to
post-mastectomy radiotherapy (PMRT) or no radiotherapy [43]. RNA was extracted from
fresh-frozen tissue and whole transcriptome data generated using microarray analysis in a
training cohort (n = 191). Genes were selected for their interaction with PMRT on association
with LRR through a Cox proportional hazard model. The signature and algorithm were
transferred to a quantitative real-time polymerase chain reaction (qRT-PCR)-based assay
for FFPE using samples within the training cohort with a matched FFPE sample (n = 146).
This was then validated in 112 patients.

In the training cohort, the 20-year LRR rates were 57% without PMRT and 12% with
PMRT (p < 0.0001) in the high-risk group (n = 143) and 8% without PMRT versus 9%
with PMRT (n = 48) (p = 0.93) in the low-risk group. A similar effect was observed in the
training cohort, although smaller numbers of patients were analysed (high-risk n = 90,
low-risk n = 22).

3.3.3. Oncotype DCIS and Oncotype Dx

Oncotype Dx is a 21-gene signature (16 breast cancer genes and five endogenous
control genes used for normalisation) initially developed to predict distance recurrence in
node-negative, tamoxifen-treated breast cancer [56]. It is a clinical-grade qRT-PCR-based
assay for FFPE tissue that is recommended for use in routine clinical practice internation-
ally [54,57] to guide decision-making regarding systemic therapy for early stage breast
cancer patients based on high-level evidence [9,58]. Oncotype DCIS is an abbreviated
version of the original Oncotype Dx assay with 12 genes (seven breast cancer genes and
five endogenous control genes) that can predict the risk of recurrence after BCS without
radiotherapy for ductal carcinoma in situ (DCIS) [59]. It is not currently recommended in
clinical guidelines [60].

Oncotype DCIS was evaluated in a large Canadian DCIS cohort (n = 1260) in which
patients were treated with BCS alone (n = 571) or BCS plus radiotherapy (n = 689) [16].
Patients were classified based on the Oncotype DCIS score as low-, intermediate-, or
high-risk. There were fewer low-risk patients in the radiotherapy-treated cohort (62%
no radiotherapy versus 48.1%). A propensity score-adjusted multivariable model was
used to identify significant factors associated with local recurrence. Patients deemed
high-risk had a greater benefit from radiotherapy [10-year LRR 32.7% no radiotherapy
versus 20% radiotherapy in high-risk group; 10-year LRR 16% no radiotherapy versus 9.4%
radiotherapy in low-risk group].

Oncotype Dx was assessed in real world data from two large cohorts of patients
with T1–2 N1 invasive breast cancer treated with or without PMRT; the National Cancer
Database (NCDB) (n = 7332) and the Surveillance, Epidemiology, and End Results (SEER)
Program (n = 3087). In both cohorts, there was an overall survival advantage with PMRT
for patients classified as low-risk (NCDB—improved OS with PMRT HR 1.70 1.30–2.22
p < 0.001; SEER—improved OS with PMRT HR 1.85 CI 1.33–2.57 p < 0.001), which was not
seen in intermediate-risk (NCDB HR 1.89 CI 0.69–1.14 p = 0.35; SEER HR 0.84 CI 0.62–1.14
p = 0.26) or high-risk patients (NCDB HR 1.85 CI 1.33–2.57 p < 0.001; SEER HR 0.79 CI
0.50–1.23 p = 0.28).

3.3.4. Prosigna PAM-50

The Prosigna PAM-50 gene signature is based on expression levels of 50 genes used
to classify breast cancers into one of the four breast cancer intrinsic subtypes (Luminal
A, Luminal B, HER2-enriched or Basal-like) originally described in 2000 [61]. This was
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simplified to a 46-gene risk of recurrence (ROR) model measured using the NanoString
nCounter platform with FFPE-derived RNA [62].

Prosigna PAM-50 was prognostic for the local recurrence in post-menopausal ER-
positive, HER2-negative breast cancer patients (n = 1204) treated with BCS and randomised
between different adjuvant endocrine therapies in the ABCSG-8 trial. Whilst most pa-
tients (n = 1034) were treated with BCS and post-operative radiotherapy, a small group
(n = 170) did not receive adjuvant radiation. In 122/170 patients deemed low-risk by
Prosigna PAM-50, the 10-year local recurrence risk was relatively low (5%). However, the
hazard ratio for local recurrence in low-risk patients treated with or without radiation
was similar to the high-risk patients (Fine–Gray subhazard interaction model p = 0.383)
indicating a benefit for post-operative radiotherapy for all patients.

