Prevention of Brain Metastases: A New Frontier
Abstract
:Simple Summary
Abstract
1. Introduction
2. Brain Metastases from Lung Cancer
2.1. Risk in Relation to Disease Status and Molecular Subtype (Table 1)
Whole Population | 15–20% |
EGFR mutant | 15–20% |
KRAS G12C mutant | 10–12% |
ALK rearranged | 4–5% |
MET mutant | 2–3% |
BRAF V600E mutant | 1–5% |
HER2 exon 20 mutant | 1–3% |
RET mutant | 1–2% |
ROS1 mutant | 1–2% |
NTRK mutant | <1% |
2.2. The Issue of Screening
2.3. Prophylactic Cranial Irradiation in SCLC
2.4. Prophylactic Cranial Irradiation in NSCLC
2.5. Secondary Chemoprevention
Treatment Arm | Mutation Targeted | Brain Metastases | Time to CNS Relapse | Other Parameters of Secondary Prevention |
---|---|---|---|---|
Osimertinib [46] | EFGR | Absent or stable | N/A | Patients with new BM: 5% |
Crizotinib [49] | ALK | Absent or pretreated + stable | N/A | Median time to intracranial progression: NR in both HR 0.69 |
Alectinib [50] | ALK | Absent or stable | HR: 0.16 12-month rate: 9.4% | N/A |
Brigatinib [51] | ALK | Absent or treatment-naïve + stable | N/A | CNS as first site of progression: 9% No BM at baseline, 1% |
Ceritinib [52] | ALK | Active | N/A | CNS as first site of progression: Arm 1 (prior RT + ALKi): 31% Arm 2 (no prior RT + prior ALKi): 60% Arm 3 (prior RT + no prior ALKi): 16.7% Arm 4 (no prior RT or ALKi): 50% |
Lorlatinib [53] | ALK | Stable + treatment naïve or active + pretreated | N/A | No CNS progession at 12 months: 96% HR for intracranial progression of 0.07 CNS as first site of progression: 3% HR 0.06 |
Sotorasib [54] | KRASpG12C | Absent or stable | 15.8 months HR of 0.52 | N/A |
Entrectinib [56] | ROS1 | Stable | 13.6 months | New CNS lesions: 4.5% (absent BM at baseline) CNS progression risk at 12 months: 39% |
Selpercatinib [58] | RET | Stable or active with 14 days of stable symptoms, scans and steroid dosage | N/A | No BM at baseline: No CNS progression BM at baseline: 10% Cumulative incidence rates for CNS progression 6-months: 3% 12 months: 10% 18 months: 17% 24 months; 17% 36 months: 20% |
3. Brain Metastases from Breast Cancer
3.1. Risk in Relation to Disease Stage and Molecular Subtype (Table 4)
Full population (metastatic BC) | 10–25% |
HER2+ | 20–49% |
Triple negative | 15–39% |
ER+ HER2+ | 34% |
ER+ HER2− | 19% |
3.2. The Issue of Screening
3.3. Secondary Chemoprevention
3.3.1. Post-Hoc Analysis of Clinical Trials Aimed to Evaluate the Efficacy of Targeted Agents in Patients with Active or Stable Brain Metastases (Table 5)
Treatment | Molecular Subgroup | Brain Metastases | CNS Relapse | Time to CNS Relapse |
---|---|---|---|---|
Lapatinib + Capecitabine [96] | HER2+ MBC | Untreated | NR | 6 months |
Lapatinib−Capecitabine vs. Trastuzumab−Capecitabine [97] | HER2+ MBC | Absent | 3% 5% | 5.7 months 4.4 months |
Neratinib−Paclitaxel vs. Trastuzumab−Paclitaxel [98] | HER2+ MBC | Absent or Stable | 8.3% 17.3% | NR NR |
Neratinib−Capecitabine vs. Lapatinib−Capecitabine [99] | HER2+ MBC | Absent or Stable | 23% 29% | NR NR |
Tucatinib combination vs. Placebo combination [101] | HER2+ MBC | Active or Stable | NR, NR | 13.8 months vs. 24.9 months |
Pertuzumab combination vs. Placebo combination [105] | HER2+ MBC | Absent | 13% 13% | 15 months 12 months |
Trastuzumab emtansine vs. Lapatinib−Capecitabine [106] | HER2+ MBC | Absent | 2% 1% | NR NR |
3.3.2. Prospective Studies
4. Brain Metastases from Melanoma
4.1. General Concepts
4.2. Risk of Brain Metastases in Relation to Stage of the Disease and Primary Characteristics (Table 7)
Full Population | 10% |
By Stage | |
I and II | 5–10% |
III | 15% |
IV | 40–60% |
Other subtypes | |
Acral or Mucosal | 10–30% |
Uveal | 2–6% |
Mutation Status | |
BRAF mutant | 20–25% |
KRAS mutant | 20–25% |
4.3. Risk of Brain Metastases in Relation to Molecular Subtypes and the Efficacy of Molecular Agents in Clinical Trials to Prevent Secondary Relapse into the Brain
4.4. Screening Data and Guidelines
4.5. Ongoing Prospective Studies on Prevention (Table 8 and Table 9)
Treatment | Molecular Subgroup | Brain Metastases | Intracranial Response Rate | Duration of Intracranial Response |
---|---|---|---|---|
Pembrolizumab [161] | None | Untreated | 26% | Not reported |
Nivolumab [162] | None | Untreated | 20% | 2.5 months |
Ipilimumab + Nivolumab [163] | None | Untreated | 54% | NR |
Dabrafenib + Trametinib [164] | BRAF V600E mutant | Untreated | 58% | 6.5 months |
Vemurafenib + Cobimetinib + Atezolizumab [165] | BRAF V600E mutant | Untreated | 42% | 7.4 months |
Study Name | Phase | NCT Number |
---|---|---|
BRAF targeted | ||
Encorafenib and Binimetinib Before Local Treatment in Patients with BRAF Mutant Melanoma Metastatic to the Brain | Phase II | NCT03898908 |
E6201 (MEK1 inhibitor) and Dabrafenib for the Treatment of Central Nervous System Metastases from BRAF V600 Mutated Metastatic Melanoma | Phase I | NCT05388877 |
Nivolumab With Trametinib and Dabrafenib, or Encorafenib and Binimetinib, in Treating Patients with BRAF Mutated Metastatic or Unresectable Stage III-IV Melanoma | Phase II | NCT02910700 |
A Study to Compare the Administration of Encorafenib + Binimetinib + Nivolumab Versus Ipilimumab + Nivolumab in BRAF-V600 Mutant Melanoma with Brain Metastases | Phase II | NCT04511013 |
Defactinib and Avutometinib, with or Without Encorafenib, for the Treatment of Patients with Brain Metastases from Cutaneous Melanoma | Phase I/II | NCT06194929 |
Immunotherapy | ||
Phase II Study of Nivolumab in Combination with Relatlimab in Patients with Active Melanoma Brain Metastases | Phase II | NCT05704647 |
A Study of LN-144 (TIL therapy) in People with Metastatic Melanoma to the Brain | Phase I | NCT05640193 |
Pembrolizumab Plus Bevacizumab for Treatment of Brain Metastases in Metastatic Melanoma or Non-small Cell Lung Cancer | Phase II | NCT02681549 |
Low Dose Ipilimumab with Pembrolizumab in Treating Patients with Melanoma That Has Spread to the Brain | Phase II | NCT03873818 |
Natural Killer Cell Therapy (UD TGFbetai NK Cells) and Temozolomide for the Treatment of Stage IV Melanoma Metastatic to the Brain | Phase I/II | NCT05588453 |
Study Comparing Investigational Drug HBI-8000 (Selective Histone Deacetylase Inhibitor) Combined with Nivolumab vs. Nivolumab in Patients with Advanced Melanoma | Phase III | NCT04674683 |
Bevacizumab and Atezolizumab With or Without Cobimetinib in Treating Patients with Untreated Melanoma Brain Metastases | Phase II | NCT03175432 |
Pembrolizumab and Lenvatinib in Patients with Brain Metastases from Melanoma or Renal Cell Carcinoma | Phase II | NCT04955743 |
Crizanlizumab Alone or in Combination with Nivolumab for Glioblastoma and Melanoma with Brain Metastases | Phase II | NCT05909618 |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, A.Y.; Gaebe, K.; Zulfiqar, A.; Lee, G.; Jerzak, K.J.; Sahgal, A.; Habbous, S.; Erickson, A.W.; Das, S. Association of Brain Metastases with Survival in Patients With Limited or Stable Extracranial Disease: A Systematic Review and Meta-analysis. JAMA Netw. Open 2023, 6, e230475. [Google Scholar] [CrossRef] [PubMed]
- Mo, F.; Pellerino, A.; Soffietti, R.; Rudà, R. Blood-Brain Barrier in Brain Tumors: Biology and Clinical Relevance. Int. J. Mol. Sci. 2021, 22, 12654. [Google Scholar] [CrossRef] [PubMed]
- Nayak, L.; Lee, E.Q.; Wen, P.Y. Epidemiology of brain metastases. Curr. Oncol. Rep. 2012, 14, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Soffietti, R.; Ahluwalia, M.; Lin, N.; Rudà, R. Management of brain metastases according to molecular subtypes. Nat. Rev. Neurol. 2020, 16, 557–574. [Google Scholar] [CrossRef] [PubMed]
- Schuette, W. Treatment of brain metastases from lung cancer: Chemotherapy. Lung Cancer. 2004, 45 (Suppl. S2), S253–S257. [Google Scholar] [CrossRef] [PubMed]
