Chronic Lymphocytic Leukemia: Management of Adverse Events in the Era of Targeted Agents
Abstract
:Simple Summary
Abstract
1. Introduction to Toxicity Profile of Targeted Therapies and Management of Intolerance
2. Class Effect Profile and Adverse Events Management: BTK Inhibitors
2.1. Cardiotoxicity
2.1.1. Atrial Fibrillation
Mechanisms Leading to BTKi-Induced AF
Management of AF in Patients Receiving BTKi
2.1.2. Ventricular Arrhythmia
2.1.3. Hypertension
2.1.4. Heart Failure
2.1.5. Stroke
2.1.6. Other Cardiac Complications
2.2. Bleeding
2.3. Hematological Toxicity
2.4. Gastrointestinal Events
2.5. Dermatological Complications
2.6. Arthralgias and Myalgias
2.7. Headaches
3. Class Effect Profile and Adverse Events Management: BCL-2 Inhibitors
3.1. Tumor Lysis Syndrome
3.2. Hematological Toxicity
Neutropenia Management
3.3. Gastrointestinal Events
Gastrointestinal Toxicities Management
4. Class Effect Profile and Adverse Events Management: PI3kδ Inhibitors
5. Combination Therapies: Multiple Drugs with More Adverse Events?
6. Drug–Drug and Drug–Food Interactions
7. Infections
8. Secondary Primary Malignancies
9. Quality of Life (QoL), Cognitive Impairment, and Psychological Distress
10. Conclusions and Future Challenges
Author Contributions
Funding
Conflicts of Interest
References
- Hallek, M.; Al-Sawaf, O. Chronic Lymphocytic Leukemia: 2022 Update on Diagnostic and Therapeutic Procedures. Am. J. Hematol. 2021, 96, 1679–1705. [Google Scholar] [CrossRef] [PubMed]
- Hallek, M. First Line Therapy of CLL. Hematol. Oncol. 2023, 41, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Molica, S.; Shanafelt, T.D.; Allsup, D.; Giannarelli, D. Impact of Targeted Agents on Survival of Chronic Lymphocytic Leukemia Patients Age > 65 Relative to Age- and Sex-matched Population. Am. J. Hematol. 2023, 99, 480–483. [Google Scholar] [CrossRef] [PubMed]
- Pal Singh, S.; Dammeijer, F.; Hendriks, R.W. Role of Bruton’s Tyrosine Kinase in B Cells and Malignancies. Mol. Cancer 2018, 17, 57. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, R.W.; Yuvaraj, S.; Kil, L.P. Targeting Bruton’s Tyrosine Kinase in B Cell Malignancies. Nat. Rev. Cancer 2014, 14, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Kaptein, A.; de Bruin, G.; Emmelot-van Hoek, M.; van de Kar, B.; de Jong, A.; Gulrajani, M.; Demont, D.; Covey, T.; Mittag, D.; Barf, T. Potency and Selectivity of BTK Inhibitors in Clinical Development for B-Cell Malignancies. Blood 2018, 132, 1871. [Google Scholar] [CrossRef]
- Barr, P.M.; Owen, C.; Robak, T.; Tedeschi, A.; Bairey, O.; Burger, J.A.; Hillmen, P.; Coutre, S.E.; Dearden, C.; Grosicki, S.; et al. Up to 8-Year Follow-up from RESONATE-2: First-Line Ibrutinib Treatment for Patients with Chronic Lymphocytic Leukemia. Blood Adv. 2022, 6, 3440–3450. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.Y.; Yeo, Y.-H.; Tan, M.C.; Chavez, J.C.; Chisti, M.M. Mortality Trends of Chronic Lymphocytic Leukaemia in the United States with the Emergence of Targeted Therapy. Br. J. Haematol. 2023, 204, 1114–1117. [Google Scholar] [CrossRef] [PubMed]
- Arguello-Tomas, M.; Albiol, N.; Moreno, C. Frontline Therapy in Chronic Lymphocytic Leukemia. Acta Haematol. 2024, 147, 47–59. [Google Scholar] [CrossRef]
- Fischer, K.; Al-Sawaf, O.; Bahlo, J.; Fink, A.-M.; Tandon, M.; Dixon, M.; Robrecht, S.; Warburton, S.; Humphrey, K.; Samoylova, O.; et al. Venetoclax and Obinutuzumab in Patients with CLL and Coexisting Conditions. N. Engl. J. Med. 2019, 380, 2225–2236. [Google Scholar] [CrossRef]
- Seymour, J.F.; Kipps, T.J.; Eichhorst, B.; Hillmen, P.; D’Rozario, J.; Assouline, S.; Owen, C.; Gerecitano, J.; Robak, T.; De La Serna, J.; et al. Venetoclax–Rituximab in Relapsed or Refractory Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2018, 378, 1107–1120. [Google Scholar] [CrossRef] [PubMed]
- Eichhorst, B.; Robak, T.; Montserrat, E.; Ghia, P.; Niemann, C.U.; Kater, A.P.; Gregor, M.; Cymbalista, F.; Buske, C.; Hillmen, P.; et al. Chronic Lymphocytic Leukaemia: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2021, 32, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, J.L.; Chavez, J.C.; Sotomayor, E.M.; Barrientos, J.C.; Castillo, J.J. A Multidisciplinary Approach to Managing BTK Inhibitor Toxicity in Lymphoma and Chronic Lymphocytic Leukemia. In Interdisciplinary Cancer Research; Springer International Publishing: Cham, Switzerland, 2023. [Google Scholar]
- Bond, D.A.; Woyach, J.A. Targeting BTK in CLL: Beyond Ibrutinib. Curr. Hematol. Malig. Rep. 2019, 14, 197–205. [Google Scholar] [CrossRef]
- Mato, A.R.; Shah, N.N.; Jurczak, W.; Cheah, C.Y.; Pagel, J.M.; Woyach, J.A.; Fakhri, B.; Eyre, T.A.; Lamanna, N.; Patel, M.R.; et al. Pirtobrutinib in Relapsed or Refractory B-Cell Malignancies (BRUIN): A Phase 1/2 Study. Lancet 2021, 397, 892–901. [Google Scholar] [CrossRef] [PubMed]
- Mato, A.R.; Woyach, J.A.; Brown, J.R.; Ghia, P.; Patel, K.; Eyre, T.A.; Munir, T.; Lech-Maranda, E.; Lamanna, N.; Tam, C.S.; et al. Pirtobrutinib after a Covalent BTK Inhibitor in Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2023, 389, 33–44. [Google Scholar] [CrossRef]
- Burger, J.A.; Buggy, J.J. Bruton Tyrosine Kinase Inhibitor Ibrutinib (PCI-32765). Leuk. Lymphoma 2013, 54, 2385–2391. [Google Scholar] [CrossRef]
- O’Brien, S.M.; Brown, J.R.; Byrd, J.C.; Furman, R.R.; Ghia, P.; Sharman, J.P.; Wierda, W.G. Monitoring and Managing BTK Inhibitor Treatment-Related Adverse Events in Clinical Practice. Front. Oncol. 2021, 11, 720704. [Google Scholar] [CrossRef]
- Roeker, L.E.; DerSarkissian, M.; Ryan, K.; Chen, Y.; Duh, M.S.; Wahlstrom, S.K.; Hakre, S.; Yu, L.; Guo, H.; Mato, A.R. Real-World Comparative Effectiveness of Acalabrutinib and Ibrutinib in Patients with Chronic Lymphocytic Leukemia. Blood Adv. 2023, 7, 4291–4301. [Google Scholar] [CrossRef]
- Byrd, J.C.; Harrington, B.; O’Brien, S.; Jones, J.A.; Schuh, A.; Devereux, S.; Chaves, J.; Wierda, W.G.; Awan, F.T.; Brown, J.R.; et al. Acalabrutinib (ACP-196) in Relapsed Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2016, 374, 323–332. [Google Scholar] [CrossRef]
- Byrd, J.C.; Wierda, W.G.; Schuh, A.; Devereux, S.; Chaves, J.M.; Brown, J.R.; Hillmen, P.; Martin, P.; Awan, F.T.; Stephens, D.M.; et al. Acalabrutinib Monotherapy in Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia: Updated Phase 2 Results. Blood 2020, 135, 1204–1213. [Google Scholar] [CrossRef]
- Sharman, J.P.; Egyed, M.; Jurczak, W.; Skarbnik, A.; Pagel, J.M.; Flinn, I.W.; Kamdar, M.; Munir, T.; Walewska, R.; Corbett, G.; et al. Efficacy and Safety in a 4-Year Follow-up of the ELEVATE-TN Study Comparing Acalabrutinib with or without Obinutuzumab versus Obinutuzumab plus Chlorambucil in Treatment-Naïve Chronic Lymphocytic Leukemia. Leukemia 2022, 36, 1171–1175. [Google Scholar] [CrossRef] [PubMed]
- Tam, C.S.; Trotman, J.; Opat, S.; Burger, J.A.; Cull, G.; Gottlieb, D.; Harrup, R.; Johnston, P.B.; Marlton, P.; Munoz, J.; et al. Phase 1 Study of the Selective BTK Inhibitor Zanubrutinib in B-Cell Malignancies and Safety and Efficacy Evaluation in CLL. Blood 2019, 134, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Hillmen, P.; Eichhorst, B.; Brown, J.R.; Lamanna, N.; O’Brien, S.M.; Tam, C.S.; Qiu, L.; Kazmierczak, M.; Zhou, K.; Šimkovič, M.; et al. Zanubrutinib Versus Ibrutinib in Relapsed/Refractory Chronic Lymphocytic Leukemia and Small Lymphocytic Lymphoma: Interim Analysis of a Randomized Phase III Trial. J. Clin. Oncol. 2023, 41, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, W.T.; Lakoski, S.G.; Qureshi, W.; Judd, S.E.; Howard, G.; Howard, V.J.; Cushman, M.; Soliman, E.Z. Relation between Cancer and Atrial Fibrillation (from the REasons for Geographic And Racial Differences in Stroke Study). Am. J. Cardiol. 2015, 115, 1090–1094. [Google Scholar] [CrossRef] [PubMed]
- Salem, J.-E.; Manouchehri, A.; Bretagne, M.; Lebrun-Vignes, B.; Groarke, J.D.; Johnson, D.B.; Yang, T.; Reddy, N.M.; Funck-Brentano, C.; Brown, J.R.; et al. Cardiovascular Toxicities Associated with Ibrutinib. J. Am. Coll. Cardiol. 2019, 74, 1667–1678. [Google Scholar] [CrossRef] [PubMed]
- Essa, H.; Lodhi, T.; Dobson, R.; Wright, D.; Lip, G.Y.H. How to Manage Atrial Fibrillation Secondary to Ibrutinib. JACC Cardio Oncol. 2021, 3, 140–144. [Google Scholar] [CrossRef]
- Shanafelt, T.D.; Parikh, S.A.; Noseworthy, P.A.; Goede, V.; Chaffee, K.G.; Bahlo, J.; Call, T.G.; Schwager, S.M.; Ding, W.; Eichhorst, B.; et al. Atrial Fibrillation in Patients with Chronic Lymphocytic Leukemia (CLL). Leuk. Lymphoma 2017, 58, 1630–1639. [Google Scholar] [CrossRef]
- Byrd, J.C.; Brown, J.R.; O’Brien, S.; Barrientos, J.C.; Kay, N.E.; Reddy, N.M.; Coutre, S.; Tam, C.S.; Mulligan, S.P.; Jaeger, U.; et al. Ibrutinib versus Ofatumumab in Previously Treated Chronic Lymphoid Leukemia. N. Engl. J. Med. 2014, 371, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Byrd, J.C.; Hillmen, P.; O’Brien, S.; Barrientos, J.C.; Reddy, N.M.; Coutre, S.; Tam, C.S.; Mulligan, S.P.; Jaeger, U.; Barr, P.M.; et al. Long-Term Follow-up of the RESONATE Phase 3 Trial of Ibrutinib vs. Ofatumumab. Blood 2019, 133, 2031–2042. [Google Scholar] [CrossRef]
- Burger, J.A.; Barr, P.M.; Robak, T.; Owen, C.; Ghia, P.; Tedeschi, A.; Bairey, O.; Hillmen, P.; Coutre, S.E.; Devereux, S.; et al. Long-Term Efficacy and Safety of First-Line Ibrutinib Treatment for Patients with CLL/SLL: 5 Years of Follow-up from the Phase 3 RESONATE-2 Study. Leukemia 2020, 34, 787–798. [Google Scholar] [CrossRef]
- Coutre, S.E.; Byrd, J.C.; Hillmen, P.; Barrientos, J.C.; Barr, P.M.; Devereux, S.; Robak, T.; Kipps, T.J.; Schuh, A.; Moreno, C.; et al. Long-Term Safety of Single-Agent Ibrutinib in Patients with Chronic Lymphocytic Leukemia in 3 Pivotal Studies. Blood Adv. 2019, 3, 1799–1807. [Google Scholar] [CrossRef]
- Yun, S.; Vincelette, N.D.; Acharya, U.; Abraham, I. Risk of Atrial Fibrillation and Bleeding Diathesis Associated with Ibrutinib Treatment: A Systematic Review and Pooled Analysis of Four Randomized Controlled Trials. Clin. Lymphoma Myeloma Leuk. 2017, 17, 31–37.e13. [Google Scholar] [CrossRef]