3.3.5. Profile for the Omission of Local Adjuvant Radiation (POLAR)

POLAR is a 16-gene signature developed in estrogen receptor (ER)-positive, human
epidermal growth factor receptor 2-negative, and node-negative invasive breast cancer
treated within two randomised trials of BCS plus or minus post-operative radiotherapy,
SweBCG91-RT (n = 597) and Princess Margaret (n = 132). Whole transcriptome data were
generated via a microarray analysis of FFPE (SweBCG91-RT) or fresh-frozen (Princess
Margaret) tissue in a CLIA certified laboratory. The SweBCG91-RT cohort was split into
training (n = 243) and validation (n = 354) and genes that were prognostic for LRR in
patients not treated with radiotherapy (n = 131) were selected. These were filtered for being
in the most enriched pathways using gene set enrichment analysis and a 16-gene model
with LRR as the endpoint was generated using an elastic net regression model. The model
and cut-offs were locked before applying to the training cohorts.

In the SweBCG91-RT validation cohort, the 10-year LRR was 5% with radiotherapy
and 6% without (p = 0.81) for POLAR low-risk patients, whereas there was a benefit for
radiotherapy in POLAR high-risk patients (10-year LRR 8% radiotherapy versus 19% no
radiotherapy, p = 0.0055). This was further validated in the Princess Margaret cohort
[10-year LRR 13% radiotherapy versus 7% no radiotherapy POLAR low-risk (p = 0.74); 8%
radiotherapy versus 22% no radiotherapy (p = 0.038) POLAR high-risk].

4. Discussion

There has been a considerable increase in the number of studies evaluating gene
signatures to predict radiosensitivity or benefit from radiotherapy over the last decade.
An additional 17 signatures were recognised from studies completed since the publication
of our first review covering up to 2015. Despite this, none are used in routine clinical
practice. Figure 2 proposes a series of steps towards the clinical implementation of a gene
signature for the prediction of radiotherapy benefit. It details the numbers of signatures
in the literature with evidence of having achieved each step. The barriers to clinical
implementation are explored below.

Seventeen signatures were ‘radiosensitivity’ signatures (three pre-2015 and fourteen
post-2015) and five were breast cancer signatures prognostic for local recurrence (two
pre-2015 and three post-2015). Of the additional 14 radiosensitivity signatures, all were
derived using in vivo data and trained on clinical outcomes. These were mostly previously
published, publicly available cohorts. It is notable that only one of these signatures has
undergone any in vitro biological validation of the genes included. Seven studies only used
TCGA data and four of these used a cross-validated adaptive signature design (CVASD)
to derive and validate the signature within the same cohort in three cancer types. Two
of the CVASD studies [TCGA soft tissue sarcoma (STS) cohort] were published by the
same authors in the same year and derived two different signatures with only a single
overlapping gene (Table 4). In addition, the quality of the clinical baseline and outcome
data is often questionable or incomplete. Studies relying entirely on these cohorts without
generating new cohorts with more detailed participant data can be limited. For example,
there are four studies of breast cancer signatures that use overall survival or progression
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free/recurrence free survival as endpoints when breast radiotherapy intervention has
a larger impact on improving local control when compared with overall survival [63].
Information regarding confounding factors is also often missing, such as the STS TCGA
cohort, a disease site in which grade is an important prognostic factor [64] but is not
available for inclusion in multi-variate analyses. While these resources are an excellent
starting point for biomarker discovery and supporting validation, the lack of further
development of these signatures indicates that they are not a substitute for proper external
and prospective validation.
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Figure 2. Proposed steps towards clinical implementation of a radiosensitivity biomarker/numbers
of identified signatures with evidence of each stage of development are shown. Prospective valida-
tion is defined as completion of this step; however, it is noted that this is ongoing or planned for
some signatures. FFPE = formalin-fixed, paraffin-embedded; SOP = standard operating procedure;
RCT = randomised controlled trial.

Of the in vivo derived signatures, only two (ARTIC and Decipher PORTOS) had
a high quality, with a retrospective validation of a clinical-grade assay with a locked
methodology before application to the validation cohorts. This is important as it has been
shown that variation in methodology, such as normalisation methods for transcriptomic
data, can dramatically affect the results and performance of radiosensitivity signatures [65].
Currently, Decipher PORTOS is not recommended for routine clinic use in the ASCO
guidelines due to a lack of prospective validation in a controlled trial. An assessment in
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ongoing prospective clinical trials such as RTOG-9601 (NCT00002874) is planned, although
these are not specifically biomarker-led trials [66].