- Gavrilovic, I.T.; Posner, J.B. Brain metastases: Epidemiology and pathophysiology. J. Neurooncol. 2005, 75, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Moro-Sibilot, D.; Smit, E.; de Castro Carpeño, J.; Lesniewski-Kmak, K.; Aerts, J.G.; Villatoro, R.; Kraaij, K.; Nacerddine, K.; Dyachkova, Y.; Smith, K.T.; et al. Non-small cell lung cancer patients with brain metastases treated with first-line platinum-doublet chemotherapy: Analysis from the European FRAME study. Lung Cancer 2015, 90, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Johung, K.L.; Yeh, N.; Desai, N.B.; Williams, T.M.; Lautenschlaeger, T.; Arvold, N.D.; Ning, M.S.; Attia, A.; Lovly, C.M.; Goldberg, S.; et al. Extended Survival and Prognostic Factors for Patients With ALK-Rearranged Non-Small-Cell Lung Cancer and Brain Metastasis. J. Clin. Oncol. 2016, 34, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Achrol, A.S.; Rennert, R.C.; Anders, C.; Soffietti, R.; Ahluwalia, M.S.; Nayak, L.; Peters, S.; Arvold, N.D.; Harsh, G.R.; Steeg, P.S.; et al. Brain metastases. Nat. Rev. Dis. Primers 2019, 5, 5. [Google Scholar] [CrossRef]
- Gillespie, C.S.; Mustafa, M.A.; Richardson, G.E.; Alam, A.M.; Lee, K.S.; Hughes, D.M.; Escriu, C.; Zakaria, R. Genomic Alterations and the Incidence of Brain Metastases in Advanced and Metastatic NSCLC: A Systematic Review and Meta-Analysis. J. Thorac. Oncol. 2023, 18, 1703–1713. [Google Scholar] [CrossRef]
- Raez, L.E.; Cardona, A.F.; Arrieta, O.; Lopes, G. Lung Cancer Disparities in Hispanics: Molecular Diagnosis and Use of Immunotherapy. JCO Glob. Oncol. 2020, 6, 784–788. [Google Scholar] [CrossRef] [PubMed]
- Chevallier, M.; Borgeaud, M.; Addeo, A.; Friedlaender, A. Oncogenic driver mutations in non-small cell lung cancer: Past, present and future. World J. Clin. Oncol. 2021, 12, 217–237. [Google Scholar] [CrossRef] [PubMed]
- Griesinger, F.; Roeper, J.; Pöttgen, C.; Willborn, K.C.; Eberhardt, W.E.E. Brain metastases in ALK-positive NSCLC—Time to adjust current treatment algorithms. Oncotarget 2018, 9, 35181–35194. [Google Scholar] [CrossRef] [PubMed]
- Villalva, C.; Duranton-Tanneur, V.; Guilloteau, K.; Burel-Vandenbos, F.; Wager, M.; Doyen, J.; Levillain, P.M.; Fontaine, D.; Blons, H.; Pedeutour, F.; et al. EGFR, KRAS, BRAF, and HER-2 molecular status in brain metastases from 77 NSCLC patients. Cancer Med. 2013, 2, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, R.; Auger, N.; Auclin, E.; Besse, B. Clinical and Translational Implications of RET Rearrangements in Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2018, 13, 27–45. [Google Scholar] [CrossRef] [PubMed]
- Frampton, G.M.; Ali, S.M.; Rosenzweig, M.; Chmielecki, J.; Lu, X.; Bauer, T.M.; Akimov, M.; Bufill, J.A.; Lee, C.; Jentz, D.; et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015, 5, 850–859. [Google Scholar] [CrossRef] [PubMed]
- Postmus, P.E. Brain Metastases from Small Cell Lung Cancer: Chemotherapy, Radiotherapy, or Both? Semin. Radiat. Oncol. 1995, 5, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.; Hird, A.; Kirou-Mauro, A.; Napolskikh, J.; Chow, E. Quality of life in brain metastases radiation trials: A literature review. Curr. Oncol. 2008, 15, 25–45. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Cui, Y.; Zheng, X.; Zhao, Y.; Sun, G. Small-cell lung cancer brain metastasis: From molecular mechanisms to diagnosis and treatment. Biochim. Biophys. Acta Mol. Basis Dis. 2022, 1868, 166557. [Google Scholar] [CrossRef] [PubMed]
- Non-Small Cell Lung Cancer, Version 3.2024; NCCN Clinical Practice Guidelines in Oncology; 12 March 2024. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1450 (accessed on 10 April 2024).
- Le Rhun, E.; Weller, M.; Brandsma, D.; Van den Bent, M.; de Azambuja, E.; Henriksson, R.; Boulanger, T.; Peters, S.; Watts, C.; Wick, W.; et al. EANO Executive Board and ESMO Guidelines Committee. EANO-ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up of patients with leptomeningeal metastasis from solid tumours. Ann. Oncol. 2017, 28 (Suppl. S4), 84–99. [Google Scholar] [CrossRef] [PubMed]
- Schoenmaekers, J.; Hofman, P.; Bootsma, G.; Westenend, M.; de Booij, M.; Schreurs, W.; Houben, R.; De Ruysscher, D.; Dingemans, A.M.; Hendriks, L.E.L. Screening for brain metastases in patients with stage III non-small-cell lung cancer, magnetic resonance imaging or computed tomography? A prospective study. Eur. J. Cancer 2019, 115, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Slotman, B.J.; Njo, K.H.; de Jonge, A.; Meyer, O.W.; Karim, A.B. Consolidative thoracic radiotherapy and prophylactic cranial irradiation in limited disease small cell lung cancer. Lung Cancer 1993, 10, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Seydel, H.G.; Creech, R.; Pagano, M.; Salazar, O.; Rubin, P.; Concannon, J.; Carbone, P.; Mohuiddin, M.; Perez, C.; Matthews, M. Prophylactic versus no brain irradiation in regional small cell lung carcinoma. Am. J. Clin. Oncol. 1985, 8, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Rosenstein, M.; Armstrong, J.; Kris, M.; Shank, B.; Scher, H.; Fass, D.; Harrison, L.; Fuks, Z.; Leibel, S. A reappraisal of the role of prophylactic cranial irradiation in limited small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 1992, 24, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Liengswangwong, V.; Bonner, J.A.; Shaw, E.G.; Foote, R.L.; Frytak, S.; Richardson, R.L.; Creagan, E.T.; Eagan, R.T.; Su, J.Q. Prophylactic cranial irradiation in limited-stage small cell lung cancer. Cancer 1995, 75, 1302–1309. [Google Scholar] [CrossRef] [PubMed]
- Rubenstein, J.H.; Dosoretz, D.E.; Katin, M.J.; Blitzer, P.H.; Salenius, S.A.; Floody, P.A.; Harwin, W.N.; Teufel, T.E.; Raymond, M.G.; Reeves, J.A.; et al. Low doses of prophylactic cranial irradiation effective in limited stage small cell carcinoma of the lung. Int. J. Radiat. Oncol. Biol. Phys. 1995, 33, 329–337. [Google Scholar] [CrossRef] [PubMed]
- van der Linden, Y.M.; van Kempen, M.L.; van der Tweel, I.; Vanderschueren, R.G.; Schlösser, N.J.; Lammers, J.W.; Struikmans, H. Prophylactic cranial irradiation in limited disease small-cell lung cancer in complete remission: A retrospective analysis. Respir. Med. 2001, 95, 235–236. [Google Scholar] [CrossRef] [PubMed]
- Cao, K.J.; Huang, H.Y.; Tu, M.C.; Pan, G.Y. Long-term results of prophylactic cranial irradiation for limited-stage small-cell lung cancer in complete remission. Chin. Med. J. (Engl.) 2005, 118, 1258–1262. [Google Scholar] [PubMed]
- Patel, S.; Macdonald, O.K.; Suntharalingam, M. Evaluation of the use of prophylactic cranial irradiation in small cell lung cancer. Cancer 2009, 115, 842–850. [Google Scholar] [CrossRef] [PubMed]
- Sas-Korczyńska, B.; Korzeniowski, S.; Wójcik, E. Comparison of the effectiveness of “late” and “early” prophylactic cranial irradiation in patients with limited-stage small cell lung cancer. Strahlenther. Onkol. 2010, 186, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Farooqi, A.S.; Holliday, E.B.; Allen, P.K.; Wei, X.; Cox, J.D.; Komaki, R. Prophylactic cranial irradiation after definitive chemoradiotherapy for limited-stage small cell lung cancer: Do all patients benefit? Radiother. Oncol. 2017, 122, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fan, M.; Liu, D.; Zhao, K.L.; Wu, K.L.; Zhao, W.X.; Zhu, Z.F.; Fu, X.L. Hypo- or conventionally fractionated radiotherapy combined with chemotherapy in patients with limited stage small cell lung cancer. Radiat. Oncol. 2017, 12, 51. [Google Scholar] [CrossRef] [PubMed]
- Ghanta, S.; Keller, A.; Rodríguez-López, J.L.; Patel, A.; Beriwal, S. Utility of Prophylactic Cranial Irradiation for Limited Stage Small Cell Lung Cancer in the Modern Era with Magnetic Resonance Imaging Surveillance. Clin. Oncol. 2021, 33, e323–e330. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.; Li, W.; Li, H.; Wen, F.; Zhou, L.; Sun, X.; Yu, H. Benefits of Prophylactic Cranial Irradiation in the MRI Era for Patients With Limited Stage Small Cell Lung Cancer. Front. Oncol. 2022, 12, 833478. [Google Scholar] [CrossRef] [PubMed]
- Slotman, B.; Faivre-Finn, C.; Kramer, G.; Rankin, E.; Snee, M.; Hatton, M.; Postmus, P.; Collette, L.; Musat, E.; Senan, S.; et al. Prophylactic Cranial Irradiation in Extensive Small-Cell Lung Cancer. N. Engl. J. Med. 2007, 357, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Yan, D.; Qiu, M.; Huang, L.; Yan, S.-X. Prophylactic cranial irradiation in small cell lung cancer: A systematic review and meta-analysis. BMC Cancer 2019, 19, 95. [Google Scholar] [CrossRef] [PubMed]