- Boriani, G.; Menna, P.; Morgagni, R.; Minotti, G.; Vitolo, M. Ibrutinib and Bruton’s Tyrosine Kinase Inhibitors in Chronic Lymphocytic Leukemia: Focus on Atrial Fibrillation and Ventricular Tachyarrhythmias/Sudden Cardiac Death. Chemotherapy 2023, 68, 61–72. [Google Scholar] [CrossRef]
- Brown, J.R.; Eichhorst, B.; Hillmen, P.; Jurczak, W.; Kaźmierczak, M.; Lamanna, N.; O’Brien, S.M.; Tam, C.S.; Qiu, L.; Zhou, K.; et al. Zanubrutinib or Ibrutinib in Relapsed or Refractory Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2023, 388, 319–332. [Google Scholar] [CrossRef]
- Byrd, J.C.; Woyach, J.A.; Furman, R.R.; Martin, P.; O’Brien, S.; Brown, J.R.; Stephens, D.M.; Barrientos, J.C.; Devereux, S.; Hillmen, P.; et al. Acalabrutinib in Treatment-Naive Chronic Lymphocytic Leukemia. Blood 2021, 137, 3327–3338. [Google Scholar] [CrossRef]
- Brown, J.R.; Byrd, J.C.; Ghia, P.; Sharman, J.P.; Hillmen, P.; Stephens, D.M.; Sun, C.; Jurczak, W.; Pagel, J.M.; Ferrajoli, A.; et al. Cardiovascular Adverse Events in Patients with Chronic Lymphocytic Leukemia Receiving Acalabrutinib Monotherapy: Pooled Analysis of 762 Patients. Haematologica 2021, 107, 1335–1346. [Google Scholar] [CrossRef]
- Byrd, J.C.; Hillmen, P.; Ghia, P.; Kater, A.P.; Chanan-Khan, A.; Furman, R.R.; O’Brien, S.; Yenerel, M.N.; Illés, A.; Kay, N.; et al. Acalabrutinib Versus Ibrutinib in Previously Treated Chronic Lymphocytic Leukemia: Results of the First Randomized Phase III Trial. J. Clin. Oncol. 2021, 39, 3441–3452. [Google Scholar] [CrossRef]
- Barr, P.M.; Brown, J.R.; Hillmen, P.; O’Brien, S.; Barrientos, J.C.; Reddy, N.M.; Coutre, S.; Mulligan, S.P.; Jaeger, U.; Furman, R.R.; et al. Impact of Ibrutinib Dose Adherence on Therapeutic Efficacy in Patients with Previously Treated CLL/SLL. Blood 2017, 129, 2612–2615. [Google Scholar] [CrossRef]
- Lentz, R.; Feinglass, J.; Ma, S.; Akhter, N. Risk Factors for the Development of Atrial Fibrillation on Ibrutinib Treatment. Leuk. Lymphoma 2019, 60, 1447–1453. [Google Scholar] [CrossRef]
- Visentin, A.; Deodato, M.; Mauro, F.R.; Autore, F.; Reda, G.; Vitale, C.; Molica, S.; Rigolin, G.M.; Piazza, F.; Cesini, L.; et al. A Scoring System to Predict the Risk of Atrial Fibrillation in Chronic Lymphocytic Leukemia. Hematol. Oncol. 2019, 37, 508–512. [Google Scholar] [CrossRef]
- Mattiello, V.; Barone, A.; Giannarelli, D.; Noto, A.; Cecchi, N.; Rampi, N.; Cassin, R.; Reda, G. Predictors of Ibrutinib-associated Atrial Fibrillation: 5-year Follow-up of a Prospective Study. Hematol. Oncol. 2023, 41, 363–370. [Google Scholar] [CrossRef]
- Brown, J.R.; Moslehi, J.; O’Brien, S.; Ghia, P.; Hillmen, P.; Cymbalista, F.; Shanafelt, T.D.; Fraser, G.; Rule, S.; Kipps, T.J.; et al. Characterization of Atrial Fibrillation Adverse Events Reported in Ibrutinib Randomized Controlled Registration Trials. Haematologica 2017, 102, 1796–1805. [Google Scholar] [CrossRef]
- Tang, C.P.S.; McMullen, J.; Tam, C. Cardiac Side Effects of Bruton Tyrosine Kinase (BTK) Inhibitors. Leuk. Lymphoma 2018, 59, 1554–1564. [Google Scholar] [CrossRef]
- Xiao, L.; Salem, J.-E.; Clauss, S.; Hanley, A.; Bapat, A.; Hulsmans, M.; Iwamoto, Y.; Wojtkiewicz, G.; Cetinbas, M.; Schloss, M.J.; et al. Ibrutinib-Mediated Atrial Fibrillation Attributable to Inhibition of C-Terminal Src Kinase. Circulation 2020, 142, 2443–2455. [Google Scholar] [CrossRef]
- Jiang, L.; Li, L.; Ruan, Y.; Zuo, S.; Wu, X.; Zhao, Q.; Xing, Y.; Zhao, X.; Xia, S.; Bai, R.; et al. Ibrutinib Promotes Atrial Fibrillation by Inducing Structural Remodeling and Calcium Dysregulation in the Atrium. Heart Rhythm 2019, 16, 1374–1382. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (Version 3.2024). Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1478 (accessed on 26 March 2024).
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on Cardio-Oncology Developed in Collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar] [CrossRef]
- Singh, A.; El Hangouche, N.; McGee, K.; Gong, F.; Lentz, R.; Feinglass, J.; Akhter, N. Utilizing Left Atrial Strain to Identify Patients at Risk for Atrial Fibrillation on Ibrutinib. Echocardiography 2021, 38, 81–88. [Google Scholar] [CrossRef]
- Lipsky, A.; Lamanna, N. Managing Toxicities of Bruton Tyrosine Kinase Inhibitors. Hematology 2020, 2020, 336–345. [Google Scholar] [CrossRef]
- Joglar, J.A.; Chung, M.K.; Armbruster, A.L.; Benjamin, E.J.; Chyou, J.Y.; Cronin, E.M.; Deswal, A.; Eckhardt, L.L.; Goldberger, Z.D.; Gopinathannair, R.; et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024, 149, e1–e156. [Google Scholar] [CrossRef]
- Tam, C.S.; Dimopoulos, M.; Garcia-Sanz, R.; Trotman, J.; Opat, S.; Roberts, A.W.; Owen, R.; Song, Y.; Xu, W.; Zhu, J.; et al. Pooled Safety Analysis of Zanubrutinib Monotherapy in Patients with B-Cell Malignancies. Blood Adv. 2022, 6, 1296–1308. [Google Scholar] [CrossRef]
- Wiczer, T.E.; Levine, L.B.; Brumbaugh, J.; Coggins, J.; Zhao, Q.; Ruppert, A.S.; Rogers, K.; McCoy, A.; Mousa, L.; Guha, A.; et al. Cumulative Incidence, Risk Factors, and Management of Atrial Fibrillation in Patients Receiving Ibrutinib. Blood Adv. 2017, 1, 1739–1748. [Google Scholar] [CrossRef] [PubMed]
- Stephens, D.M.; Byrd, J.C. How I Manage Ibrutinib Intolerance and Complications in Patients with Chronic Lymphocytic Leukemia. Blood 2019, 133, 1298–1307. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, J.K.; McBane, R.D.; Wysokinski, W.E. How to Choose Appropriate Direct Oral Anticoagulant for Patient with Nonvalvular Atrial Fibrillation. Ann. Hematol. 2016, 95, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Lau, W.C.Y.; Torre, C.O.; Man, K.K.C.; Stewart, H.M.; Seager, S.; Van Zandt, M.; Reich, C.; Li, J.; Brewster, J.; Lip, G.Y.H.; et al. Comparative Effectiveness and Safety between Apixaban, Dabigatran, Edoxaban, and Rivaroxaban Among Patients with Atrial Fibrillation: A Multinational Population-Based Cohort Study. Ann. Intern. Med. 2022, 175, 1515–1524. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Abraham, N.S.; Sangaralingham, L.R.; Bellolio, M.F.; McBane, R.D.; Shah, N.D.; Noseworthy, P.A. Effectiveness and Safety of Dabigatran, Rivaroxaban, and Apixaban Versus Warfarin in Nonvalvular Atrial Fibrillation. J. Am. Heart Assoc. 2016, 5, e003725. [Google Scholar] [CrossRef] [PubMed]
- Quartermaine, C.; Ghazi, S.M.; Yasin, A.; Awan, F.T.; Fradley, M.; Wiczer, T.; Kalathoor, S.; Ferdousi, M.; Krishan, S.; Habib, A.; et al. Cardiovascular Toxicities of BTK Inhibitors in Chronic Lymphocytic Leukemia. JACC Cardio Oncol. 2023, 5, 570–590. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, J.; Sarosiek, S.; Castillo, J.J. Managing Ibrutinib-Intolerant Patients with B-Cell Malignancies. Oncologist 2023, 28, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Lampson, B.L.; Yu, L.; Glynn, R.J.; Barrientos, J.C.; Jacobsen, E.D.; Banerji, V.; Jones, J.A.; Walewska, R.; Savage, K.J.; Michaud, G.F.; et al. Ventricular Arrhythmias and Sudden Death in Patients Taking Ibrutinib. Blood 2017, 129, 2581–2584. [Google Scholar] [CrossRef]
- Salem, J.-E.; Nguyen, L.S.; Moslehi, J.J.; Ederhy, S.; Lebrun-Vignes, B.; Roden, D.M.; Funck-Brentano, C.; Gougis, P. Anticancer Drug-Induced Life-Threatening Ventricular Arrhythmias: A World Health Organization Pharmacovigilance Study. Eur. Heart J. 2021, 42, 3915–3928. [Google Scholar] [CrossRef]
- Bhat, S.A.; Gambril, J.; Azali, L.; Chen, S.T.; Rosen, L.; Palettas, M.; Wiczer, T.E.; Kalathoor, S.; Zhao, Q.; Rogers, K.A.; et al. Ventricular Arrhythmias and Sudden Death Events Following Acalabrutinib Initiation. Blood 2022, 140, 2142–2145. [Google Scholar] [CrossRef]
- Du, B.; Chakraborty, P.; Azam, M.A.; Massé, S.; Lai, P.F.H.; Niri, A.; Si, D.; Thavendiranathan, P.; Abdel-Qadir, H.; Billia, F.; et al. Acute Effects of Ibrutinib on Ventricular Arrhythmia in Spontaneously Hypertensive Rats. JACC Cardio Oncol. 2020, 2, 614–629. [Google Scholar] [CrossRef] [PubMed]
- Tarnowski, D.; Feder, A.-L.; Trum, M.; Kreitmeier, K.-G.; Stengel, L.; Maier, L.S.; Sag, C.M. Ibrutinib Impairs IGF-1-Dependent Activation of Intracellular Ca Handling in Isolated Mouse Ventricular Myocytes. Front. Cardiovasc. Med. 2023, 10, 1190099. [Google Scholar] [CrossRef] [PubMed]
- Caldeira, D.; Alves, D.; Costa, J.; Ferreira, J.J.; Pinto, F.J. Ibrutinib Increases the Risk of Hypertension and Atrial Fibrillation: Systematic Review and Meta-Analysis. PLoS ONE 2019, 14, e0211228. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, T.; Wiczer, T.; Waller, A.; Philippon, J.; Porter, K.; Haddad, D.; Guha, A.; Rogers, K.A.; Bhat, S.; Byrd, J.C.; et al. Hypertension and Incident Cardiovascular Events Following Ibrutinib Initiation. Blood 2019, 134, 1919–1928. [Google Scholar] [CrossRef]
- Chen, S.T.; Azali, L.; Rosen, L.; Zhao, Q.; Wiczer, T.; Palettas, M.; Gambril, J.; Kola-Kehinde, O.; Ruz, P.; Kalathoor, S.; et al. Hypertension and Incident Cardiovascular Events after Next-Generation BTKi Therapy Initiation. J. Hematol. Oncol. J. Hematol. Oncol. 2022, 15, 92. [Google Scholar] [CrossRef] [PubMed]
- Munir, T.; Brown, J.R.; O’Brien, S.; Barrientos, J.C.; Barr, P.M.; Reddy, N.M.; Coutre, S.; Tam, C.S.; Mulligan, S.P.; Jaeger, U.; et al. Final Analysis from RESONATE: Up to Six Years of Follow-up on Ibrutinib in Patients with Previously Treated Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma. Am. J. Hematol. 2019, 94, 1353–1363. [Google Scholar] [CrossRef] [PubMed]
- Buck, B.; Chum, A.; Patel, M.; Carter, R.R.; Nawaz, H.; Yildiz, V.; Ruiz, P.; Wiczer, T.; Rogers, K.; Awan, F.; et al. Myocardial injury after ibrutinib initiation for hematologic malignancies. J. Am. Coll. Cardiol. 2022, 79, 1938. [Google Scholar] [CrossRef]
- EMA. IMBRUVICA® (Ibrutinib): EPAR—Product Information. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/imbruvica (accessed on 2 February 2024).