The radiosensitivity signatures aim to measure a specific aspect of tumour biology,
namely intrinsic radiosensitivity. It has been previously demonstrated that signatures > 100 genes
in length in which genes are selected at random are likely to be prognostic in breast cancer
due to general transcriptional upregulation in more aggressive cancers [67]. Genes selected
mainly based on their association with clinical outcomes are therefore more likely to be
simply prognostic, rather than specifically a measure of radiosensitivity. The general
paucity of the biological validation of the identified signatures may explain the lack of any
significant overlap in signature genes (Table 4). There were only 37 overlapping genes
(35 in two signatures, 2 in four signatures). CCNB1 encodes cyclin B1 which is involved
in the progression of the cell cycle from the G2 to M phase. MMP11 encodes a matrix
metalloproteinase and as such is involved in the enzymatic breakdown of the extracellular
matrix. These two genes were included in four overlapping gene expression signatures,
and both are involved in processes manipulated by cancers during disease development.
Both genes are represented in the Oncotype Dx and Prosigna PAM-50 signatures which
were developed initially as predictors for breast cancer recurrence. The presence of these
genes may represent predictive factors of recurrence in breast and other cancers more so
than specific predictors of radiosensitivity. One gene was in two signatures published by
the same authors in the same dataset, ten were between breast cancer prognostic signatures
and only five genes from in vitro derived signatures appeared in another signature derived
in vivo. This contrasts with radiotherapy signatures developed to measure tumour hypoxia
as a determinant of radioresistance, where the top 20 overlapping genes appeared in
between 12 and 31 of 32 published signatures [68]. This is likely due to more emphasis on
the biological validation step, as it is easier to model hypoxia in the laboratory or compare
to other hypoxia markers in vivo. Future directions may include the use of better models
to determine gene function, for example, the use of clustered regularly interspaced short
palindromic repeat (CRISPR) [69] genome editing to knock out or upregulate potential
radiosensitivity genes to facilitate appropriate gene selection.

Two of the four radiosensitivity signatures (RSI and the 31-gene signature) developed
in vitro have undergone more comprehensive clinical evaluation, having been assessed
in multiple cohorts by independent groups. Despite being trained to predict in vitro
SF2, both have been criticised for their ability to reflect this, showing poor performance
compared to randomly selected genes in multiple cell lines. RadSigBench is proposed as a
comprehensive benchmarking framework that could be used in the biological validation of
future signatures [70]. An independent re-analysis of the original derivation dataset found
that RSI performed worse than random guessing in predicting in vitro SF2 [71].

The 31-gene signature derived by Kim et al. has been assessed in HNSCC in a
single study and more extensively in primary brain tumours (glioma grade 2–3 and WHO
grade IV glioblastoma) alone and in combination with immune status [PD-L1 (CD274
RNA expression)]. There is no clinical-grade assay for application and these studies lack
a consistent methodology for sample classification. The first validation study uses the
original 31-gene signature in the TCGA glioma cohort. There are two further studies in
the TCGA glioma (lower grade) and glioblastoma cohorts combining the 31-gene (or in
one study 30-genes) with the PD-L1 status to identify a radioresistant/PD-L1 high group.
Finally, one study uses an abbreviated version of the signature plus one gene from RSI in
the TCGA and CGGA cohorts. A further retrospective validation with locked bioinformatic
pipelines and signature result assignment methods is needed to progress this signature any
further, preferably in a new cohort with better clinical annotation.

RSI is the most extensively studied radiosensitivity signature with respect to clinical
application. The search criteria identified six studies in four tumour sites inclusive of
2707 patients. A recent review by the group that developed RSI/GARD reported that this
has been validated in 12 disease sites (21 cohorts) in >4000 patients [72]. Some of these
studies were excluded from this review due to low patient numbers (e.g., lung n = 95 [73],
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melanoma n = 42 [74], penile n = 10 [75], pancreas n = 73 [76], rectal n = 14 [47], oesophagus
n = 12 [47]). In other excluded studies, RSI was assessed only in cohorts in which all
patients received radiotherapy, such as HNSCC n = 235 [77] or the phase III BCON bladder
cancer cohort n = 151 (RSI showed a non-significant association with local relapse free
survival on univariate analysis) [78]. More extensive retrospective validation would be
helpful in these disease sites. RSI was assessed in addition to the reported signature in
three studies and its predictive value was not validated [25,26,32].