- Gaebe, K.; Erickson, A.W.; Li, A.Y.; Youssef, A.N.; Sharma, B.; Chan, K.K.W.; Lok, B.H.; Das, S. Re-examining prophylactic cranial irradiation in small cell lung cancer: A systematic review and meta-analysis. EClinicalMedicine 2024, 67, 102396. [Google Scholar] [CrossRef] [PubMed]
- Wolfson, A.H.; Bae, K.; Komaki, R.; Meyers, C.; Movsas, B.; Le Pechoux, C.; Werner-Wasik, M.; Videtic, G.M.; Garces, Y.I.; Choy, H. Primary analysis of a phase II randomized trial Radiation Therapy Oncology Group (RTOG) 0212: Impact of different total doses and schedules of prophylactic cranial irradiation on chronic neurotoxicity and quality of life for patients with limited-disease small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 77–84. [Google Scholar] [PubMed]
- Gondi, V.; Pugh, S.L.; Mehta, M.P.; Tome, W.; Benzinger, T.; Bovi, J.A.; Corn, B.W.; Fogh, S.E.; Robinson, C.G.; Wefel, J.S.; et al. NRG Oncology CC003: A randomized phase II/III trial of prophylactic cranial irradiation with or without hippocampal avoidance for small cell lung cancer. J. Clin. Oncol. 2019, 37 (Suppl. S15), TPS8578. [Google Scholar] [CrossRef]
- Ruysscher, D.D.; Dingemans, A.-M.C.; Praag, J.; Belderbos, J.; Tissing-Tan, C.; Herder, J.; Haitjema, T.; Ubbels, F.; Lagerwaard, F.; El Sharouni, S.Y.; et al. Prophylactic Cranial Irradiation Versus Observation in Radically Treated Stage III Non–Small-Cell Lung Cancer: A Randomized Phase III NVALT-11/DLCRG-02 Study. J. Clin. Oncol. 2018, 36, 2366–2377. [Google Scholar] [CrossRef] [PubMed]
- Sun, A.; Hu, C.; Wong, S.J.; Gore, E.; Videtic, G.; Dutta, S.; Suntharalingam, M.; Chen, Y.; Gaspar, L.E.; Choy, H. Prophylactic Cranial Irradiation vs Observation in Patients with Locally Advanced Non-Small Cell Lung Cancer: A Long-term Update of the NRG Oncology/RTOG 0214 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2019, 5, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhao, T.; Zhong, Q.; Cui, J.; Xiu, X.; Li, G. The Role of Prophylactic Cranial Irradiation in Patients with Non-small Cell Lung Cancer: An Updated Systematic Review and Meta-Analysis. Front. Oncol. 2020, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Witlox, W.J.A.; Ramaekers, B.L.T.; Zindler, J.D.; Eekers, D.B.P.; van Loon, J.G.M.; Hendriks, L.E.L.; Dingemans, A.C.; De Ruysscher, D.K.M. The Prevention of Brain Metastases in Non-Small Cell Lung Cancer by Prophylactic Cranial Irradiation. Front. Oncol. 2018, 8, 241. [Google Scholar] [CrossRef] [PubMed]
- Heon, S.; Yeap, B.Y.; Lindeman, N.I.; Joshi, V.A.; Butaney, M.; Britt, G.J.; Costa, D.B.; Rabin, M.S.; Jackman, D.M.; Johnson, B.E. The impact of initial gefitinib or erlotinib versus chemotherapy on central nervous system progression in advanced non-small cell lung cancer with EGFR mutations. Clin. Cancer Res. 2012, 18, 4406–4414. [Google Scholar] [CrossRef] [PubMed]
- Soria, J.C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; et al. FLAURA Investigators. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.G.; Zou, H.Y.; Arango, M.E.; Li, Q.; Lee, J.H.; McDonnell, S.R.; Yamazaki, S.; Alton, G.R.; Mroczkowski, B.; Los, G. Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol. Cancer Ther. 2007, 6, 3314–3322. [Google Scholar] [CrossRef] [PubMed]
- Solomon, B.J.; Cappuzzo, F.; Felip, E.; Blackhall, F.H.; Costa, D.B.; Kim, D.-W.; Nakagawa, K.; Wu, Y.L.; Mekhail, T.; Paolini, J.; et al. Intracranial Efficacy of Crizotinib Versus Chemotherapy in Patients with Advanced ALK-Positive Non–Small-Cell Lung Cancer: Results from PROFILE 1014. J. Clin. Oncol. 2016, 34, 2858–2865. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.B.; Kobayashi, S.; Pandya, S.S.; Yeo, W.-L.; Shen, Z.; Tan, W.; Wilner, K.D. CSF Concentration of the Anaplastic Lymphoma Kinase Inhibitor Crizotinib. J. Clin. Oncol. 2011, 29, 443–445. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.; Camidge, D.R.; Shaw, A.T.; Gadgeel, S.; Ahn, J.S.; Kim, D.-W.; Ou, S.I.; Pérol, M.; Dziadziuszko, R.; Rosell, R.; et al. Alectinib versus Crizotinib in Untreated ALK-Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Camidge, D.R.; Kim, H.R.; Ahn, M.-J.; Yang, J.C.-H.; Han, J.-Y.; Lee, J.-S.; Hochmair, M.J.; Li, J.Y.; Chang, G.C.; Lee, K.H.; et al. Brigatinib versus Crizotinib in ALK-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2027–2039. [Google Scholar] [CrossRef] [PubMed]
- Chow, L.Q.M.; Barlesi, F.; Bertino, E.M.; van den Bent, M.J.; Wakelee, H.A.; Wen, P.Y.; Chiu, C.H.; Orlov, S.; Chiari, R.; Majem, M.; et al. ASCEND-7: Efficacy and Safety of Ceritinib Treatment in Patients with ALK-Positive Non–Small Cell Lung Cancer Metastatic to the Brain and/or Leptomeninges. Clin. Cancer Res. 2022, 28, 2506–2516. [Google Scholar] [CrossRef] [PubMed]
- Shaw, A.T.; Bauer, T.M.; de Marinis, F.; Felip, E.; Goto, Y.; Liu, G.; Mazieres, J.; Kim, D.W.; Mok, T.; Polli, A.; et al. First-Line Lorlatinib or Crizotinib in Advanced ALK-Positive Lung Cancer. N. Engl. J. Med. 2020, 383, 2018–2029. [Google Scholar] [CrossRef] [PubMed]
- de Langen, A.J.; Johnson, M.L.; Mazieres, J.; Dingemans, A.C.; Mountzios, G.; Pless, M.; Wolf, J.; Schuler, M.; Lena, H.; Skoulidis, F.; et al. Sotorasib versus docetaxel for previously treated non-small-cell lung cancer with KRAS(G12C) mutation: A randomised, open-label, phase 3 trial. Lancet 2023, 401, 733–746. [Google Scholar] [CrossRef] [PubMed]
- Sabari, J.K.; Velcheti, V.; Shimizu, K.; Strickland, M.R.; Heist, R.S.; Singh, M.; Nayyar, N.; Giobbie-Hurder, A.; Digumarthy, S.R.; Gainor, J.F.; et al. Activity of Adagrasib (MRTX849) in Brain Metastases: Preclinical Models and Clinical Data from Patients with KRASG12C-Mutant Non-Small Cell Lung Cancer. Clin. Cancer Res. 2022, 28, 3318–3328. [Google Scholar] [CrossRef] [PubMed]
- Jänne, P.A.; Riely, G.J.; Gadgeel, S.M.; Heist, R.S.; Ou, S.-H.I.; Pacheco, J.M.; Johnson, M.L.; Sabari, J.K.; Leventakos, K.; Yau, E.; et al. Adagrasib in Non–Small-Cell Lung Cancer Harboring a KRASG12C Mutation. N. Engl. J. Med. 2022, 387, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Drilon, A.; Chiu, C.-H.; Fan, Y.; Cho, B.C.; Lu, S.; Ahn, M.-J.; Krebs, M.G.; Liu, S.V.; John, T.; Otterson, G.A.; et al. Long-Term Efficacy and Safety of Entrectinib in ROS1 Fusion–Positive NSCLC. JTO Clin. Res. Rep. 2022, 3, 100332. [Google Scholar] [CrossRef] [PubMed]
- Murciano-Goroff, Y.R.; Falcon, C.J.; Lin, S.T.; Chacko, C.; Grimaldi, G.; Liu, D.; Wilhelm, C.; Iasonos, A.; Drilon, A. Central Nervous System Disease in Patients with RET Fusion-Positive NSCLC Treated With Selpercatinib. J. Thorac. Oncol. 2023, 18, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Wolf, J.; Seto, T.; Han, J.-Y.; Reguart, N.; Garon, E.B.; Groen, H.J.M.; Tan, D.S.W.; Hida, T.; de Jonge, M.; Orlov, S.V.; et al. Capmatinib in MET Exon 14–Mutated or MET-Amplified Non-Small-Cell Lung Cancer. N. Engl. J Med. 2020, 383, 944–957. [Google Scholar] [CrossRef] [PubMed]
- Komorowski, A.S.; Warner, E.; MacKay, H.J.; Sahgal, A.; Pritchard, K.I.; Jerzak, K.J. Incidence of Brain Metastases in Nonmetastatic and Metastatic Breast Cancer: Is There a Role for Screening? Clin. Breast Cancer 2020, 20, 54–64. [Google Scholar] [CrossRef]
- Arvold, N.D.; Oh, K.S.; Niemierko, A.; Taghian, A.G.; Lin, N.U.; Abi-Raad, R.F.; Sreedhara, M.; Harris, J.R.; Alexander, B.M. Brain metastases after breast-conserving therapy and systemic therapy: Incidence and characteristics by biologic subtype. Breast Cancer Res. Treat. 2012, 136, 153–160. [Google Scholar] [CrossRef]
- Park, H.S.; Kim, S.; Kim, K.; Yoo, H.; Chae, B.J.; Bae, J.S.; Song, B.J.; Jung, S.S. Pattern of distant recurrence according to the molecular subtypes in Korean women with breast cancer. World J. Surg. Oncol. 2012, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Kozak, M.M.; Jacobson, C.E.; von Eyben, R.; Walck, E.; Pollom, E.L.; Telli, M.; Horst, K.C. Patterns of Distant Failure by Intrinsic Breast Cancer Subtype in Premenopausal Women Treated with Neoadjuvant Chemotherapy. Clin. Breast Cancer 2018, 18, 1077–1085. [Google Scholar] [CrossRef] [PubMed]