- FDA. IMBRUVICA® (Ibrutinib) Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/205552s030,210563s006lbl.pdf (accessed on 2 February 2024).
- FDA. CALQUENCE® (Acalabrutinib) Precribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/216387Orig2s000Correctedlbl.pdf (accessed on 2 February 2024).
- EMA. CALQUENCE® (Acalabrutinib): EPAR—Product Information. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/calquence (accessed on 2 February 2024).
- FDA. BRUKINSA® (Zanubrutinib) Prescribing Informations. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/213217s007lbl.pdf (accessed on 2 February 2024).
- EMA. BRUKINSA® (Zanubrutinib): EPAR—Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/brukinsa-epar-product-information_en.pdf (accessed on 2 February 2024).
- Diamond, A.; Bensken, W.P.; Vu, L.; Dong, W.; Koroukian, S.M.; Caimi, P. Ibrutinib Is Associated with Increased Cardiovascular Events and Major Bleeding in Older CLL Patients. JACC Cardio Oncol. 2023, 5, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Madhavan, M.; Prasad, A. Proposed Mayo Clinic Criteria for the Diagnosis of Tako-Tsubo Cardiomyopathy and Long-Term Prognosis. Herz 2010, 35, 240–244. [Google Scholar] [CrossRef]
- Giza, D.E.; Moudgil, R.; Lopez-Mattei, J.; Kim, P.; Iliescu, C. Association between Ibrutinib and Mid-Cavitary Takotsubo Cardiomyopathy: A Case Report and a Review of Chemotherapy-Induced Takostubo’s Cardiomyopathy. Eur. Heart J. Case Rep. 2017, 1, ytx006. [Google Scholar] [CrossRef]
- Byrd, J.C.; Furman, R.R.; Coutre, S.E.; Burger, J.A.; Blum, K.A.; Coleman, M.; Wierda, W.G.; Jones, J.A.; Zhao, W.; Heerema, N.A.; et al. Three-Year Follow-up of Treatment-Naïve and Previously Treated Patients with CLL and SLL Receiving Single-Agent Ibrutinib. Blood 2015, 125, 2497–2506. [Google Scholar] [CrossRef] [PubMed]
- Ghia, P.; Pluta, A.; Wach, M.; Lysak, D.; Šimkovič, M.; Kriachok, I.; Illés, Á.; De La Serna, J.; Dolan, S.; Campbell, P.; et al. Acalabrutinib Versus Investigator’s Choice in Relapsed/Refractory Chronic Lymphocytic Leukemia: Final ASCEND Trial Results. HemaSphere 2022, 6, e801. [Google Scholar] [CrossRef] [PubMed]
- Seymour, J.F.; Byrd, J.C.; Ghia, P.; Kater, A.P.; Chanan-Khan, A.; Furman, R.R.; O’Brien, S.; Brown, J.R.; Munir, T.; Mato, A.; et al. Detailed Safety Profile of Acalabrutinib vs Ibrutinib in Previously Treated Chronic Lymphocytic Leukemia in the ELEVATE-RR Trial. Blood 2023, 142, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, Z.; Yu, D.; Yang, L.; Li, L.; He, Y.; Shi, J. Recent Research of BTK Inhibitors: Methods of Structural Design, Pharmacological Activities, Manmade Derivatives and Structure–Activity Relationship. Bioorg. Chem. 2023, 138, 106577. [Google Scholar] [CrossRef] [PubMed]
- Goldmann, L.; Duan, R.; Kragh, T.; Wittmann, G.; Weber, C.; Lorenz, R.; Von Hundelshausen, P.; Spannagl, M.; Siess, W. Oral Bruton Tyrosine Kinase Inhibitors Block Activation of the Platelet Fc Receptor CD32a (FcγRIIA): A New Option in HIT? Blood Adv. 2019, 3, 4021–4033. [Google Scholar] [CrossRef] [PubMed]
- Bye, A.P.; Unsworth, A.J.; Desborough, M.J.; Hildyard, C.A.T.; Appleby, N.; Bruce, D.; Kriek, N.; Nock, S.H.; Sage, T.; Hughes, C.E.; et al. Severe Platelet Dysfunction in NHL Patients Receiving Ibrutinib Is Absent in Patients Receiving Acalabrutinib. Blood Adv. 2017, 1, 2610–2623. [Google Scholar] [CrossRef] [PubMed]
- Nicolson, P.L.R.; Hughes, C.E.; Watson, S.; Nock, S.H.; Hardy, A.T.; Watson, C.N.; Montague, S.J.; Clifford, H.; Huissoon, A.P.; Malcor, J.-D.; et al. Inhibition of Btk by Btk-Specific Concentrations of Ibrutinib and Acalabrutinib Delays but Does Not Block Platelet Aggregation Mediated by Glycoprotein VI. Haematologica 2018, 103, 2097–2108. [Google Scholar] [CrossRef] [PubMed]
- Jamasbi, J.; Ayabe, K.; Goto, S.; Nieswandt, B.; Peter, K.; Siess, W. Platelet Receptors as Therapeutic Targets: Past, Present and Future. Thromb. Haemost. 2017, 117, 1249–1257. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.H.; Piatt, R.; Conley, P.B.; Bergmeier, W. Effects of Ibrutinib Treatment on Murine Platelet Function during Inflammation and in Primary Hemostasis. Haematologica 2017, 102, e89–e92. [Google Scholar] [CrossRef]
- Brown, J.R.; Moslehi, J.; Ewer, M.S.; O’Brien, S.M.; Ghia, P.; Cymbalista, F.; Shanafelt, T.D.; Fraser, G.; Rule, S.; Coutre, S.E.; et al. Incidence of and Risk Factors for Major Haemorrhage in Patients Treated with Ibrutinib: An Integrated Analysis. Br. J. Haematol. 2019, 184, 558–569. [Google Scholar] [CrossRef]
- Thorp, B.C.; Badoux, X. Atrial Fibrillation as a Complication of Ibrutinib Therapy: Clinical Features and Challenges of Management. Leuk. Lymphoma 2018, 59, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Castillo, J.J.; Buske, C.; Trotman, J.; Sarosiek, S.; Treon, S.P. Bruton Tyrosine Kinase Inhibitors in the Management of Waldenström Macroglobulinemia. Am. J. Hematol. 2023, 98, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Parikh, S.A.; Achenbach, S.J.; Call, T.G.; Rabe, K.G.; Ding, W.; Leis, J.F.; Kenderian, S.S.; Chanan-Khan, A.A.; Koehler, A.B.; Schwager, S.M.; et al. The Impact of Dose Modification and Temporary Interruption of Ibrutinib on Outcomes of Chronic Lymphocytic Leukemia Patients in Routine Clinical Practice. Cancer Med. 2020, 9, 3390–3399. [Google Scholar] [CrossRef] [PubMed]
- Rogers, K.A.; Ruppert, A.S.; Bingman, A.; Andritsos, L.A.; Awan, F.T.; Blum, K.A.; Flynn, J.M.; Jaglowski, S.M.; Lozanski, G.; Maddocks, K.J.; et al. Incidence and Description of Autoimmune Cytopenias during Treatment with Ibrutinib for Chronic Lymphocytic Leukemia. Leukemia 2016, 30, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.A.; Tedeschi, A.; Barr, P.M.; Robak, T.; Owen, C.; Ghia, P.; Bairey, O.; Hillmen, P.; Bartlett, N.L.; Li, J.; et al. Ibrutinib as Initial Therapy for Patients with Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2015, 373, 2425–2437. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Yang, S.; Zhou, K.; Pan, L.; Li, Z.; Zhou, J.; Gao, S.; Zhou, D.; Hu, J.; Feng, R.; et al. Treatment of Relapsed/Refractory Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma with the BTK Inhibitor Zanubrutinib: Phase 2, Single-Arm, Multicenter Study. J. Hematol. Oncol. 2020, 13, 48. [Google Scholar] [CrossRef] [PubMed]
- Awan, F.T.; Schuh, A.; Brown, J.R.; Furman, R.R.; Pagel, J.M.; Hillmen, P.; Stephens, D.M.; Woyach, J.; Bibikova, E.; Charuworn, P.; et al. Acalabrutinib Monotherapy in Patients with Chronic Lymphocytic Leukemia Who Are Intolerant to Ibrutinib. Blood Adv. 2019, 3, 1553–1562. [Google Scholar] [CrossRef] [PubMed]
- Lasica, M.; Tam, C.S. Management of Ibrutinib Toxicities: A Practical Guide. Curr. Hematol. Malig. Rep. 2020, 15, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Ghia, P.; Pluta, A.; Wach, M.; Lysak, D.; Kozak, T.; Simkovic, M.; Kaplan, P.; Kraychok, I.; Illes, A.; De La Serna, J.; et al. ASCEND: Phase III, Randomized Trial of Acalabrutinib Versus Idelalisib Plus Rituximab or Bendamustine Plus Rituximab in Relapsed or Refractory Chronic Lymphocytic Leukemia. J. Clin. Oncol. 2020, 38, 2849–2861. [Google Scholar] [CrossRef]
- Tam, C.S.; Robak, T.; Ghia, P.; Kahl, B.S.; Walker, P.; Janowski, W.; Simpson, D.; Shadman, M.; Ganly, P.S.; Laurenti, L.; et al. Zanubrutinib Monotherapy for Patients with Treatment-Naïve Chronic Lymphocytic Leukemia and 17p Deletion. Haematologica 2020, 106, 2354–2363. [Google Scholar] [CrossRef]
- Estupiñán, H.Y.; Berglöf, A.; Zain, R.; Smith, C.I.E. Comparative Analysis of BTK Inhibitors and Mechanisms Underlying Adverse Effects. Front. Cell Dev. Biol. 2021, 9, 630942. [Google Scholar] [CrossRef] [PubMed]
- Moreno, C.; Greil, R.; Demirkan, F.; Tedeschi, A.; Anz, B.; Larratt, L.; Simkovic, M.; Novak, J.; Strugov, V.; Gill, D.; et al. First-Line Treatment of Chronic Lymphocytic Leukemia with Ibrutinib plus Obinutuzumab versus Chlorambucil plus Obinutuzumab: Final Analysis of the Randomized, Phase III iLLUMINATE Trial. Haematologica 2022, 107, 2108–2120. [Google Scholar] [CrossRef] [PubMed]
- Langerbeins, P.; Zhang, C.; Robrecht, S.; Cramer, P.; Fürstenau, M.; Al-Sawaf, O.; Von Tresckow, J.; Fink, A.-M.; Kreuzer, K.-A.; Vehling-Kaiser, U.; et al. The CLL12 Trial: Ibrutinib vs Placebo in Treatment-Naïve, Early-Stage Chronic Lymphocytic Leukemia. Blood 2022, 139, 177–187. [Google Scholar] [CrossRef]
- Sharman, J.P.; Egyed, M.; Jurczak, W.; Skarbnik, A.; Pagel, J.M.; Flinn, I.W.; Kamdar, M.; Munir, T.; Walewska, R.; Corbett, G.; et al. Acalabrutinib with or without Obinutuzumab versus Chlorambucil and Obinutuzumab for Treatment-Naive Chronic Lymphocytic Leukaemia (ELEVATE-TN): A Randomised, Controlled, Phase 3 Trial. Lancet 2020, 395, 1278–1291. [Google Scholar] [CrossRef]
- Xu, W.; Yang, S.; Tam, C.S.; Seymour, J.F.; Zhou, K.; Opat, S.; Qiu, L.; Sun, M.; Wang, T.; Trotman, J.; et al. Zanubrutinib Monotherapy for Naïve and Relapsed/Refractory Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma: A Pooled Analysis of Three Studies. Adv. Ther. 2022, 39, 4250–4265. [Google Scholar] [CrossRef] [PubMed]
- Barmettler, S.; Otani, I.M.; Minhas, J.; Abraham, R.S.; Chang, Y.; Dorsey, M.J.; Ballas, Z.K.; Bonilla, F.A.; Ochs, H.D.; Walter, J.E. Gastrointestinal Manifestations in X-Linked Agammaglobulinemia. J. Clin. Immunol. 2017, 37, 287–294. [Google Scholar] [CrossRef]