The most studied tumour site with regard to RSI is breast (~30% of patients in this re-
view); therefore, the authors have taken the signature forward for prospective validation in
this site first. RSI/GARD has been commercialised through Cvergenx, a spin-out company
of the Moffit Cancer Centre [79]. GARD is currently undergoing prospective validation in a
biomarker-led phase II randomised trial [Genomically Guided Radiation Therapy in the
Management of Triple Negative Breast Cancer (NCT05528133)] with completion anticipated
in 2026–2027 [80]. It should be noted that the retrospective validation and prospective
trial consider patients treated with conventionally (50 Gy in 25 fractions) or moderately
hypofractionated radiotherapy (42.56 Gy in 16 fractions). Clinical practice in breast cancer is
moving towards using ultra-hypofractionated whole breast schedules (26 Gy in 5 fractions)
and the use of simultaneous integrated boost doses so it will be important to ensure that
GARD remains applicable to these regimens [81].

The breast cancer prognostic signatures are used to identify patients with less aggres-
sive tumours and a lower local recurrence risk who stand to benefit less from adjuvant
radiotherapy. These signatures are not for specifically measuring radiosensitivity; they
were originally developed to predict distance recurrence risk and therefore select patients
at a high-risk of harbouring micro-metastatic disease with more potential to benefit from
chemotherapy. It has also been proposed more recently that they may identify tumours
that are more sensitive to chemotherapy [82]. They are further ahead in development
than radiosensitivity signatures, as the existing ones already have technically validated,
clinical-grade, commercially available assays.

The study of Prosigna PAM-50 demonstrated that local recurrence rates were low
in low-risk patients. The signature did not predict response to radiation, as there was
still a benefit in the low-risk population. However, as the local recurrence rates in the
low-risk group may be acceptable to some patients, the test could help guide discussions
regarding the risks and benefits of post-operative radiation. The prospective evaluation
of the omission of post-operative radiotherapy for Prosigna PAM-50 low-risk patients is
ongoing in the single arm, phase II PRECISION trial (NCT02653733) [83].

It is interesting that in DCIS, there was increased benefit for adjuvant radiotherapy in
high-risk patients by Oncotype DCIS, whereas in invasive breast cancer the Oncotype Dx
low-risk patients gained benefit from radiotherapy (with an endpoint of overall survival)
compared to intermediate-risk and high-risk patients. It was suggested by the authors that
this could be due to more significance of a local recurrence in low-risk patients with less
likelihood of developing distant metastases. Early results (at 5 years) of the single-arm
IDEA study, in which post-operative radiotherapy was omitted for Oncotype Dx low-risk,
ER-positive, HER2-negative breast cancer patients are encouraging, with low rates of
ipsilateral breast recurrence (3.3% age 50–59, 3.6% age 60–69) reported at five years [84].
This will be further assessed in two non-inferiority, randomised, phase III studies, CCTG
MA.39 TAILOR RT (NCT03488693) [85] and NRG-BR007/DEBRA (NCT04852887) (which
also allows the use of MammaPrint) [86].

Once there are established biomarkers of radiosensitivity, more individualised radio-
therapy plans will be possible. The radiotherapy technique and dose can be personalised
to achieve optimal treatment outcomes and a reduction in side effects. Comparative trials
of different treatment regimens for patients stratified by a radiosensitivity biomarker will
be required to confirm the clinical benefit and safety of such an approach.
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5. Conclusions and Future Directions

In conclusion, there has been an explosion in newly discovered radiosensitivity signa-
tures over the last decade, largely due to publicly available cohorts with whole transcrip-
tome gene expression data such as TCGA, which are powerful resources for biomarker
discovery. However, the quality of signatures that are heavily reliant on the bioinformatic
analysis of publicly available data (which are often incomplete) with little or no biological or
external validation is poor. This is evident in the fact that none of the signatures discovered
this way appear to have the ability to transition to prospective biomarker-led trials or
clinical implementation. Of the reported radiosensitivity signatures (excluding prognostic
breast cancer signatures), RSI/GARD is the most extensively studied by some way and the
results of the prospective phase II trial are anticipated with great interest.

To establish biologically guided radiotherapy in the clinic, future work should focus
on (1) developing clinically relevant models such as well characterised patient-derived cell
lines and organoids to study radiosensitivity mechanisms and involved genes in the labo-
ratory and benchmarking compared to other signatures; (2) building biobanks alongside
large radiotherapy randomised controlled trials with dose variance (to demonstrate an
interaction between radiosensitivity signature and dose) in a range of tumour types as a
resource for signature validation; (3) developing robust and cost-effective assays for use
in routine pre-treatment biopsies that can be delivered in a timely manner within current
healthcare systems; and (4) integrating with biomarkers of other determinants of radiation
response, such as tumour hypoxia.
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