- Pestalozzi, B.C.; Zahrieh, D.; Price, K.N.; Holmberg, S.B.; Lindtner, J.; Collins, J.; Crivellari, D.; Fey, M.F.; Murray, E.; Pagani, O.; et al. International Breast Cancer Study Group (IBCSG). Identifying breast cancer patients at risk for Central Nervous System (CNS) metastases in trials of the International Breast Cancer Study Group (IBCSG). Ann. Oncol. 2006, 17, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Tomasevic, Z.I.; Rakocevic, Z.; Tomasevic, Z.M.; Milovanovic, Z.; Inic, M.; Kolarevic, D.; Lukic, V.; Kovac, Z. Incidence of brain metastases in early stage HER2 3+ breast cancer patients; is there a role for brain CT in asymptomatic patients? J. BUON 2012, 17, 249–253. [Google Scholar] [PubMed]
- Tonyali, O.; Coskun, U.; Yuksel, S.; Inanc, M.; Bal, O.; Akman, T.; Yazilitas, D.; Ulas, A.; Kucukoner, M.; Aksoy, A.; et al. Anatolian Society of Medical Oncology (ASMO). Risk factors for brain metastasis as a first site of disease recurrence in patients with HER2-positive early stage breast cancer treated with adjuvant trastuzumab. Breast 2016, 25, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Danese, M.D.; Lindquist, K.; Doan, J.; Lalla, D.; Brammer, M.; Griffiths, R.I. Effect of central nervous system metastases on treatment discontinuation and survival in older women receiving trastuzumab for metastatic breast cancer. J. Cancer Epidemiol. 2012, 2012, 819210. [Google Scholar] [CrossRef] [PubMed]
- Dawood, S.; Lei, X.; Litton, J.K.; Buchholz, T.A.; Hortobagyi, G.N.; Gonzalez-Angulo, A.M. Incidence of brain metastases as a first site of recurrence among women with triple receptor-negative breast cancer. Cancer 2012, 118, 4652–4659. [Google Scholar] [CrossRef] [PubMed]
- Morris, P.G.; Murphy, C.G.; Mallam, D.; Accordino, M.; Patil, S.; Howard, J.; Omuro, A.; Beal, K.; Seidman, A.D.; Hudis, C.A.; et al. Limited overall survival in patients with brain metastases from triple negative breast cancer. Breast J. 2012, 18, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Tung, N.; Gaughan, E.; Hacker, M.R.; Lee, L.J.; Alexander, B.; Poles, E.; Schnitt, S.J.; Garber, J.E. Outcome of triple negative breast cancer: Comparison of sporadic and BRCA1-associated cancers. Breast Cancer Res. Treat. 2014, 146, 175–182. [Google Scholar] [CrossRef]
- Graesslin, O.; Abdulkarim, B.S.; Coutant, C.; Huguet, F.; Gabos, Z.; Hsu, L.; Marpeau, O.; Uzan, S.; Pusztai, L.; Strom, E.A.; et al. Nomogram to predict subsequent brain metastasis in patients with metastatic breast cancer. J. Clin. Oncol. 2010, 28, 2032–2037. [Google Scholar] [CrossRef]
- Minisini, A.M.; Moroso, S.; Gerratana, L.; Giangreco, M.; Iacono, D.; Poletto, E.; Guardascione, M.; Fontanella, C.; Fasola, G.; Puglisi, F. Risk factors and survival outcomes in patients with brain metastases from breast cancer. Clin. Exp. Metastasis 2013, 30, 951–956. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Li, Y.; Hameed, O.; Siegal, G.P.; Wei, S. Prognostic factors in patients with metastatic breast cancer at the time of diagnosis. Pathol. Res. Pract. 2014, 210, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Bailleux, C.; Eberst, L.; Bachelot, T. Treatment strategies for breast cancer brain metastases. Br. J. Cancer 2021, 124, 142–155. [Google Scholar] [CrossRef] [PubMed]
- Darlix, A.; Louvel, G.; Fraisse, J.; Jacot, W.; Brain, E.; Debled, M.; Mouret-Reynier, M.A.; Goncalves, A.; Dalenc, F.; Delaloge, S.; et al. Impact of breast cancer molecular subtypes on the incidence, kinetics and prognosis of central nervous system metastases in a large multicentre real-life cohort. Br. J. Cancer 2019, 121, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Puente Vázquez, J.; López-Tarruella, C.S.; García-Sáenz, J.A.; Casado Herráez, A.; Moreno Antón, F.; Sampedro Gimeno, T.; Bueno Muiño, C.; Grande Pulido, E.; Martín Jiménez, M.; Díaz-Rubio, E. Brain metastases in metastatic breast cancer patients receiving trastuzumab-based therapies. Clin. Transl. Oncol. 2006, 8, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Stemmler, H.J.; Kahlert, S.; Siekiera, W.; Untch, M.; Heinrich, B.; Heinemann, V. Characteristics of patients with brain metastases receiving trastuzumab for HER2 overexpressing metastatic breast cancer. Breast 2006, 15, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.; Swanton, C.; Chua, S.; Sue, A.; Walsh, G.; Rostom, A.; Johnston, S.R.; O’Brien, M.E.; Smith, I.E. Incidence, pattern and timing of brain metastases among patients with advanced breast cancer treated with trastuzumab. Acta Oncol. 2006, 45, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Gori, S.; Rimondini, S.; De Angelis, V.; Colozza, M.; Bisagni, G.; Moretti, G.; Sidoni, A.; Basurto, C.; Aristei, C.; Anastasi, P.; et al. Central nervous system metastases in HER-2 positive metastatic breast cancer patients treated with trastuzumab: Incidence, survival, and risk factors. Oncologist 2007, 12, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Niwińska, A.; Tacikowska, M.; Pieńkowski, T. Occult brain metastases in HER2-positive breast cancer patients: Frequency and response to radiotherapy. Acta Oncol. 2007, 46, 1027–1029. [Google Scholar] [CrossRef] [PubMed]
- Montagna, E.; Cancello, G.; D’Agostino, D.; Lauria, R.; Forestieri, V.; Esposito, A.; Silvestro, L.; Accurso, A.; De Placido, S.; De Laurentiis, M. Central nervous system metastases in a cohort of metastatic breast cancer patients treated with trastuzumab. Cancer Chemother. Pharmacol. 2009, 63, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Ono, M.; Ando, M.; Yunokawa, M.; Nakano, E.; Yonemori, K.; Matsumoto, K.; Kouno, T.; Shimizu, C.; Tamura, K.; Katsumata, N.; et al. Brain metastases in patients who receive trastuzumab-containing chemotherapy for HER2-overexpressing metastatic breast cancer. Int. J. Clin. Oncol. 2009, 14, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Brufsky, A.M.; Mayer, M.; Rugo, H.S.; Kaufman, P.A.; Tan-Chiu, E.; Tripathy, D.; Tudor, I.C.; Wang, L.I.; Brammer, M.G.; Shing, M.; et al. Central nervous system metastases in patients with HER2-positive metastatic breast cancer: Incidence, treatment, and survival in patients from registHER. Clin. Cancer Res. 2011, 17, 4834–4843. [Google Scholar] [CrossRef] [PubMed]
- Gori, S.; Montemurro, F.; Spazzapan, S.; Metro, G.; Foglietta, J.; Bisagni, G.; Ferzi, A.; Silva, R.R.; Gamucci, T.; Clavarezza, M.; et al. Retreatment with trastuzumab-based therapy after disease progression following lapatinib in HER2-positive metastatic breast cancer. Ann. Oncol. 2012, 23, 1436–1441. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.U.; Claus, E.; Sohl, J.; Razzak, A.R.; Arnaout, A.; Winer, E.P. Sites of distant recurrence and clinical outcomes in patients with metastatic triple-negative breast cancer: High incidence of central nervous system metastases. Cancer 2008, 113, 2638–2645. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Gao, Y.; Zhang, J.; Wang, L.; Wang, B.; Cao, J.; Shao, Z.; Wang, Z. Incidence, pattern and prognosis of brain metastases in patients with metastatic triple negative breast cancer. BMC Cancer 2018, 18, 446. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Lü, H.M.; Liu, Z.Z.; Liu, H.; Zhang, M.W.; Sun, X.B.; Cui, S.D. High risk factors of brain metastases in 295 patients with advanced breast cancer. Chin. Med. J. (Engl.) 2013, 126, 1269–1275. [Google Scholar] [CrossRef] [PubMed]
- Gennari, A.; André, F.; Barrios, C.H.; Cortés, J.; de Azambuja, E.; DeMichele, A.; Dent, R.; Fenlon, D.; Gligorov, J.; Hurvitz, S.A.; et al. ESMO Clinical Practice Guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer. Ann. Oncol. 2021, 32, 1475–1495. [Google Scholar] [CrossRef] [PubMed]
- Breast Cancer, Version 2.2024; NCCN Clinical Practice Guidelines in Oncology; 11 March 2024. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1419 (accessed on 11 March 2024).