- Guan, D.; Wang, Z.; Huo, J.; Xu, S.; Lam, K.-P. Bruton’s Tyrosine Kinase Regulates Gut Immune Homeostasis through Attenuating Th1 Response. Cell Death Dis. 2021, 12, 431. [Google Scholar] [CrossRef]
- Rogers, K.A.; Thompson, P.A.; Allan, J.N.; Coleman, M.; Sharman, J.P.; Cheson, B.D.; Jones, D.; Izumi, R.; Frigault, M.M.; Quah, C.; et al. Phase II Study of Acalabrutinib in Ibrutinib-Intolerant Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia. Haematologica 2021, 106, 2364–2373. [Google Scholar] [CrossRef]
- Shadman, M.; Flinn, I.W.; Levy, M.Y.; Porter, R.F.; Burke, J.M.; Zafar, S.F.; Misleh, J.; Kingsley, E.C.; Yimer, H.A.; Freeman, B.; et al. Zanubrutinib in Patients with Previously Treated B-Cell Malignancies Intolerant of Previous Bruton Tyrosine Kinase Inhibitors in the USA: A Phase 2, Open-Label, Single-Arm Study. Lancet Haematol. 2023, 10, e35–e45. [Google Scholar] [CrossRef]
- Sibaud, V.; Beylot-Barry, M.; Protin, C.; Vigarios, E.; Recher, C.; Ysebaert, L. Dermatological Toxicities of Bruton’s Tyrosine Kinase Inhibitors. Am. J. Clin. Dermatol. 2020, 21, 799–812. [Google Scholar] [CrossRef]
- Zhang, X.; Ran, Y.-G.; Wang, K.-J. Risk of Severe Rash in Cancer Patients Treated with EGFR Tyrosine Kinase Inhibitors: A Systematic Review and Meta-Analysis. Future Oncol. 2016, 12, 2741–2753. [Google Scholar] [CrossRef] [PubMed]
- Paydas, S. Management of Adverse Effects/Toxicity of Ibrutinib. Crit. Rev. Oncol. Hematol. 2019, 136, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Iberri, D.J.; Kwong, B.Y.; Stevens, L.A.; Coutre, S.E.; Kim, J.; Sabile, J.M.; Advani, R.H. Ibrutinib-associated Rash: A Single-centre Experience of Clinicopathological Features and Management. Br. J. Haematol. 2018, 180, 164–166. [Google Scholar] [CrossRef] [PubMed]
- De Weerdt, I.; Koopmans, S.M.; Kater, A.P.; Van Gelder, M. Incidence and Management of Toxicity Associated with Ibrutinib and Idelalisib: A Practical Approach. Haematologica 2017, 102, 1629–1639. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, J.M.; LoRe, V.A.; Mato, A.R.; Chong, E.A.; Barrientos, J.C.; Gerson, J.N.; Barta, S.K.; Landsburg, D.J.; Nasta, S.D.; Svoboda, J.; et al. Ibrutinib-Associated Arthralgias/Myalgias in Patients with Chronic Lymphocytic Leukemia: Incidence and Impact on Clinical Outcomes. Clin. Lymphoma Myeloma Leuk. 2020, 20, 438–444. [Google Scholar] [CrossRef]
- Siddiqi, T.; Coutre, S.; McKinney, M.; Barr, P.M.; Rogers, K.; Mokatrin, A.; Valentino, R.; Szoke, A.; Deshpande, S.; Zhu, A.; et al. Characterization of Low-Grade Arthralgia, Myalgia, and Musculoskeletal Pain with Ibrutinib Therapy: Pooled Analysis of Clinical Trials in Patients with Chronic Lymphocytic Leukemia and Mantle Cell Lymphoma. Leuk. Lymphoma 2022, 63, 1580–1588. [Google Scholar] [CrossRef]
- Dolan, S.; Christofides, A.; Doucette, S.; Shafey, M. Highlights from ASCO 2020: Updates on the Treatment of Chronic Lymphocytic Leukemia. Curr. Oncol. 2020, 27, 420–432. [Google Scholar] [CrossRef]
- Stephens, D.M. NCCN Guidelines Update: Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma. J. Natl. Compr. Canc. Netw. 2023, 21, 563–566. [Google Scholar] [CrossRef]
- Wierda, W.G.; Byrd, J.C.; Abramson, J.S.; Bilgrami, S.F.; Bociek, G.; Brander, D.; Brown, J.; Chanan-Khan, A.A.; Chavez, J.C.; Coutre, S.E.; et al. Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma, Version 4.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. JNCCN 2020, 18, 185–217. [Google Scholar] [CrossRef]
- Carmine Belin, A.; Ran, C.; Edvinsson, L. Calcitonin Gene-Related Peptide (CGRP) and Cluster Headache. Brain Sci. 2020, 10, 30. [Google Scholar] [CrossRef]
- Davids, M.S.; Deng, J.; Wiestner, A.; Lannutti, B.J.; Wang, L.; Wu, C.J.; Wilson, W.H.; Brown, J.R.; Letai, A. Decreased Mitochondrial Apoptotic Priming Underlies Stroma-Mediated Treatment Resistance in Chronic Lymphocytic Leukemia. Blood 2012, 120, 3501–3509. [Google Scholar] [CrossRef] [PubMed]
- Konopleva, M.; Contractor, R.; Tsao, T.; Samudio, I.; Ruvolo, P.P.; Kitada, S.; Deng, X.; Zhai, D.; Shi, Y.-X.; Sneed, T.; et al. Mechanisms of Apoptosis Sensitivity and Resistance to the BH3 Mimetic ABT-737 in Acute Myeloid Leukemia. Cancer Cell 2006, 10, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Vandenberg, C.J.; Cory, S. ABT-199, a New Bcl-2–Specific BH3 Mimetic, Has in Vivo Efficacy against Aggressive Myc-Driven Mouse Lymphomas without Provoking Thrombocytopenia. Blood 2013, 121, 2285–2288. [Google Scholar] [CrossRef] [PubMed]
- Seymour, J.F. Effective Mitigation of Tumor Lysis Syndrome with Gradual Venetoclax Dose Ramp, Prophylaxis, and Monitoring in Patients with Chronic Lymphocytic Leukemia. Ann. Hematol. 2016, 95, 1361–1362. [Google Scholar] [CrossRef] [PubMed]
- FDA. VENCLEXTA® (Venetoclax Tablets) Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/208573s013lbl.pdf (accessed on 4 February 2024).
- EMA. Venclyxto: EPAR—Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/venclyxto-epar-product-information_en.pdf (accessed on 4 February 2024).
- Roberts, A.W.; Davids, M.S.; Pagel, J.M.; Kahl, B.S.; Puvvada, S.D.; Gerecitano, J.F.; Kipps, T.J.; Anderson, M.A.; Brown, J.R.; Gressick, L.; et al. Targeting BCL2 with Venetoclax in Relapsed Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2016, 374, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Howard, S.C.; Jones, D.P.; Pui, C.-H. The Tumor Lysis Syndrome. N. Engl. J. Med. 2011, 364, 1844–1854. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Al-Sawaf, O.; Hallek, M. Preventing and Monitoring for Tumor Lysis Syndrome and Other Toxicities of Venetoclax during Treatment of Chronic Lymphocytic Leukemia. Hematology 2020, 2020, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Waggoner, M.; Katsetos, J.; Thomas, E.; Galinsky, I.; Fox, H. Practical Management of the Venetoclax-Treated Patient in Chronic Lymphocytic Leukemia and Acute Myeloid Leukemia. J. Adv. Pract. Oncol. 2022, 13, 400–415. [Google Scholar] [CrossRef]
- Eichhorst, B.; Niemann, C.U.; Kater, A.P.; Fürstenau, M.; Von Tresckow, J.; Zhang, C.; Robrecht, S.; Gregor, M.; Juliusson, G.; Thornton, P.; et al. First-Line Venetoclax Combinations in Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2023, 388, 1739–1754. [Google Scholar] [CrossRef]
- Scarfo, L.; Albi, E.; Quaglia, F.M.; Marasca, R.; Sanna, A.; Murru, R.; Laurenti, L.; Gaidano, G.; Mannina, D.; Gentile, M.; et al. An Observational Study on Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia Treated with Venetoclax-Based Regimens Outside Clinical Trials in Italy (GIMEMA CLL1920). Blood 2021, 138, 3746. [Google Scholar] [CrossRef]
- Fiorcari, S.; Brown, W.S.; McIntyre, B.W.; Estrov, Z.; Maffei, R.; O’Brien, S.; Sivina, M.; Hoellenriegel, J.; Wierda, W.G.; Keating, M.J.; et al. The PI3-Kinase Delta Inhibitor Idelalisib (GS-1101) Targets Integrin-Mediated Adhesion of Chronic Lymphocytic Leukemia (CLL) Cell to Endothelial and Marrow Stromal Cells. PLoS ONE 2013, 8, e83830. [Google Scholar] [CrossRef] [PubMed]
- Furman, R.R.; Sharman, J.P.; Coutre, S.E.; Cheson, B.D.; Pagel, J.M.; Hillmen, P.; Barrientos, J.C.; Zelenetz, A.D.; Kipps, T.J.; Flinn, I.; et al. Idelalisib and Rituximab in Relapsed Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2014, 370, 997–1007. [Google Scholar] [CrossRef] [PubMed]
- Flinn, I.W.; Hillmen, P.; Montillo, M.; Nagy, Z.; Illés, Á.; Etienne, G.; Delgado, J.; Kuss, B.J.; Tam, C.S.; Gasztonyi, Z.; et al. The Phase 3 DUO Trial: Duvelisib vs Ofatumumab in Relapsed and Refractory CLL/SLL. Blood 2018, 132, 2446–2455. [Google Scholar] [CrossRef] [PubMed]
- Skanland, S.S.; Brown, J.R. PI3K Inhibitors in Chronic Lymphocytic Leukemia: Where Do We Go from Here? Haematologica 2022, 108, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Richardson, N.C.; Kasamon, Y.; Pazdur, R.; Gormley, N. The Saga of PI3K Inhibitors in Haematological Malignancies: Survival Is the Ultimate Safety Endpoint. Lancet Oncol. 2022, 23, 563–566. [Google Scholar] [CrossRef] [PubMed]
- Coutré, S.E.; Barrientos, J.C.; Brown, J.R.; De Vos, S.; Furman, R.R.; Keating, M.J.; Li, D.; O’Brien, S.M.; Pagel, J.M.; Poleski, M.H.; et al. Management of Adverse Events Associated with Idelalisib Treatment: Expert Panel Opinion. Leuk. Lymphoma 2015, 56, 2779–2786. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Pagel, J.M. Exploring a Future for PI3K Inhibitors in Chronic Lymphocytic Leukemia. Curr. Hematol. Malig. Rep. 2019, 14, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Cuneo, A.; Barosi, G.; Danesi, R.; Fagiuoli, S.; Ghia, P.; Marzano, A.; Montillo, M.; Poletti, V.; Viale, P.; Zinzani, P.L. Management of Adverse Events Associated with Idelalisib Treatment in Chronic Lymphocytic Leukemia and Follicular Lymphoma: A Multidisciplinary Position Paper. Hematol. Oncol. 2019, 37, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Haselager, M.V.; Kielbassa, K.; Ter Burg, J.; Bax, D.J.C.; Fernandes, S.M.; Borst, J.; Tam, C.; Forconi, F.; Chiodin, G.; Brown, J.R.; et al. Changes in Bcl-2 Members after Ibrutinib or Venetoclax Uncover Functional Hierarchy in Determining Resistance to Venetoclax in CLL. Blood 2020, 136, 2918–2926. [Google Scholar] [CrossRef]
- Cervantes-Gomez, F.; Lamothe, B.; Woyach, J.A.; Wierda, W.G.; Keating, M.J.; Balakrishnan, K.; Gandhi, V. Pharmacological and Protein Profiling Suggests Venetoclax (ABT-199) as Optimal Partner with Ibrutinib in Chronic Lymphocytic Leukemia. Clin. Cancer Res. 2015, 21, 3705–3715. [Google Scholar] [CrossRef]
- Kater, A.P.; Slinger, E.; Cretenet, G.; Martens, A.W.; Balasubramanian, S.; Leverson, J.D.; Eldering, E. Combined Ibrutinib and Venetoclax Treatment vs Single Agents in the TCL1 Mouse Model of Chronic Lymphocytic Leukemia. Blood Adv. 2021, 5, 5410–5414. [Google Scholar] [CrossRef]
- Lu, P.; Wang, S.; Franzen, C.A.; Venkataraman, G.; McClure, R.; Li, L.; Wu, W.; Niu, N.; Sukhanova, M.; Pei, J.; et al. Ibrutinib and Venetoclax Target Distinct Subpopulations of CLL Cells: Implication for Residual Disease Eradication. Blood Cancer J. 2021, 11, 39. [Google Scholar] [CrossRef]
- Jain, N.; Keating, M.; Thompson, P.; Ferrajoli, A.; Burger, J.; Borthakur, G.; Takahashi, K.; Estrov, Z.; Fowler, N.; Kadia, T.; et al. Ibrutinib and Venetoclax for First-Line Treatment of CLL. N. Engl. J. Med. 2019, 380, 2095–2103. [Google Scholar] [CrossRef] [PubMed]
- Tam, C.S.; Allan, J.N.; Siddiqi, T.; Kipps, T.J.; Jacobs, R.; Opat, S.; Barr, P.M.; Tedeschi, A.; Trentin, L.; Bannerji, R.; et al. Fixed-Duration Ibrutinib plus Venetoclax for First-Line Treatment of CLL: Primary Analysis of the CAPTIVATE FD Cohort. Blood 2022, 139, 3278–3289. [Google Scholar] [CrossRef]
- Wierda, W.G.; Allan, J.N.; Siddiqi, T.; Kipps, T.J.; Opat, S.; Tedeschi, A.; Badoux, X.C.; Kuss, B.J.; Jackson, S.; Moreno, C.; et al. Ibrutinib Plus Venetoclax for First-Line Treatment of Chronic Lymphocytic Leukemia: Primary Analysis Results From the Minimal Residual Disease Cohort of the Randomized Phase II CAPTIVATE Study. J. Clin. Oncol. 2021, 39, 3853–3865. [Google Scholar] [CrossRef] [PubMed]
- Niemann, C.U.; Munir, T.; Moreno, C.; Owen, C.; Follows, G.A.; Benjamini, O.; Janssens, A.; Levin, M.-D.; Robak, T.; Simkovic, M.; et al. Fixed-Duration Ibrutinib–Venetoclax versus Chlorambucil–Obinutuzumab in Previously Untreated Chronic Lymphocytic Leukaemia (GLOW): 4-Year Follow-up from a Multicentre, Open-Label, Randomised, Phase 3 Trial. Lancet Oncol. 2023, 24, 1423–1433. [Google Scholar] [CrossRef] [PubMed]
- Munir, T.; Cairns, D.A.; Bloor, A.; Allsup, D.; Cwynarski, K.; Pettitt, A.; Paneesha, S.; Fox, C.P.; Eyre, T.A.; Forconi, F.; et al. Chronic Lymphocytic Leukemia Therapy Guided by Measurable Residual Disease. N. Engl. J. Med. 2024, 390, 326–337. [Google Scholar] [CrossRef] [PubMed]
- Hillmen, P.; Rawstron, A.C.; Brock, K.; Muñoz-Vicente, S.; Yates, F.J.; Bishop, R.; Boucher, R.; MacDonald, D.; Fegan, C.; McCaig, A.; et al. Ibrutinib Plus Venetoclax in Relapsed/Refractory Chronic Lymphocytic Leukemia: The CLARITY Study. J. Clin. Oncol. 2019, 37, 2722–2729. [Google Scholar] [CrossRef] [PubMed]
- Kater, A.P.; Levin, M.-D.; Dubois, J.; Kersting, S.; Enggaard, L.; Veldhuis, G.J.; Mous, R.; Mellink, C.H.M.; van der Kevie-Kersemaekers, A.-M.F.; Dobber, J.A.; et al. Minimal Residual Disease-Guided Stop and Start of Venetoclax plus Ibrutinib for Patients with Relapsed or Refractory Chronic Lymphocytic Leukaemia (HOVON141/VISION): Primary Analysis of an Open-Label, Randomised, Phase 2 Trial. Lancet Oncol. 2022, 23, 818–828. [Google Scholar] [CrossRef]
- Kater, A.P.; Owen, C.; Moreno, C.; Follows, G.; Munir, T.; Levin, M.-D.; Benjamini, O.; Janssens, A.; Osterborg, A.; Robak, T.; et al. Fixed-Duration Ibrutinib-Venetoclax in Patients with Chronic Lymphocytic Leukemia and Comorbidities. NEJM Evid. 2022, 1, EVIDoa2200006. [Google Scholar] [CrossRef]
- Moreno, C.; Munir, T.; Owen, C.; Follows, G.; Hernandez Rivas, J.-A.; Benjamini, O.; Janssens, A.; Levin, M.-D.; Robak, T.; Simkovic, M.; et al. First-Line Fixed-Duration Ibrutinib Plus Venetoclax (Ibr+Ven) Versus Chlorambucil Plus Obinutuzumab (Clb+O): 55-Month Follow-up from the Glow Study. Blood 2023, 142, 634. [Google Scholar] [CrossRef]
- Tedeschi, A.; Ferrant, E.; Flinn, I.W.; Tam, C.S.; Ghia, P.; Robak, T.; Brown, J.R.; Ramakrishnan, V.; Tian, T.; Kuwahara, S.B.; et al. Zanubrutinib in Combination with Venetoclax for Patients with Treatment-Naïve (TN) Chronic Lymphocytic Leukemia (CLL) or Small Lymphocytic Lymphoma (SLL) with Del(17p): Early Results from Arm D of the SEQUOIA (BGB-3111-304) Trial. Blood 2021, 138, 67. [Google Scholar] [CrossRef]
- Huber, H.; Tausch, E.; Schneider, C.; Edenhofer, S.; Von Tresckow, J.; Robrecht, S.; Giza, A.; Zhang, C.; Fürstenau, M.; Dreger, P.; et al. Final Analysis of the CLL2-GIVe Trial: Obinutuzumab, Ibrutinib, and Venetoclax for Untreated CLL with Del(17p)/TP53 Mut. Blood 2023, 142, 961–972. [Google Scholar] [CrossRef] [PubMed]
- Davids, M.S.; Lampson, B.L.; Tyekucheva, S.; Wang, Z.; Lowney, J.C.; Pazienza, S.; Montegaard, J.; Patterson, V.; Weinstock, M.; Crombie, J.L.; et al. Acalabrutinib, Venetoclax, and Obinutuzumab as Frontline Treatment for Chronic Lymphocytic Leukaemia: A Single-Arm, Open-Label, Phase 2 Study. Lancet Oncol. 2021, 22, 1391–1402. [Google Scholar] [CrossRef]
- Ryan, C.E.; Lampson, B.L.; Tyekucheva, S.; Hackett, L.R.; Ren, Y.; Shupe, S.J.; Fernandes, S.M.; Crombie, J.L.; Ng, S.; Kim, A.I.; et al. Updated Results from a Multicenter, Phase 2 Study of Acalabrutinib, Venetoclax, Obinutuzumab (AVO) in a Population of Previously Untreated Patients with CLL Enriched for High-Risk Disease. Blood 2022, 140, 837–838. [Google Scholar] [CrossRef]
- Soumerai, J.D.; Mato, A.R.; Dogan, A.; Seshan, V.E.; Joffe, E.; Flaherty, K.; Carter, J.; Hochberg, E.; Barnes, J.A.; Hamilton, A.M.; et al. Zanubrutinib, Obinutuzumab, and Venetoclax with Minimal Residual Disease-Driven Discontinuation in Previously Untreated Patients with Chronic Lymphocytic Leukaemia or Small Lymphocytic Lymphoma: A Multicentre, Single-Arm, Phase 2 Trial. Lancet Haematol. 2021, 8, e879–e890. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, Z.; Tay-Sontheimer, J.; Levy, R.H.; Ragueneau-Majlessi, I. Risk of Clinically Relevant Pharmacokinetic-Based Drug-Drug Interactions with Drugs Approved by the U.S. Food and Drug Administration between 2013 and 2016. Drug Metab. Dispos. 2018, 46, 835–845. [Google Scholar] [CrossRef]
- Niu, J.; Straubinger, R.M.; Mager, D.E. Pharmacodynamic Drug–Drug Interactions. Clin. Pharmacol. Ther. 2019, 105, 1395–1406. [Google Scholar] [CrossRef]
- Finnes, H.D.; Chaffee, K.G.; Call, T.G.; Ding, W.; Kenderian, S.S.; Bowen, D.A.; Conte, M.; McCullough, K.B.; Merten, J.A.; Bartoo, G.T.; et al. Pharmacovigilance during Ibrutinib Therapy for Chronic Lymphocytic Leukemia (CLL)/Small Lymphocytic Lymphoma (SLL) in Routine Clinical Practice. Leuk. Lymphoma 2017, 58, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- De Zwart, L.; Snoeys, J.; De Jong, J.; Sukbuntherng, J.; Mannaert, E.; Monshouwer, M. Ibrutinib Dosing Strategies Based on Interaction Potential of CYP3A4 Perpetrators Using Physiologically Based Pharmacokinetic Modeling. Clin. Pharmacol. Ther. 2016, 100, 548–557. [Google Scholar] [CrossRef]
- Zhou, D.; Podoll, T.; Xu, Y.; Moorthy, G.; Vishwanathan, K.; Ware, J.; Slatter, J.G.; Al-Huniti, N. Evaluation of the Drug–Drug Interaction Potential of Acalabrutinib and Its Active Metabolite, ACP -5862, Using a Physiologically-Based Pharmacokinetic Modeling Approach. CPT Pharmacomet. Syst. Pharmacol. 2019, 8, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Frustaci, A.M.; Del Poeta, G.; Visentin, A.; Sportoletti, P.; Fresa, A.; Vitale, C.; Murru, R.; Chiarenza, A.; Sanna, A.; Mauro, F.R.; et al. Coexisting Conditions and Concomitant Medications Do Not Affect Venetoclax Management and Survival in Chronic Lymphocytic Leukemia. Ther. Adv. Hematol. 2022, 13, 204062072211275. [Google Scholar] [CrossRef] [PubMed]
- Stemler, J.; Mellinghoff, S.C.; Khodamoradi, Y.; Sprute, R.; Classen, A.Y.; Zapke, S.E.; Hoenigl, M.; Krause, R.; Schmidt-Hieber, M.; Heinz, W.J.; et al. Primary Prophylaxis of Invasive Fungal Diseases in Patients with Haematological Malignancies: 2022 Update of the Recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society for Haematology and Medical Oncology (DGHO). J. Antimicrob. Chemother. 2023, 78, 1813–1826. [Google Scholar] [CrossRef] [PubMed]
- Hilal, T.; Gea-Banacloche, J.C.; Leis, J.F. Chronic Lymphocytic Leukemia and Infection Risk in the Era of Targeted Therapies: Linking Mechanisms with Infections. Blood Rev. 2018, 32, 387–399. [Google Scholar] [CrossRef] [PubMed]
- Tadmor, T.; Welslau, M.; Hus, I. A Review of the Infection Pathogenesis and Prophylaxis Recommendations in Patients with Chronic Lymphocytic Leukemia. Expert Rev. Hematol. 2018, 11, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Gargiulo, E.; Ribeiro, E.F.O.; Niemann, C.U. SOHO State of the Art Updates and Next Questions | Infections in Chronic Lymphocytic Leukemia Patients: Risks and Management. Clin. Lymphoma Myeloma Leuk. 2023, 23, 322–332. [Google Scholar] [CrossRef]
- Cheah, C.Y.; Fowler, N.H. Idelalisib in the Management of Lymphoma. Blood 2016, 128, 331–336. [Google Scholar] [CrossRef]
- Greenwell, I.B.; Ip, A.; Cohen, J.B. PI3K Inhibitors: Understanding Toxicity Mechanisms and Management. Oncology 2017, 31, 821–828. [Google Scholar]