- Niikura, N.; Hayashi, N.; Masuda, N.; Takashima, S.; Nakamura, R.; Watanabe, K.; Kanbayashi, C.; Ishida, M.; Hozumi, Y.; Tsuneizumi, M.; et al. Treatment outcomes and prognostic factors for patients with brain metastases from breast cancer of each subtype: A multicenter retrospective analysis. Breast Cancer Res. Treat. 2014, 147, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Maurer, C.; Tulpin, L.; Moreau, M.; Dumitrescu, C.; de Azambuja, E.; Paesmans, M.; Nogaret, J.M.; Piccart, M.J.; Awada, A. Risk factors for the development of brain metastases in patients with HER2-positive breast cancer. ESMO Open 2018, 3, 000440. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, A.; Wang, R.; Patil, S.; Diab, A.; Yang, J.; Hudis, C.A.; McArthur, H.L.; Beal, K.; Seidman, A.D. Characteristics and Prognostic Factors for Patients with HER2-overexpressing Breast Cancer and Brain Metastases in the Era of HER2-targeted Therapy: An Argument for Earlier Detection. Clin. Breast Cancer 2018, 18, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Cagney, D.N.; Lamba, N.; Montoya, S.; Li, P.; Besse, L.; Martin, A.M.; Brigell, R.H.; Catalano, P.J.; Brown, P.D.; Leone, J.P.; et al. Breast cancer subtype and intracranial recurrence patterns after brain-directed radiation for brain metastases. Breast Cancer Res. Treat 2019, 176, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Laakmann, E.; Witzel, I.; Neunhöffer, T.; Weide, R.; Schmidt, M.; Park-Simon, T.W.; Möbus, V.; Mundhenke, C.; Polasik, A.; Lübbe, K.; et al. Characteristics and Clinical Outcome of Breast Cancer Patients with Asymptomatic Brain Metastases. Cancers 2020, 12, 2787. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.D.; Weathers, T.; Haney, L.G.; Timmerman, R.; Dickler, M.; Shen, J.; Sledge, G.W., Jr. Occult central nervous system involvement in patients with metastatic breast cancer: Prevalence, predictive factors and impact on overall survival. Ann. Oncol. 2003, 14, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
- Bachelot, T.; Romieu, G.; Campone, M.; Diéras, V.; Cropet, C.; Dalenc, F.; Jimenez, M.; Le Rhun, E.; Pierga, J.Y.; Gonçalves, A.; et al. Lapatinib plus capecitabine in patients with previously untreated brain metastases from HER2-positive metastatic breast cancer (LANDSCAPE): A single-group phase 2 study. Lancet Oncol. 2013, 14, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Pivot, X.; Manikhas, A.; Żurawski, B.; Chmielowska, E.; Karaszewska, B.; Allerton, R.; Chan, S.; Fabi, A.; Bidoli, P.; Gori, S.; et al. CEREBEL (EGF111438): A Phase III, Randomized, Open-Label Study of Lapatinib Plus Capecitabine Versus Trastuzumab Plus Capecitabine in Patients with Human Epidermal Growth Factor Receptor 2-Positive Metastatic Breast Cancer. J. Clin. Oncol. 2015, 33, 1564–1573. [Google Scholar] [CrossRef]
- Awada, A.; Colomer, R.; Inoue, K.; Bondarenko, I.; Badwe, R.A.; Demetriou, G.; Lee, S.C.; Mehta, A.O.; Kim, S.B.; Bachelot, T.; et al. Neratinib Plus Paclitaxel vs Trastuzumab Plus Paclitaxel in Previously Untreated Metastatic ERBB2-Positive Breast Cancer: The NEfERT-T Randomized Clinical Trial. JAMA Oncol. 2016, 2, 1557–1564. [Google Scholar] [CrossRef] [PubMed]
- Saura, C.; Oliveira, M.; Feng, Y.H.; Dai, M.S.; Chen, S.W.; Hurvitz, S.A.; Kim, S.B.; Moy, B.; Delaloge, S.; Gradishar, W.; et al. NALA Investigators. Neratinib Plus Capecitabine Versus Lapatinib Plus Capecitabine in HER2-Positive Metastatic Breast Cancer Previously Treated With ≥ 2 HER2-Directed Regimens: Phase III NALA Trial. J. Clin. Oncol. 2020, 38, 3138–3149. [Google Scholar] [CrossRef] [PubMed]
- Stringer-Reasor, E.M.; O’Brien, B.J.; Topletz-Erickson, A.; White, J.B.; Lobbous, M.; Riley, K.; Childress, J.; LaMaster, K.; Melisko, M.E.; Morikawa, A.; et al. Pharmacokinetic (PK) analyses in CSF and plasma from TBCRC049, an ongoing trial to assess the safety and efficacy of the combination of tucatinib, trastuzumab and capecitabine for the treatment of leptomeningeal metastasis (LM) in HER2 positive breast cancer. J. Clin. Oncol. 2021, 39, 1044. [Google Scholar]
- Lin, N.U.; Borges, V.; Anders, C.; Murthy, R.K.; Paplomata, E.; Hamilton, E.; Hurvitz, S.; Loi, S.; Okines, A.; Abramson, V.; et al. Intracranial Efficacy and Survival with Tucatinib Plus Trastuzumab and Capecitabine for Previously Treated HER2-Positive Breast Cancer with Brain Metastases in the HER2CLIMB Trial. J. Clin. Oncol. 2020, 38, 2610–2619. [Google Scholar] [CrossRef]
- Lin, N.U.; Murthy, R.K.; Abramson, V.; Anders, C.; Bachelot, T.; Bedard, P.L.; Borges, V.; Cameron, D.; Carey, L.A.; Chien, A.J.; et al. Tucatinib vs Placebo, Both in Combination with Trastuzumab and Capecitabine, for Previously Treated ERBB2 (HER2)-Positive Metastatic Breast Cancer in Patients with Brain Metastases: Updated Exploratory Analysis of the HER2CLIMB Randomized Clinical Trial. JAMA Oncol. 2023, 9, 197–205. [Google Scholar] [CrossRef]
- Xu, B.; Yan, M.; Ma, F.; Hu, X.; Feng, J.; Ouyang, Q.; Tong, Z.; Li, H.; Zhang, Q.; Sun, T.; et al. PHOEBE Investigators. Pyrotinib plus capecitabine versus lapatinib plus capecitabine for the treatment of HER2-positive metastatic breast cancer (PHOEBE): A multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2021, 22, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Rinn, K.J.; Kullnat, J.A.; Wu, A.Y.; Ennett, M.D.; Scott, E.L.; Kaplan, H.G. Response of Leptomeningeal Metastasis of Breast Cancer with a HER2/neu Activating Variant to Tucatinib: A Case Report. J. Natl. Compr. Cancer Netw. 2022, 20, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.M.; Miles, D.; Kim, S.B.; Im, Y.H.; Im, S.A.; Semiglazov, V.; Ciruelos, E.; Schneeweiss, A.; Loi, S.; Monturus, E.; et al. CLEOPATRA study group. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): End-of-study results from a double-blind, randomised, placebo-controlled, phase 3 study. Lancet Oncol. 2020, 21, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Krop, I.E.; Lin, N.U.; Blackwell, K.; Guardino, E.; Huober, J.; Lu, M.; Miles, D.; Samant, M.; Welslau, M.; Diéras, V. Trastuzumab emtansine (T-DM1) versus lapatinib plus capecitabine in patients with HER2-positive metastatic breast cancer and central nervous system metastases: A retrospective, exploratory analysis in EMILIA. Ann. Oncol. 2015, 26, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Mair, M.J.; Bartsch, R.; Le Rhun, E.; Berghoff, A.S.; Brastianos, P.K.; Cortes, J.; Gan, H.K.; Lin, N.U.; Lassman, A.B.; Wen, P.Y.; et al. Understanding the activity of antibody-drug conjugates in primary and secondary brain tumours. Nat. Rev. Clin. Oncol. 2023, 20, 372–389. [Google Scholar] [CrossRef] [PubMed]