- Palma, M.; Mulder, T.A.; Österborg, A. BTK Inhibitors in Chronic Lymphocytic Leukemia: Biological Activity and Immune Effects. Front. Immunol. 2021, 12, 686768. [Google Scholar] [CrossRef]
- Colado, A.; Marín Franco, J.L.; Elías, E.E.; Amondarain, M.; Vergara Rubio, M.; Sarapura Martínez, V.; Cordini, G.; Fuentes, F.; Balboa, L.; Fernandez Grecco, H.; et al. Second Generation BTK Inhibitors Impair the Anti-fungal Response of Macrophages and Neutrophils. Am. J. Hematol. 2020, 95, E174–E178. [Google Scholar] [CrossRef]
- Tillman, B.F.; Pauff, J.M.; Satyanarayana, G.; Talbott, M.; Warner, J.L. Systematic Review of Infectious Events with the Bruton Tyrosine Kinase Inhibitor Ibrutinib in the Treatment of Hematologic Malignancies. Eur. J. Haematol. 2018, 100, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Ball, S.; Das, A.; Vutthikraivit, W.; Edwards, P.J.; Hardwicke, F.; Short, N.J.; Borthakur, G.; Maiti, A. Risk of Infection Associated with Ibrutinib in Patients with B-Cell Malignancies: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin. Lymphoma Myeloma Leuk. 2020, 20, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Ruchlemer, R.; Ben-Ami, R.; Bar-Meir, M.; Brown, J.R.; Malphettes, M.; Mous, R.; Tonino, S.H.; Soussain, C.; Barzic, N.; Messina, J.A.; et al. Ibrutinib-associated Invasive Fungal Diseases in Patients with Chronic Lymphocytic Leukaemia and non-Hodgkin Lymphoma: An Observational Study. Mycoses 2019, 62, 1140–1147. [Google Scholar] [CrossRef] [PubMed]
- Fiorcari, S.; Maffei, R.; Vallerini, D.; Scarfò, L.; Barozzi, P.; Maccaferri, M.; Potenza, L.; Ghia, P.; Luppi, M.; Marasca, R. BTK Inhibition Impairs the Innate Response Against Fungal Infection in Patients with Chronic Lymphocytic Leukemia. Front. Immunol. 2020, 11, 2158. [Google Scholar] [CrossRef] [PubMed]
- Ghez, D.; Calleja, A.; Protin, C.; Baron, M.; Ledoux, M.-P.; Damaj, G.; Dupont, M.; Dreyfus, B.; Ferrant, E.; Herbaux, C.; et al. Early-Onset Invasive Aspergillosis and Other Fungal Infections in Patients Treated with Ibrutinib. Blood 2018, 131, 1955–1959. [Google Scholar] [CrossRef]
- Walker, C.; Horowitz, A.; Nooruddin, Z.; Frei, C.R. Incidence of Invasive Fungal Infections in Patients with Chronic Lymphocytic Leukemia Receiving Ibrutinib within the Veteran’s Healthcare Administration. J. Oncol. Pharm. Pract. 2023, 30, 673–677. [Google Scholar] [CrossRef] [PubMed]
- Allouchery, M.; Brunet, K.; Tomowiak, C.; Singier, A.; Pambrun, E.; Pariente, A.; Bezin, J.; Pérault-Pochat, M.; Salvo, F. Invasive Fungal Infection Incidence and Risk Factors in Patients Receiving Ibrutinib in Real-life Settings: A Nationwide Population-based Cohort Study. Mycoses 2023, 67, e13676. [Google Scholar] [CrossRef] [PubMed]
- Frei, M.; Aitken, S.L.; Jain, N.; Thompson, P.; Wierda, W.; Kontoyiannis, D.P.; DiPippo, A.J. Incidence and Characterization of Fungal Infections in Chronic Lymphocytic Leukemia Patients Receiving Ibrutinib. Leuk. Lymphoma 2020, 61, 2488–2491. [Google Scholar] [CrossRef]
- Gold, J.A.W.; Tolu, S.S.; Chiller, T.; Benedict, K.; Jackson, B.R. Incidence of Invasive Fungal Infections in Patients Initiating Ibrutinib and Other Small Molecule Kinase Inhibitors—United States, July 2016–June 2019. Clin. Infect. Dis. 2022, 75, 334–337. [Google Scholar] [CrossRef]
- Ahn, I.E.; Jerussi, T.; Farooqui, M.; Tian, X.; Wiestner, A.; Gea-Banacloche, J. Atypical Pneumocystis Jirovecii Pneumonia in Previously Untreated Patients with CLL on Single-Agent Ibrutinib. Blood 2016, 128, 1940–1943. [Google Scholar] [CrossRef]
- Lee, R.; Nayernama, A.; Jones, S.C.; Wroblewski, T.; Waldron, P.E. Ibrutinib-associated Pneumocystis Jirovecii Pneumonia. Am. J. Hematol. 2017, 92, E646–E648. [Google Scholar] [CrossRef] [PubMed]
- Ryan, C.E.; Cheng, M.P.; Issa, N.C.; Brown, J.R.; Davids, M.S. Pneumocystis Jirovecii Pneumonia and Institutional Prophylaxis Practices in CLL Patients Treated with BTK Inhibitors. Blood Adv. 2020, 4, 1458–1463. [Google Scholar] [CrossRef] [PubMed]
- Aslan, B.; Kismali, G.; Iles, L.R.; Manyam, G.C.; Ayres, M.L.; Chen, L.S.; Gagea, M.; Bertilaccio, M.T.S.; Wierda, W.G.; Gandhi, V. Pirtobrutinib Inhibits Wild-Type and Mutant Bruton’s Tyrosine Kinase-Mediated Signaling in Chronic Lymphocytic Leukemia. Blood Cancer J. 2022, 12, 80. [Google Scholar] [CrossRef] [PubMed]
- Furman, R.R.; Byrd, J.C.; Owen, R.G.; O’Brien, S.M.; Brown, J.R.; Hillmen, P.; Stephens, D.M.; Chernyukhin, N.; Lezhava, T.; Hamdy, A.M.; et al. Pooled Analysis of Safety Data from Clinical Trials Evaluating Acalabrutinib Monotherapy in Mature B-Cell Malignancies. Leukemia 2021, 35, 3201–3211. [Google Scholar] [CrossRef] [PubMed]
- Stilgenbauer, S.; Eichhorst, B.; Schetelig, J.; Hillmen, P.; Seymour, J.F.; Coutre, S.; Jurczak, W.; Mulligan, S.P.; Schuh, A.; Assouline, S.; et al. Venetoclax for Patients with Chronic Lymphocytic Leukemia with 17p Deletion: Results From the Full Population of a Phase II Pivotal Trial. J. Clin. Oncol. 2018, 36, 1973–1980. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.A.; Mato, A.R.; Wierda, W.G.; Davids, M.S.; Choi, M.; Cheson, B.D.; Furman, R.R.; Lamanna, N.; Barr, P.M.; Zhou, L.; et al. Venetoclax for Chronic Lymphocytic Leukaemia Progressing after Ibrutinib: An Interim Analysis of a Multicentre, Open-Label, Phase 2 Trial. Lancet Oncol. 2018, 19, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Coutre, S.; Choi, M.; Furman, R.R.; Eradat, H.; Heffner, L.; Jones, J.A.; Chyla, B.; Zhou, L.; Agarwal, S.; Waskiewicz, T.; et al. Venetoclax for Patients with Chronic Lymphocytic Leukemia Who Progressed during or after Idelalisib Therapy. Blood 2018, 131, 1704–1711. [Google Scholar] [CrossRef] [PubMed]
- Kersting, S.; Dubois, J.; Nasserinejad, K.; Dobber, J.A.; Mellink, C.; van der Kevie-Kersemaekers, A.-M.F.; Evers, L.M.; de Boer, F.; Koene, H.R.; Schreurs, J.; et al. Venetoclax Consolidation after Fixed-Duration Venetoclax plus Obinutuzumab for Previously Untreated Chronic Lymphocytic Leukaemia (HOVON 139/GiVe): Primary Endpoint Analysis of a Multicentre, Open-Label, Randomised, Parallel-Group, Phase 2 Trial. Lancet Haematol. 2022, 9, e190–e199. [Google Scholar] [CrossRef] [PubMed]
- Chatzikonstantinou, T.; Kapetanakis, A.; Scarfò, L.; Karakatsoulis, G.; Allsup, D.; Cabrero, A.A.; Andres, M.; Antic, D.; Baile, M.; Baliakas, P.; et al. COVID-19 Severity and Mortality in Patients with CLL: An Update of the International ERIC and Campus CLL Study. Leukemia 2021, 35, 3444–3454. [Google Scholar] [CrossRef]
- Visentin, A.; Chatzikonstantinou, T.; Scarfò, L.; Kapetanakis, A.; Demosthenous, C.; Karakatsoulis, G.; Minga, E.; Chamou, D.; Allsup, D.; Cabrero, A.A.; et al. The Evolving Landscape of COVID-19 and post-COVID Condition in Patients with Chronic Lymphocytic Leukemia: A Study by ERIC, the European Research Initiative on CLL. Am. J. Hematol. 2023, 98, 1856–1868. [Google Scholar] [CrossRef]
- Vitale, C.; Boccellato, E.; Comba, L.; Jones, R.; Perutelli, F.; Griggio, V.; Coscia, M. Impact of Immune Parameters and Immune Dysfunctions on the Prognosis of Patients with Chronic Lymphocytic Leukemia. Cancers 2021, 13, 3856. [Google Scholar] [CrossRef] [PubMed]
- Forconi, F.; Moss, P. Perturbation of the Normal Immune System in Patients with CLL. Blood 2015, 126, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Teh, B.W.; Tam, C.S.; Handunnetti, S.; Worth, L.J.; Slavin, M.A. Infections in Patients with Chronic Lymphocytic Leukaemia: Mitigating Risk in the Era of Targeted Therapies. Blood Rev. 2018, 32, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Grywalska, E.; Zaborek, M.; Łyczba, J.; Hrynkiewicz, R.; Bębnowska, D.; Becht, R.; Sosnowska-Pasiarska, B.; Smok-Kalwat, J.; Pasiarski, M.; Góźdź, S.; et al. Chronic Lymphocytic Leukemia-Induced Humoral Immunosuppression: A Systematic Review. Cells 2020, 9, 2398. [Google Scholar] [CrossRef] [PubMed]
- Hallek, M.; Cheson, B.D.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Döhner, H.; Hillmen, P.; Keating, M.; Montserrat, E.; Chiorazzi, N.; et al. iwCLL Guidelines for Diagnosis, Indications for Treatment, Response Assessment, and Supportive Management of CLL. Blood 2018, 131, 2745–2760. [Google Scholar] [CrossRef] [PubMed]
- Murru, R.; Galitzia, A.; Barabino, L.; Presicci, R.; La Nasa, G.; Caocci, G. Prediction of Severe Infections in Chronic Lymphocytic Leukemia: A Simple Risk Score to Stratify Patients at Diagnosis. Ann. Hematol. 2024, 103, 1655–1664. [Google Scholar] [CrossRef] [PubMed]
- Agius, R.; Brieghel, C.; Andersen, M.A.; Pearson, A.T.; Ledergerber, B.; Cozzi-Lepri, A.; Louzoun, Y.; Andersen, C.L.; Bergstedt, J.; von Stemann, J.H.; et al. Machine Learning Can Identify Newly Diagnosed Patients with CLL at High Risk of Infection. Nat. Commun. 2020, 11, 363. [Google Scholar] [CrossRef] [PubMed]
- Mauro, F.R.; Giannarelli, D.; Visentin, A.; Reda, G.; Sportoletti, P.; Frustaci, A.M.; Chiarenza, A.; Ciolli, S.; Vitale, C.; Laurenti, L.; et al. Prognostic Impact and Risk Factors of Infections in Patients with Chronic Lymphocytic Leukemia Treated with Ibrutinib. Cancers 2021, 13, 3240. [Google Scholar] [CrossRef] [PubMed]
- Patten, P.; Cook, J.; Peckham, N.; Moss, P.; Phillips, N.; Abhishek, A.; Roberts, T.; Talbot, G.; Barber, V.; Francis, A.; et al. The Impact of Pausing Bruton Tyrosine Kinase Inhibitor Therapy and Responsiveness of Vaccination in Blood Cancer Patients: Primary Outcome Result for the Randomised Improve Trial. Blood 2023, 142, 1904. [Google Scholar] [CrossRef]
- Rankin, K.; Hastak, P.; Wong, A.; Sasson, S.C.; Beaton, B.; Yeola, A.; Warden, A.; Turville, S.; Kelleher, A.D.; Brilot, F.; et al. Immune Response to COVID-19 Vaccination in Patients with Waldenström Macroglobulinaemia Who Pause Their BTKi Therapy. eJHaem 2023, 4, 728–732. [Google Scholar] [CrossRef]
- Carda, J.P.; Santos, L.; Mariz, J.M.; Monteiro, P.; Gonçalves, H.M.; Raposo, J.; Gomes Da Silva, M. Management of Ibrutinib Treatment in Patients with B-Cell Malignancies: Clinical Practice in Portugal and Multidisciplinary Recommendations. Hematology 2021, 26, 785–798. [Google Scholar] [CrossRef] [PubMed]
- Baratè, C.; Sanna, A.; Benedetti, E.; Bocchia, M.; Capochiani, E.; Danesi, R.; Moretti, S.; Occhini, U.; Santini, S.; Galimberti, S.; et al. Real-Life Diagnostic and Therapeutic Approach to CLL: A 2022 Update from an Expert Panel in Tuscany. Clin. Exp. Med. 2023, 23, 4251–4264. [Google Scholar] [CrossRef] [PubMed]
- Walewska, R.; Parry-Jones, N.; Eyre, T.A.; Follows, G.; Martinez-Calle, N.; McCarthy, H.; Parry, H.; Patten, P.E.M.; Riches, J.C.; Hillmen, P.; et al. Guideline for the Treatment of Chronic Lymphocytic Leukaemia. Br. J. Haematol. 2022, 197, 544–557. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.J.; Ustianowski, A.; De Wit, S.; Launay, O.; Avila, M.; Templeton, A.; Yuan, Y.; Seegobin, S.; Ellery, A.; Levinson, D.J.; et al. Intramuscular AZD7442 (Tixagevimab–Cilgavimab) for Prevention of Covid-19. N. Engl. J. Med. 2022, 386, 2188–2200. [Google Scholar] [CrossRef]
- Khan, S.; Allsup, D.; Molica, S. An Updated Perspective on Immunoglobulin Replacement in Chronic Lymphocytic Leukaemia in the Era of Targeted Therapies. Front. Oncol. 2023, 13, 1135812. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Aitken, S.L. Prophylaxis Against Pneumocystis jirovecii Pneumonia in Adults. JAMA 2023, 330, 182. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.R. How I Treat CLL Patients with Ibrutinib. Blood 2018, 131, 379–386. [Google Scholar] [CrossRef]
- Reinwald, M.; Silva, J.T.; Mueller, N.J.; Fortún, J.; Garzoni, C.; De Fijter, J.W.; Fernández-Ruiz, M.; Grossi, P.; Aguado, J.M. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the Safety of Targeted and Biological Therapies: An Infectious Diseases Perspective (Intracellular Signaling Pathways: Tyrosine Kinase and mTOR Inhibitors). Clin. Microbiol. Infect. 2018, 24, S53–S70. [Google Scholar] [CrossRef] [PubMed]
- Teh, B.W.; Yeoh, D.K.; Haeusler, G.M.; Yannakou, C.K.; Fleming, S.; Lindsay, J.; Slavin, M.A. Australasian Antifungal Guidelines Steering Committee Consensus Guidelines for Antifungal Prophylaxis in Haematological Malignancy and Haemopoietic Stem Cell Transplantation, 2021. Intern. Med. J. 2021, 51, 67–88. [Google Scholar] [CrossRef]
- Wang, B.; Mufti, G.; Agarwal, K. Reactivation of Hepatitis B Virus Infection in Patients with Hematologic Disorders. Haematologica 2019, 104, 435–443. [Google Scholar] [CrossRef]
- Hwang, J.P.; Feld, J.J.; Hammond, S.P.; Wang, S.H.; Alston-Johnson, D.E.; Cryer, D.R.; Hershman, D.L.; Loehrer, A.P.; Sabichi, A.L.; Symington, B.E.; et al. Hepatitis B Virus Screening and Management for Patients with Cancer Prior to Therapy: ASCO Provisional Clinical Opinion Update. J. Clin. Oncol. 2020, 38, 3698–3715. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.-F.; Hsu, C.-M.; Hsiao, H.-H. Management of Hepatitis B Virus Reactivation in Malignant Lymphoma Prior to Immunosuppressive Treatment. J. Pers. Med. 2021, 11, 267. [Google Scholar] [CrossRef] [PubMed]
- Hammond, S.P.; Chen, K.; Pandit, A.; Davids, M.S.; Issa, N.C.; Marty, F.M. Risk of Hepatitis B Virus Reactivation in Patients Treated with Ibrutinib. Blood 2018, 131, 1987–1989. [Google Scholar] [CrossRef] [PubMed]
- Mustafayev, K.; Torres, H. Hepatitis B Virus and Hepatitis C Virus Reactivation in Cancer Patients Receiving Novel Anticancer Therapies. Clin. Microbiol. Infect. 2022, 28, 1321–1327. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, A.; Frustaci, A.M.; Mazzucchelli, M.; Cairoli, R.; Montillo, M. Is HBV Prophylaxis Required during CLL Treatment with Ibrutinib? Leuk. Lymphoma 2017, 58, 2966–2968. [Google Scholar] [CrossRef] [PubMed]
- Innocenti, I.; Morelli, F.; Autore, F.; Corbingi, A.; Pasquale, R.; Sorà, F.; Pompili, M.; Laurenti, L. HBV Reactivation in CLL Patients with Occult HBV Infection Treated with Ibrutinib without Viral Prophylaxis. Leuk. Lymphoma 2019, 60, 1340–1342. [Google Scholar] [CrossRef] [PubMed]
- Innocenti, I.; Reda, G.; Visentin, A.; Coscia, M.; Motta, M.; Murru, R.; Moia, R.; Gentile, M.; Pennese, E.; Quaglia, F.M.; et al. Risk of Hepatitis B Virus Reactivation in Chronic Lymphocytic Leukemia Patients Receiving Ibrutinib with or without Antiviral Prophylaxis. A Retrospective Multicentric GIMEMA Study. Haematologica 2022, 107, 1470–1473. [Google Scholar] [CrossRef]
- Chiu, C.-Y.; Ahmed, S.; Thomas, S.K.; Wang, L.S.; Mustafayev, K.; Fayad, L.E.; Wierda, W.G.; Khawaja, F.; Torres, H.A. Hepatitis B Virus Reactivation in Patients Receiving Bruton Tyrosine Kinase Inhibitors. Clin. Lymphoma Myeloma Leuk. 2023, 23, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Mak, J.W.Y.; Law, A.W.H.; Law, K.W.T.; Ho, R.; Cheung, C.K.M.; Law, M.F. Prevention and Management of Hepatitis B Virus Reactivation in Patients with Hematological Malignancies in the Targeted Therapy Era. World J. Gastroenterol. 2023, 29, 4942–4961. [Google Scholar] [CrossRef]
- Henze, L.; Buhl, C.; Sandherr, M.; Cornely, O.A.; Heinz, W.J.; Khodamoradi, Y.; Kiderlen, T.R.; Koehler, P.; Seidler, A.; Sprute, R.; et al. Management of Herpesvirus Reactivations in Patients with Solid Tumours and Hematologic Malignancies: Update of the Guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society for Hematology and Medical Oncology (DGHO) on Herpes Simplex Virus Type 1, Herpes Simplex Virus Type 2, and Varicella Zoster Virus. Ann. Hematol. 2022, 101, 491–511. [Google Scholar] [CrossRef]
- Giridhar, K.V.; Shanafelt, T.; Tosh, P.K.; Parikh, S.A.; Call, T.G. Disseminated Herpes Zoster in Chronic Lymphocytic Leukemia (CLL) Patients Treated with B-Cell Receptor Pathway Inhibitors. Leuk. Lymphoma 2017, 58, 1973–1976. [Google Scholar] [CrossRef] [PubMed]
- Sutton, E.; Lopez, J.J.; Dao, L.N.; Wetter, D.A. Disseminated Herpes Zoster in Chronic Lymphocytic Leukemia. J. Emerg. Med. 2016, 50, e159–e160. [Google Scholar] [CrossRef]
- Chen, I.; Fohtung, R.B.; Oughli, H.A.; Bauer, R.; Mattar, C.; Powderly, W.G.; Thoelke, M.S. Concurrent Ramsay Hunt Syndrome and Disseminated Herpes Zoster in a Patient with Relapsed Chronic Lymphocytic Leukemia. IDCases 2016, 6, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Bird, S.T.; Tian, F.; Flowers, N.; Przepiorka, D.; Wang, R.; Jung, T.-H.; Kessler, Z.; Woods, C.; Kim, B.; Miller, B.W.; et al. Idelalisib for Treatment of Relapsed Follicular Lymphoma and Chronic Lymphocytic Leukemia: A Comparison of Treatment Outcomes in Clinical Trial Participants vs Medicare Beneficiaries. JAMA Oncol. 2020, 6, 248. [Google Scholar] [CrossRef] [PubMed]
- Hanlon, A.; Brander, D.M. Managing Toxicities of Phosphatidylinositol-3-Kinase (PI3K) Inhibitors. Hematology 2020, 2020, 346–356. [Google Scholar] [CrossRef]
- Gribben, J.G.; Bosch, F.; Cymbalista, F.; Geisler, C.H.; Ghia, P.; Hillmen, P.; Moreno, C.; Stilgenbauer, S. Optimising Outcomes for Patients with Chronic Lymphocytic Leukaemia on Ibrutinib Therapy: European Recommendations for Clinical Practice. Br. J. Haematol. 2018, 180, 666–679. [Google Scholar] [CrossRef]
- Hampel, P.J.; Call, T.G.; Rabe, K.G.; Ding, W.; Muchtar, E.; Kenderian, S.S.; Wang, Y.; Leis, J.F.; Witzig, T.E.; Koehler, A.B.; et al. Disease Flare During Temporary Interruption of Ibrutinib Therapy in Patients with Chronic Lymphocytic Leukemia. Oncologist 2020, 25, 974–980. [Google Scholar] [CrossRef]
- Maurer, C.; Langerbeins, P.; Bahlo, J.; Cramer, P.; Fink, A.M.; Pflug, N.; Engelke, A.; Von Tresckow, J.; Kovacs, G.; Stilgenbauer, S.; et al. Effect of First-Line Treatment on Second Primary Malignancies and Richter’s Transformation in Patients with CLL. Leukemia 2016, 30, 2019–2025. [Google Scholar] [CrossRef]
- Kumar, V.; Ailawadhi, S.; Bojanini, L.; Mehta, A.; Biswas, S.; Sher, T.; Roy, V.; Vishnu, P.; Marin-Acevedo, J.; Alegria, V.R.; et al. Trends in the Risk of Second Primary Malignancies among Survivors of Chronic Lymphocytic Leukemia. Blood Cancer J. 2019, 9, 75. [Google Scholar] [CrossRef]
- Falchi, L.; Vitale, C.; Keating, M.J.; Lerner, S.; Wang, X.; Elhor Gbito, K.Y.; Strom, S.; Wierda, W.G.; Ferrajoli, A. Incidence and Prognostic Impact of Other Cancers in a Population of Long-Term Survivors of Chronic Lymphocytic Leukemia. Ann. Oncol. 2016, 27, 1100–1106. [Google Scholar] [CrossRef]
- Benjamini, O.; Jain, P.; Trinh, L.; Qiao, W.; Strom, S.S.; Lerner, S.; Wang, X.; Burger, J.; Ferrajoli, A.; Kantarjian, H.; et al. Second Cancers in Patients with Chronic Lymphocytic Leukemia Who Received Frontline Fludarabine, Cyclophosphamide and Rituximab Therapy: Distribution and Clinical Outcomes. Leuk. Lymphoma 2015, 56, 1643–1650. [Google Scholar] [CrossRef] [PubMed]