- Soffietti, R.; Pellerino, A. Brain Metastasis from HER2-Positive Breast Cancer: An Evolving Landscape. Clin. Cancer Res. 2023, 29, 8–10. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, A.S.; Steinberg, S.M.; Smart, D.D.; Gilbert, M.R.; Armstrong, T.S.; Burton, E.; Houston, N.; Biassou, N.; Gril, B.; Brastianos, P.K.; et al. Temozolomide in secondary prevention of HER2-positive breast cancer brain metastases. Future Oncol. 2020, 16, 899–909. [Google Scholar] [CrossRef] [PubMed]
- Trudeau, M.E.; Crump, M.; Charpentier, D.; Yelle, L.; Bordeleau, L.; Matthews, S.; Eisenhauer, E. Temozolomide in metastatic breast cancer (MBC): A phase II trial of the National Cancer Institute of Canada—Clinical Trials Group (NCIC-CTG). Ann. Oncol. 2006, 17, 952–956. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, D.; Duchnowska, R.; Woditschka, S.; Hua, E.; Qian, Y.; Biernat, W.; Sosińska-Mielcarek, K.; Gril, B.; Stark, A.M.; Hewitt, S.M.; et al. Profound prevention of experimental brain metastases of breast cancer by temozolomide in an MGMT-dependent manner. Clin. Cancer Res. 2014, 20, 2727–2739. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, F.; Delaloge, S.; Barrios, C.H.; Wuerstlein, R.; Anton, A.; Brain, E.; Hatschek, T.; Kelly, C.M.; Peña-Murillo, C.; Yilmaz, M.; et al. Trastuzumab emtansine (T-DM1) in patients with HER2-positive metastatic breast cancer and brain metastases: Exploratory final analysis of cohort 1 from KAMILLA, a single-arm phase IIIb clinical trial☆. Ann. Oncol. 2020, 31, 1350–1358. [Google Scholar] [CrossRef]
- Jenkins, S.; Zhang, W.; Steinberg, S.M.; Nousome, D.; Houston, N.; Wu, X.; Armstrong, T.S.; Burton, E.; Smart, D.D.; Shah, R.; et al. Phase I Study and Cell-Free DNA Analysis of T-DM1 and Metronomic Temozolomide for Secondary Prevention of HER2-Positive Breast Cancer Brain Metastases. Clin. Cancer Res. 2023, 29, 1450–1459. [Google Scholar] [CrossRef] [PubMed]
- Priego, N.; Zhu, L.; Monteiro, C.; Mulders, M.; Wasilewski, D.; Bindeman, W.; Doglio, L.; Martínez, L.; Martínez-Saez, E.; Ramón, Y.; et al. STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nat. Med. 2018, 24, 1024–1035. [Google Scholar] [CrossRef] [PubMed]
- Pellerino, A.; Bruno, F.; Mo, F.; Bertero, L.; Bellini, E.; Beano, A.; Montemurro, F.; Valiente, M.; Rudà, R.; Soffietti, R. STAT3 expression in brain metastases from breast cancer: Correlations with different molecular subtypes and clinical outcome. Neuro Oncol. 2022, 24 (Suppl. S2), ii62. [Google Scholar]
- Lee, H.T.; Xue, J.; Chou, P.C.; Zhou, A.; Yang, P.; Conrad, C.A.; Aldape, K.D.; Priebe, W.; Patterson, C.; Sawaya, R.; et al. Stat3 orchestrates interaction between endothelial and tumor cells and inhibition of Stat3 suppresses brain metastasis of breast cancer cells. Oncotarget 2015, 6, 10016–10029. [Google Scholar] [CrossRef] [PubMed]
- Bosch-Barrera, J.; Sais, E.; Cañete, N.; Marruecos, J.; Cuyàs, E.; Izquierdo, A.; Porta, R.; Haro, M.; Brunet, J.; Pedraza, S.; et al. Response of brain metastasis from lung cancer patients to an oral nutraceutical product containing silibinin. Oncotarget 2016, 7, 32006–32014. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Singh, D.; Laversanne, M.; Vignat, J.; Vaccarella, S.; Meheus, F.; Cust, A.E.; De Vries, E.; Whiteman, D.C.; Bray, F. Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040. JAMA Dermatol. 2022, 158, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.V.; Tawbi, H.; Margolin, K.A.; Amravadi, R.; Bosenberg, M.; Brastianos, P.K.; Chiang, V.L.; de Groot, J.; Glitza, I.C.; Herlyn, M.; et al. Melanoma Central Nervous System Metastases: Current Approaches, Challenges, and Opportunities. Pigment Cell Melanoma Res. 2016, 29, 627–642. [Google Scholar] [CrossRef]
- Skibber, J.M.; Soong, S.J.; Austin, L.; Balch, C.M.; Sawaya, R.E. Cranial Irradiation after Surgical Excision of Brain Metastases in Melanoma Patients. Ann. Surg. Oncol. 1996, 3, 118–123. [Google Scholar] [CrossRef]
- Sampson, J.H.; Carter, J.H.; Friedman, A.H.; Seigler, B.F. Demographics, Prognosis, and Therapy in 702 Patients with Brain Metastases from Malignant Melanoma. J. Neurosurg. 1998, 88, 11–20. [Google Scholar] [CrossRef]
- Fife, K.M.; Colman, M.H.; Stevens, G.N.; Firth, I.C.; Moon, D.; Shannon, K.F.; Harman, R.; Petersen-Schaefer, K.; Zacest, A.C.; Besser, M.; et al. Determinants of Outcome in Melanoma Patients with Cerebral Metastases. J. Clin. Oncol. 2004, 22, 1293–1300. [Google Scholar] [CrossRef]
- Davies, M.A.; Liu, P.; McIntyre, S.; Kim, K.B.; Papadopoulos, N.; Hwu, W.J.; Hwu, P.; Bedikian, A. Prognostic Factors for Survival in Melanoma Patients with Brain Metastases. Cancer 2011, 117, 1687–1696. [Google Scholar] [CrossRef] [PubMed]
- Raizer, J.J.; Hwu, W.J.; Panageas, K.S.; Wilton, A.; Baldwin, D.E.; Bailey, E.; Von Althann, C.; Lamb, L.A.; Alvarado, G.; Bilsky, M.H.; et al. Brain and Leptomeningeal Metastases from Cutaneous Melanoma: Survival Outcomes Based on Clinical Features. Neuro Oncol. 2008, 10, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Frinton, E.; Tong, D.; Tan, J.; Read, G.; Kumar, V.; Kennedy, S.; Lim, C.; Board, R.E. Metastatic Melanoma: Prognostic Factors and Survival in Patients with Brain Metastases. J. Neurooncol. 2017, 135, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Internò, V.; Sergi, M.C.; Metta, M.E.; Guida, M.; Trerotoli, P.; Strippoli, S.; Circelli, S.; Porta, C.; Tucci, M. Melanoma Brain Metastases: A Retrospective Analysis of Prognostic Factors and Efficacy of Multimodal Therapies. Cancers 2023, 15, 1542. [Google Scholar] [CrossRef] [PubMed]
- Samlowski, W.E.; Moon, J.; Witter, M.; Atkins, M.B.; Kirkwood, J.M.; Othus, M.; Ribas, A.; Sondak, V.K.; Flaherty, L.E. High Frequency of Brain Metastases after Adjuvant Therapy for High-Risk Melanoma. Cancer Med. 2017, 6, 2576–2585. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Z.; Shang, D.; Yu, J.; Yuan, S. Incidence and Prognosis of Brain Metastases in Cutaneous Melanoma Patients: A Population-Based Study. Melanoma Res. 2019, 29, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Bander, E.D.; Yuan, M.; Carnevale, J.A.; Reiner, A.S.; Panageas, K.S.; Postow, M.A.; Tabar, V.; Moss, N.S. Melanoma Brain Metastasis Presentation, Treatment, and Outcomes in the Age of Targeted and Immunotherapies. Cancer 2021, 127, 2062–2073. [Google Scholar] [CrossRef] [PubMed]
- Osei-Boateng, K.; Alva Venur, V.; Dahiya, S.; Du, L.; Garje, R.; Elson, P.; Chao, S.T.; Ahluwalia, M.S. Graded Prognostic Assessment Index for Melanoma with Brain Metastases (MBM). J. Clin. Oncol. 2013, 31, 15. [Google Scholar] [CrossRef]
- Sperduto, P.W.; Jiang, W.; Brown, P.D.; Braunstein, S.; Sneed, P.; Wattson, D.A.; Shih, H.A.; Bangdiwala, A.; Shanley, R.; Lockney, N.A.; et al. Estimating Survival in Melanoma Patients with Brain Metastases: An Update of the Graded Prognostic Assessment for Melanoma Using Molecular Markers (Melanoma-MolGPA). Int. J. Radiat. Oncol. Biol. Phys. 2017, 99, 812–816. [Google Scholar] [CrossRef]
- Lamba, N.; Wen, P.Y.; Aizer, A.A. Epidemiology of Brain Metastases and Leptomeningeal Disease. Neuro Oncol. 2021, 23, 1447–1456. [Google Scholar] [CrossRef]
- Gardner, L.J.; Ward, M.; Andtbacka, R.H.I.; Boucher, K.M.; Bowen, G.M.; Bowles, T.L.; Cohen, A.L.; Grossmann, K.; Hitchcock, Y.J.; Holmen, S.L.; et al. Risk Factors for Development of Melanoma Brain Metastasis and Disease Progression: A Single-Center Retrospective Analysis. Melanoma Res. 2017, 27, 477–484. [Google Scholar] [CrossRef]
- Tan, X.L.; Le, A.; Tang, H.; Brown, M.; Scherrer, E.; Han, J.; Jiang, R.; Diede, S.J.; Shui, I.M. Burden and Risk Factors of Brain Metastases in Melanoma: A Systematic Literature Review. Cancers 2022, 14, 6108. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.K.; Didolkar, M.S.; Pickren, J.W.; Moore, R.H. Metastatic Pattern of Malignant Melanoma. A Study of 216 Autopsy Cases. Am. J. Surg. 1978, 135, 807–810. [Google Scholar] [CrossRef] [PubMed]
- Vosoughi, E.; Lee, J.M.; Miller, J.R.; Nosrati, M.; Minor, D.R.; Abendroth, R.; Lee, J.W.; Andrews, B.T.; Leng, L.Z.; Wu, M.; et al. Survival and Clinical Outcomes of Patients with Melanoma Brain Metastasis in the Era of Checkpoint Inhibitors and Targeted Therapies. BMC Cancer 2018, 18, 490. [Google Scholar] [CrossRef]
- Modesto, A.; Chira, C.; Sol, J.C.; Lubrano, V.; Boulinguez, S.; Pagès, C.; Sibaud, V.; Gomez-Roca, C.; Moyal, É.; Meyer, N. Treatment of Patients with Brain Metastases from a Melanoma. Cancer Radiother. 2019, 23, 147–150. [Google Scholar] [CrossRef]
- Hong, A.M.; Waldstein, C.; Shivalingam, B.; Carlino, M.S.; Atkinson, V.; Kefford, R.F.; McArthur, G.A.; Menzies, A.M.; Thompson, J.F.; Long, G.V. Management of Melanoma Brain Metastases: Evidence-Based Clinical Practice Guidelines by Cancer Council Australia. Eur. J. Cancer 2021, 142, 10–17. [Google Scholar] [CrossRef]
- Haydu, L.E.; Lo, S.N.; McQuade, J.L.; Amaria, R.N.; Wargo, J.; Ross, M.I.; Cormier, J.N.; Lucci, A.; Lee, J.E.; Ferguson, S.D.; et al. Cumulative Incidence and Predictors of CNS Metastasis for Patients with American Joint Committee on Cancer 8th Edition Stage III Melanoma. J. Clin. Oncol. 2020, 38, 1429–1441. [Google Scholar] [CrossRef]
- Ma, M.W.; Qian, M.; Lackaye, D.J.; Berman, R.S.; Shapiro, R.L.; Pavlick, A.C.; Golfinos, J.G.; Parker, E.C.; Darvishian, F.; Hernando, E.; et al. Challenging the Current Paradigm of Melanoma Progression: Brain Metastasis as Isolated First Visceral Site. Neuro Oncol. 2012, 14, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Zakrzewski, J.; Geraghty, L.N.; Rose, A.E.; Christos, P.J.; Mazumdar, M.; Polsky, D.; Shapiro, R.; Berman, R.; Darvishian, F.; Hernando, E.; et al. Clinical Variables and Primary Tumor Characteristics Predictive of the Development of Melanoma Brain Metastases and Post-Brain Metastases Survival. Cancer 2011, 117, 1711–1720. [Google Scholar] [CrossRef]
- Häfliger, E.M.; Ramelyte, E.; Mangana, J.; Kunz, M.; Kazakov, D.V.; Dummer, R.; Cheng, P.F. Metastatic Acral Lentiginous Melanoma in a Tertiary Referral Center in Switzerland: A Systematic Analysis. Melanoma Res. 2018, 28, 442–450. [Google Scholar] [CrossRef]
- van der Kooij, M.K.; Speetjens, F.M.; van der Burg, S.H.; Kapiteijn, E. Uveal versus Cutaneous Melanoma; Same Origin, Very Distinct Tumor Types. Cancers 2019, 11, 845. [Google Scholar] [CrossRef] [PubMed]
- Wei, A.Z.; Uriel, M.; Porcu, A.; Manos, M.P.; Mercurio, A.C.; Caplan, M.M.; Hulse, L.; Seedor, R.S.; Holovatska, M.; Francis, J.; et al. Characterizing Metastatic Uveal Melanoma Patients Who Develop Symptomatic Brain Metastases. Front. Oncol. 2022, 12, 961517. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, O. Clinical Correlates and Prognostic Value of Different Metastatic Sites in Patients with Malignant Melanoma of the Skin: A SEER Database Analysis. J. Dermatol. Treat. 2018, 29, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; et al. Mutations of the BRAF Gene in Human Cancer. Nature 2002, 417, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, R.; Garzon-Muvdi, T.; Lipson, E.J.; Sharfman, W.H.; Bettegowda, C.; Redmond, K.J.; Kleinberg, L.R.; Ye, X.; Lim, M. BRAF-V600 Mutational Status Affects Recurrence Patterns of Melanoma Brain Metastasis. Int. J. Cancer 2017, 140, 2716–2727. [Google Scholar] [CrossRef] [PubMed]
- Sperduto, P.W.; Jiang, W.; Brown, P.D.; Braunstein, S.; Sneed, P.; Wattson, D.A.; Shih, H.A.; Bangdiwala, A.; Shanley, R.; Lockney, N.A.; et al. The Prognostic Value of BRAF, C-KIT, and NRAS Mutations in Melanoma Patients With Brain Metastases. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Jakob, J.A.; Bassett, R.L.; Ng, C.S.; Curry, J.L.; Joseph, R.W.; Alvarado, G.C.; Rohlfs, M.L.; Richard, J.; Gershenwald, J.E.; Kim, K.B.; et al. NRAS Mutation Status Is an Independent Prognostic Factor in Metastatic Melanoma. Cancer 2012, 118, 4014–4023. [Google Scholar] [CrossRef] [PubMed]
- Rabbie, R.; Ferguson, P.; Wong, K.; Couturier, D.L.; Moran, U.; Turner, C.; Emanuel, P.; Haas, K.; Saunus, J.M.; Davidson, M.R.; et al. The Mutational Landscape of Melanoma Brain Metastases Presenting as the First Visceral Site of Recurrence. Br. J. Cancer 2021, 124, 156–160. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network Melanoma: Cutaneous (Version 02.2024). Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1492 (accessed on 7 April 2024).