- Morrison, V.A.; Rai, K.R.; Peterson, B.L.; Kolitz, J.E.; Elias, L.; Appelbaum, F.R.; Hines, J.D.; Shepherd, L.; Larson, R.A.; Schiffer, C.A. Therapy-Related Myeloid Leukemias Are Observed in Patients with Chronic Lymphocytic Leukemia After Treatment with Fludarabine and Chlorambucil: Results of an Intergroup Study, Cancer and Leukemia Group B 9011. J. Clin. Oncol. 2002, 20, 3878–3884. [Google Scholar] [CrossRef] [PubMed]
- Da Cunha-Bang, C.; Rostgaard, K.; Andersen, M.A.; Rotbain, E.C.; Grønbæk, K.; Frederiksen, H.; Niemann, C.U.; Hjalgrim, H. Risk of New Malignancies among Patients with CLL Treated with Chemotherapy: Results of a Danish Population-based Study. Br. J. Haematol. 2021, 193, 339–345. [Google Scholar] [CrossRef] [PubMed]
- van der Straten, L.; Levin, M.-D.; Dinnessen, M.A.W.; Visser, O.; Posthuma, E.F.M.; Doorduijn, J.K.; Langerak, A.W.; Kater, A.P.; Dinmohamed, A.G. Risk of Second Primary Malignancies in Patients with Chronic Lymphocytic Leukemia: A Population-Based Study in the Netherlands, 1989–2019. Blood Cancer J. 2023, 13, 15. [Google Scholar] [CrossRef] [PubMed]
- Chatzikonstantinou, T.; Scarfò, L.; Karakatsoulis, G.; Minga, E.; Chamou, D.; Iacoboni, G.; Kotaskova, J.; Demosthenous, C.; Smolej, L.; Mulligan, S.; et al. Other Malignancies in the History of CLL: An International Multicenter Study Conducted by ERIC, the European Research Initiative on CLL, in HARMONY. eClinicalMedicine 2023, 65, 102307. [Google Scholar] [CrossRef]
- Al-Sawaf, O.; Zhang, C.; Jin, H.Y.; Robrecht, S.; Choi, Y.; Balasubramanian, S.; Kotak, A.; Chang, Y.M.; Fink, A.M.; Tausch, E.; et al. Transcriptomic Profiles and 5-Year Results from the Randomized CLL14 Study of Venetoclax plus Obinutuzumab versus Chlorambucil plus Obinutuzumab in Chronic Lymphocytic Leukemia. Nat. Commun. 2023, 14, 2147. [Google Scholar] [CrossRef]
- Evans, J.; Ziebland, S.; Pettitt, A.R. Incurable, Invisible and Inconclusive: Watchful Waiting for Chronic Lymphocytic Leukaemia and Implications for Doctor-Patient Communication: Watchful Waiting for Chronic Lymphocytic Leukaemia. Eur. J. Cancer Care 2012, 21, 67–77. [Google Scholar] [CrossRef]
- Vega, J.N.; Dumas, J.; Newhouse, P.A. Cognitive Effects of Chemotherapy and Cancer-Related Treatments in Older Adults. Am. J. Geriatr. Psychiatry 2017, 25, 1415–1426. [Google Scholar] [CrossRef] [PubMed]
- Youron, P.; Singh, C.; Jindal, N.; Malhotra, P.; Khadwal, A.; Jain, A.; Prakash, G.; Varma, N.; Varma, S.; Lad, D.P. Quality of Life in Patients of Chronic Lymphocytic Leukemia Using the EORTC QLQ-C30 and QLQ-CLL17 Questionnaire. Eur. J. Haematol. 2020, 105, 755–762. [Google Scholar] [CrossRef]
- Russell, K.; Moghaddam, N.; Tickle, A. Examining Anxiety and Depression in Haematology Cancer Patients in Ongoing Treatment and under Watchful Waiting: A Systematic Review and Meta-analysis. Eur. J. Cancer Care 2022, 31, e13678. [Google Scholar] [CrossRef]
- Rogers, K.A.; Huang, Y.; Ruppert, A.S.; Abruzzo, L.V.; Andersen, B.L.; Awan, F.T.; Bhat, S.A.; Dean, A.; Lucas, M.; Banks, C.; et al. Phase II Study of Combination Obinutuzumab, Ibrutinib, and Venetoclax in Treatment-Naïve and Relapsed or Refractory Chronic Lymphocytic Leukemia. J. Clin. Oncol. 2020, 38, 3626–3637. [Google Scholar] [CrossRef] [PubMed]
- Woyach, J.A.; Blachly, J.S.; Rogers, K.A.; Bhat, S.A.; Jianfar, M.; Lozanski, G.; Weiss, D.M.; Andersen, B.L.; Gulrajani, M.; Frigault, M.M.; et al. Acalabrutinib plus Obinutuzumab in Treatment-Naïve and Relapsed/Refractory Chronic Lymphocytic Leukemia. Cancer Discov. 2020, 10, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Deering, K.L.; Sundaram, M.; Harshaw, Q.; Trudeau, J.; Barrientos, J.C. Health-Related Quality of Life and Treatment Satisfaction in Chronic Lymphocytic Leukemia (CLL) Patients on Ibrutinib Compared to Other CLL Treatments in a Real-World US Cross Sectional Study. PLoS ONE 2022, 17, e0270291. [Google Scholar] [CrossRef] [PubMed]
- Barrientos, J.C.; O’Brien, S.; Brown, J.R.; Kay, N.E.; Reddy, N.M.; Coutre, S.; Tam, C.; Mulligan, S.; Jaeger, U.; Devereux, S.; et al. Improvement in Parameters of Hematologic and Immunologic Function and Patient Well-Being in the Phase III RESONATE Study of Ibrutinib Versus Ofatumumab in Patients with Previously Treated Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma. Clin. Lymphoma Myeloma Leuk. 2018, 18, 803–813.e7. [Google Scholar] [CrossRef] [PubMed]
- Cramer, P.; Fraser, G.; Santucci-Silva, R.; Grosicki, S.; Dilhuydy, M.-S.; Janssens, A.; Loscertales, J.; Rule, S.; Goy, A.; Traina, S.; et al. Improvement of Fatigue, Physical Functioning, and Well-Being among Patients with Severe Impairment at Baseline Receiving Ibrutinib in Combination with Bendamustine and Rituximab for Relapsed Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma in the HELIOS Study. Leuk. Lymphoma 2018, 59, 2075–2084. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, A.; Frustaci, A.M.; Mauro, F.R.; Chiarenza, A.; Coscia, M.; Ciolli, S.; Reda, G.; Laurenti, L.; Varettoni, M.; Murru, R.; et al. Do Age, Fitness, and Concomitant Medications Influence Management and Outcomes of Patients with CLL Treated with Ibrutinib? Blood Adv. 2021, 5, 5490–5500. [Google Scholar] [CrossRef] [PubMed]
- Shadman, M.; Manzoor, B.S.; Sail, K.; Tuncer, H.H.; Allan, J.N.; Ujjani, C.; Emechebe, N.; Kamalakar, R.; Coombs, C.C.; Leslie, L.; et al. Treatment Discontinuation Patterns for Patients with Chronic Lymphocytic Leukemia in Real-World Settings: Results From a Multi-Center International Study. Clin. Lymphoma Myeloma Leuk. 2023, 23, 515–526. [Google Scholar] [CrossRef]
- Stephens, D.M.; Brown, J.R.; Ma, S.; Wang, M.; Moreno, C.D.; Robak, T.; Stevens, D.A.; Li, X.; Saifan, C.; Hsu, E.; et al. Ibrutinib Dose Modifications for Management of Cardiac Adverse Events in Patients with B-Cell Malignancies: Pooled Analysis of 10 Clinical Trials. J. Clin. Oncol. 2023, 41, 7538. [Google Scholar] [CrossRef]
Adverse Events | BTKi | Incidence (Any Grade/Grade ≥ 3) | Mechanism | Management |
---|---|---|---|---|
Atrial Fibrillation | Ibrutinib | 16%/2–5% | TEC/HER2/HER4 strong inhibition |
|
Acalabrutinib | 6–9% */1–5% ** | HER4 strong inhibition | ||
Zanubrutinib | 3–6% ^/≤1% | HER4 strong inhibition TEC weak inhibition | ||
Ventricular Arrhythmia | Ibrutinib | 0.3%/1% | Altered Calcium homeostasis in cardiomyocytes Myocardial fibrosis IGF-1pathway off target inhibition |
|
Acalabrutinib | 0.4%/0.4% | |||
Zanubrutinib | 0.8%/0.8% | |||
Hypertension | Ibrutinib | 16–23% §/8–12% §§ | Off-target kinase inhibition? Systemic inflammatory changes? |
|
Acalabrutinib | 7–9% ^^/3–4% ^^^ | |||
Zanubrutinib | 14–17% °/6–15% °° | |||
Bleeding | Ibrutinib | 36–51%/3–4% | BTK/TEC strong inhibition |
|
Acalabrutinib | 36–51%/3% | BTK strong inhibition | ||
Zanubrutinib | 36–45%/3% | BTK strong inhibition |
Adverse Events | BTKi | Incidence (Any Grade/ Grade ≥ 3) | Mechanism | Management |
---|---|---|---|---|
Neutropenia | Ibrutinib | 25–39%/13–31% | On-target toxicity | Growth factor support |
Acalabrutinib | 21–23%/13–19% | |||
Zanubrutinib | 37–44%/15–19% | |||
Thrombocytopenia | Ibrutinib | 13–29%/3–8% | On-target toxicity |
|
Acalabrutinib | 15–32%/3–10% | |||
Zanubrutinib | 22–27%/<1–4% | |||
Diarrhea | Ibrutinib | 22–59%/<1–4% | EGFR inhibition |
|
Acalabrutinib | 18–39%/1–5% | |||
Zanubrutinib | 14–18%/<1–2% | |||
Dermatological toxicity, Nail and Hair Changes | Ibrutinib | 21–24%/<1–3% | EGFR inhibition |
|
Acalabrutinib | 9–25%/<1% | |||
Zanubrutinib | 20–28%/1% | |||
Arthralgias and Myalgias | Ibrutinib | 17–28%/<1% | Likely related to off-target inhibition |
|
Acalabrutinib | 15–32%/1% | |||
Zanubrutinib | 26–38%/1–3% | |||
Headaches | Ibrutinib | 14–18%/1–2% | Off-target effect Possibly CGRP agonism |
|
Acalabrutinib | 22–39%/<1% | |||
Zanubrutinib | 11–12%/0–1% |
Interacting Agents | Ibrutinib | Acalabrutinib | Zanubrutinib |
---|---|---|---|
Strong CYP3A inhibitors | avoid | avoid | 80 mg OD |
Moderate CYP3A inhibitors | 280 mg OD 140 mg OD with voriconazole 70 mg OD with posaconazole | 100 mg OD | 80 mg BID |
Strong CYP3A inducers | avoid | avoid | avoid |
PPI | - | avoid | - |
Grapefruit, St John’s wort, Seville Oranges | avoid | avoid | 80 mg BID |
Warfarin/ Vit K antagonists | avoid | avoid | avoid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galitzia, A.; Maccaferri, M.; Mauro, F.R.; Murru, R.; Marasca, R. Chronic Lymphocytic Leukemia: Management of Adverse Events in the Era of Targeted Agents. Cancers 2024, 16, 1996. https://doi.org/10.3390/cancers16111996
Galitzia A, Maccaferri M, Mauro FR, Murru R, Marasca R. Chronic Lymphocytic Leukemia: Management of Adverse Events in the Era of Targeted Agents. Cancers. 2024; 16(11):1996. https://doi.org/10.3390/cancers16111996
Chicago/Turabian StyleGalitzia, Andrea, Monica Maccaferri, Francesca Romana Mauro, Roberta Murru, and Roberto Marasca. 2024. "Chronic Lymphocytic Leukemia: Management of Adverse Events in the Era of Targeted Agents" Cancers 16, no. 11: 1996. https://doi.org/10.3390/cancers16111996
APA StyleGalitzia, A., Maccaferri, M., Mauro, F. R., Murru, R., & Marasca, R. (2024). Chronic Lymphocytic Leukemia: Management of Adverse Events in the Era of Targeted Agents. Cancers, 16(11), 1996. https://doi.org/10.3390/cancers16111996