- Michielin, O.; Van Akkooi, A.C.J.; Ascierto, P.A.; Dummer, R.; Keilholz, U. Cutaneous Melanoma: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2019, 30, 1884–1901. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.Y.; Abou-Ghazal, M.K.; Wei, J.; Chakraborty, A.; Sun, W.; Qiao, W.; Fuller, G.N.; Fokt, I.; Grimm, E.A.; Schmittling, R.J.; et al. A Novel Inhibitor of Signal Transducers and Activators of Transcription 3 Activation Is Efficacious against Established Central Nervous System Melanoma and Inhibits Regulatory T Cells. Clin. Cancer Res. 2008, 14, 5759–5768. [Google Scholar] [CrossRef] [PubMed]
- Izraely, S.; Klein, A.; Sagi-Assif, O.; Meshel, T.; Tsarfaty, G.; Hoon, D.S.B.; Witz, I.P. Chemokine-Chemokine Receptor Axes in Melanoma Brain Metastasis. Immunol. Lett. 2010, 130, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Hernández, J.L.; Padilla, L.; Dakhel, S.; Coll, T.; Hervas, R.; Adan, J.; Masa, M.; Mitjans, F.; Martinez, J.M.; Coma, S.; et al. Therapeutic Targeting of Tumor Growth and Angiogenesis with a Novel Anti-S100A4 Monoclonal Antibody. PLoS ONE 2013, 8, 72480. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Chakravarti, N.; Aardalen, K.; Lazar, A.J.; Tetzlaff, M.T.; Wubbenhorst, B.; Kim, S.B.; Kopetz, S.; Ledoux, A.A.; Vashisht Gopal, Y.N.; et al. Molecular Profiling of Patient-Matched Brain and Extracranial Melanoma Metastases Implicates the PI3K Pathway as a Therapeutic Target. Clin. Cancer Res. 2014, 20, 5537–5546. [Google Scholar] [CrossRef] [PubMed]
- Vogt, P.K.; Hart, J.R. PI3K and STAT3: A New Alliance. Cancer Discov. 2011, 1, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Tawbi, H.A.; Boutros, C.; Kok, D.; Robert, C.; McArthur, G. New Era in the Management of Melanoma Brain Metastases. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Tehranian, C.; Fankhauser, L.; Harter, P.N.; Ratcliffe, C.D.H.; Zeiner, P.S.; Messmer, J.M.; Hoffmann, D.C.; Frey, K.; Westphal, D.; Ronellenfitsch, M.W.; et al. The PI3K/Akt/MTOR Pathway as a Preventive Target in Melanoma Brain Metastasis. Neuro Oncol. 2022, 24, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Amaral, T.; Niessner, H.; Sinnberg, T.; Thomas, I.; Meiwes, A.; Garbe, C.; Garzarolli, M.; Rauschenberg, R.; Eigentler, T.; Meier, F. An Open-Label, Single-Arm, Phase II Trial of Buparlisib in Patients with Melanoma Brain Metastases Not Eligible for Surgery or Radiosurgery—The BUMPER Study. Neurooncol. Adv. 2020, 2, vdaa140. [Google Scholar] [CrossRef] [PubMed]
- Kluger, H.M.; Chiang, V.; Mahajan, A.; Zito, C.R.; Sznol, M.; Tran, T.; Weiss, S.A.; Cohen, J.V.; Yu, J.; Hegde, U. Long-Term Survival of Patients with Melanoma With Active Brain Metastases Treated with Pembrolizumab on a Phase II Trial. J. Clin. Oncol. 2019, 37, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Long, G.V.; Atkinson, V.; Lo, S.; Sandhu, S.; Guminski, A.D.; Brown, M.P.; Wilmott, J.S.; Edwards, J.; Gonzalez, M.; Scolyer, R.A.; et al. Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: A multicentre randomised phase 2 study. Lancet Oncol. 2018, 19, 672–681. [Google Scholar] [CrossRef] [PubMed]
- Tawbi, H.A.; Forsyth, P.A.; Hodi, F.S.; Algazi, A.P.; Hamid, O.; Lao, C.D.; Moschos, S.J.; Atkins, M.B.; Lewis, K.; Postow, M.A.; et al. Long-term outcomes of patients with active melanoma brain metastases treated with combination nivolumab plus ipilimumab (CheckMate 204): Final results of an open-label, multicentre, phase 2 study. Lancet Oncol. 2021, 22, 1692–1704. [Google Scholar] [CrossRef]
- Davies, M.A.; Saiag, P.; Robert, C.; Grob, J.J.; Flaherty, K.T.; Arance, A.; Chiarion-Sileni, V.; Thomas, L.; Lesimple, T.; Mortier, L.; et al. Dabrafenib plus trametinib in patients with BRAFV600-mutant melanoma brain metastases (COMBI-MB): A multicentre, multicohort, open-label, phase 2 trial. Lancet Oncol. 2017, 18, 863–873. [Google Scholar] [CrossRef] [PubMed]
- Dummer, R.; Queirolo, P.; Duhard, P.G.; Hu, Y.; Wang, D.; de Azevedo, S.J.; Robert, C.; Ascierto, P.A.; Chiarion-Sileni, V.; Pronzato, P.; et al. Atezolizumab, vemurafenib, and cobimetinib in patients with melanoma with CNS metastases (TRICOTEL): A multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2023, 24, 461–471. [Google Scholar] [CrossRef] [PubMed]
Study Name | Target | Phase | Trial |
---|---|---|---|
Targeted therapy | |||
Study of Osimertinib + SRS vs. Osimertinib Alone for Brain Metastases in EGFR-Positive Patients With NSCLC | EGFR | Phase II | NCT03769103 |
Keynatinib in Treated Patients With NSCLC and Brain Metastases | EGFR | Phase II | NCT04824079 |
A Randomised Phase II Trial of Osimertinib With or Without SRS for EGFR Mutated NSCLC With Brain Metastases (OUTRUN) | EGFR | Phase II | NCT03497767 |
A Phase I/II Study of AMG 510 in Combination With MVASI in Patients With Advanced, Unresectable or Metastatic KRAS G12C Mutant NSCLC With Asymptomatic Brain Metastasis | KRASG12C VEGF | Phase I Phase II | NCT05180422 |
Study of TY-9591 in Patients With a Lung Cancer With Brain or Leptomeningeal Metastases With EGFR Mutation | EGFR | Phase II | NCT05146219 |
Neurocognition in NSCLC Patients Treated With Osimertinib or Osimertinib + WBI | EGFR | Phase II | NCT04829019 |
Almonertinib Combined With Cerebral Radiation Treat Brain Metastases From EGFR-Positive NSCLC | EGFR | Phase II | NCT04905550 |
Immunotherapy | |||
Nivolumab and Ipilimumab Plus Chemotherapy for Patients With Stage IV Lung Cancer With Brain Metastases (NIVIPI-Brain) | CTLA-4 PD-1 | Phase II | NCT05012254 |
Pembrolizumab Plus Bevacizumab for Treatment of Brain Metastases in Metastatic Melanoma or Non-small Cell Lung Cancer | PD-L1 VEGF | Phase II | NCT02681549 |
Phase II Investigation of Use of CNS Active Pembrolizumab and Chemotherapy for Asymptomatic Brain Metastasis From Non-small Cell Lung Cancer (NSCLC) | PD-L1 | Phase II | NCT04964960 |
Toripalimab Combined With Anlotinib and SBRT in Patients With Untreated Brain Metastases of Driven Gene-negative NSCLC | Non-driver-related brain metastasis | Phase I | NCT05021328 |
LITT and Pembrolizumab in Recurrent Brain Metastasis (TORCH) | Recurrent brain metastasis with failed radiosurgery | Phase I | NCT04187872 |
Study Name | Phase | NCT Number |
---|---|---|
HER2 targeted | ||
HER2-CAR T Cells in Treating Patients with Recurrent Brain or Leptomeningeal Metastases | Phase I | NCT03696030 |
Secondary Brain Metastases Prevention After Isolated Intracranial Progression on Trastuzumab/Pertuzumab or T-DM1 in Patients With advanced Human Epidermal Growth Factor Receptor 2+ Breast Cancer with the Addition of Tucatinib (BRIDGET) | Phase II | NCT05323955 |
Tucatinib, Trastuzumab and Capecitabine With SRS for Brain Metastases From HER-2-Positive Breast Cancer | Phase I | NCT05553522 |
Palbociclib, Trastuzumab, Pyrotinib and Fulvestrant Treatment in Patients with Brain Metastasis From ER/PR-Positive, HER-2-Positive Breast Cancer: A Multi-center, Prospective Study in China | Phase II | NCT04334330 |
Pyrotinib Combined with Capecitabine and Bevacizumab for Patients with HER2-Positive Breast Cancer and Brain Metastases | Phase II | NCT06152822 |
A Study of Pyrotinib Plus Capecitabine Combined with SRT in HER2+ MBC With Brain Metastases | Phase II | NCT05042791 |
Trial of Neratinib Plus Capecitabine in Subjects with HER2-Negative Metastatic Breast Cancer with Brain Metastases and Abnormally Active HER2 Signaling | Phase II | NCT04965064 |
GDC-0084 in Combination with Trastuzumab for Patients with HER2-Positive Breast Cancer Brain Metastases | Phase II | NCT03765983 |
Study of SHR-A1811 in HER2-expression Advanced Breast Cancer with Brain Metastases | Phase II | NCT05769010 |
A Study of Tucatinib Given Before Surgery to People with HER2+ Cancers That Have Spread to the Brain | Phase II | NCT05892068 |
Dendritic Cell Vaccines Against Her2/Her3 and Pembrolizumab for the Treatment of Brain Metastasis from Triple-Negative Breast Cancer or HER2+ Breast Cancer | Phase II | NCT04348747 |
HER3 targeted | ||
HER3-DXd in Breast Cancer and NSCLC Brain Metastases and Solid Tumor Leptomeningeal Disease (TUXEDO-3) | Phase II | NCT05865990 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pellerino, A.; Davidson, T.M.; Bellur, S.S.; Ahluwalia, M.S.; Tawbi, H.; Rudà, R.; Soffietti, R. Prevention of Brain Metastases: A New Frontier. Cancers 2024, 16, 2134. https://doi.org/10.3390/cancers16112134
Pellerino A, Davidson TM, Bellur SS, Ahluwalia MS, Tawbi H, Rudà R, Soffietti R. Prevention of Brain Metastases: A New Frontier. Cancers. 2024; 16(11):2134. https://doi.org/10.3390/cancers16112134
Chicago/Turabian StylePellerino, Alessia, Tara Marie Davidson, Shreyas S. Bellur, Manmeet S. Ahluwalia, Hussein Tawbi, Roberta Rudà, and Riccardo Soffietti. 2024. "Prevention of Brain Metastases: A New Frontier" Cancers 16, no. 11: 2134. https://doi.org/10.3390/cancers16112134
APA StylePellerino, A., Davidson, T. M., Bellur, S. S., Ahluwalia, M. S., Tawbi, H., Rudà, R., & Soffietti, R. (2024). Prevention of Brain Metastases: A New Frontier. Cancers, 16(11), 2134. https://doi.org/10.3390/cancers16112134