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Simple Summary: Cervical cancer is the fourth most prominent cancer in women worldwide. Early
cancer detection, timely treatment, and prognostic marker identification are vital to ensure that
patients have improved outcomes. Magnetic resonance spectroscopy (MRS) is a powerful tool for
detecting metabolites in vivo. This review article covers the role of MRS for cervical cancer for
diagnosis, treatment response evaluation, and future applications of this technology.

Abstract: This review article investigates the utilization of MRS in the setting of cervical cancer. A
variety of different techniques have been used in this space including single-voxel techniques such as
point-resolved spectroscopy (PRESS) and stimulated echo acquisition mode spectroscopy (STEAM).
Furthermore, the experimental parameters for these acquisitions including field strength, repetition
times (TR), and echo times (TE) vary greatly. This study critically examines eleven MRS studies that
focus on cervical cancer. Out of the eleven studies, ten studies utilized PRESS acquisition, while
the remaining study used STEAM acquisition. These studies generally showed that the choline
signal is altered in cervical cancer (4/11 studies), the lipid signal is generally increased in cervical
cancer or the lipid distribution is changed (5/11 studies), and that diffusion-weighted imaging
(DWI) can quantitatively detect lower apparent diffusion coefficient (ADC) values in cervical cancer
(2/11 studies). Two studies also investigated the role of MRS for monitoring treatment response and
demonstrated mixed results regarding choline signal, and one of these studies showed increased lipid
signal for non-responders. There are several new MRS technologies that have yet to be implemented
for cervical cancer including advanced spectroscopic imaging and artificial intelligence, and those
technologies are also discussed in the article.

Keywords: MRS; NMR; cervical cancer; choline; fatty acids; lipids; biomarkers

1. Introduction to MRS

In vivo magnetic resonance spectroscopy (MRS) [1] and MRS imaging (MRSI) [2] are
non-invasive methods to measure biochemicals in the body. Both methods are used widely
in biomedical research to study the metabolism of living systems. Although MRS and MRSI
are also used in clinical practice, they have yet to be widely adopted. Regardless, MRS
is a highly researched field with continual technological advances that show promise in
moving MRS/MRSI to be adopted by general medical practice [3].

Because of its relatively low sensitivity, only small, mobile molecules present in
millimolar concentrations can be detected [4]. In addition, most studies have generally
focused on the proton (1H) nucleus due to its naturally large abundance in the human body
and its high gyromagnetic ratio, which results in a higher detection sensitivity. A downside
to 1H-MRS, however, is its lack of spectral dispersion, which is exacerbated at lower field
strengths [5]. As such, clinical MR scanners, which typically have low-to-medium field
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strengths of 1.5 T or 3 T, have a relatively limited spectral resolution that restricts the
number of metabolites that can be reliably measured. Regardless, these scanners can still
detect a large range of metabolites including choline and phosphocholine, membrane-
linked metabolites, and lipids [6]. Metabolites detectable in the cervix that likely play a role
in cervical cancer metabolism will be further discussed in Section 2.

1.1. Localization Methods

Due to its high signal-to-noise and robustness to experimental imperfections (relative
to multi-voxel localization methods), single-voxel localization methods [7,8] are most
commonly used. Nearly all single-voxel localization methods use three slice-selective
radiofrequency pulses along orthogonal planes to detect a signal from a select region where
the pulses intersect. Voxel sizes typically range from 4 to 9 cm3 depending on the targeted
region, technique and field strength used, and metabolite(s)-of-interest.

STimulated Echo Acquisition Mode (STEAM) [9] and Point RESolved Spectroscopy
(PRESS) [1] are the two most common types of single-voxel MRS acquisition techniques.
Figure 1 depicts the STEAM (Figure 1B) and PRESS (Figure 1C) sequences. Both yield
spectra that can be analyzed both qualitatively and quantitatively, however, there are a
few practical differences between the two techniques. STEAM is generally preferred at
higher magnetic fields such as 7 T [10] due to radiofrequency (RF) power requirements.
PRESS generally offers more signal-to-noise and the spectra are T2-weighted, rather than
T2*-weighted in STEAM, so it is preferred at lower field strengths and has been used in a
variety of clinical applications [11].
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Figure 1. (A) Single voxel localization is achieved by acquiring data from the intersection of slice-
selective pulses applied in orthogonal directions (black, green, and red) (B) The STEAM localization
technique is shown, which utilizes three 90◦ pulses. (C) The PRESS localization technique is displayed,
which utilizes a 90◦ excitation pulse followed by two 180◦ pulses. In the figure, TE is the echo time
and TM is the mixing time, and these values can range from a few milliseconds to hundreds of
milliseconds. STEAM forms a stimulated echo, whereas PRESS forms a spin echo, which can result in
different T2 weighting of the spectra. The black, green, and red can be iterated during an experiment
to yield MR spectroscopic imaging.

While single-voxel methods have been traditionally used, it has a major limitation of
being spatially-limited. As such, multi-voxel techniques such as MRSI [12] are needed if
there are multiple regions of interest, the affected region is unknown, or there is significant
heterogeneity across a region of interest, as is common in tumors. Unlike MR imaging (MRI),
frequency encoding cannot be performed as the gradient played during readout would
scramble the chemical shift encoding, which is difficult to disentangle. Therefore, MRSI is
typically performed by adding phase-encoding gradients to the aforementioned localization
methods. In most cervical cancer studies performed to date at clinical field strengths, these
MRSI acquisitions have been most commonly performed with PRESS localization.
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1.2. Applications in Medicine

Due to the rich chemical information provided non-invasively without ionizing radi-
ation, MRS has been applied to study a variety of different diseases. Most of these have
been in the brain and have included the study of neurodegenerative diseases [13,14], psy-
chiatric disorders [15,16], and brain tumors [10,17,18]. However, MRS is increasingly being
used to study diseases and disorders affecting a range of other bodily organs including
spinal cord injury [19], myocardial infarction [20], peripheral arterial disease [21], prostate
cancer [22,23], and cervical cancer [24,25]. MRS has also been applied to study a range
of metabolic disorders including diabetes [26] and liver disease [27]. In prostate cancer,
MRS has been used to identify target subvolumes and may also play a role in predicting
tumor response and outcomes [28]. It has been shown that MRI/MRS can be used to design
simultaneous integrated boost (SIB) plans for prostate radiotherapy, where the dominant
intraprostatic lesion also receives more dose than the prostate [29]. Although cervical
cancer has been less well-studied than prostate cancer, several studies have used MRS to
help understand, diagnose, and assess treatment responses in patients with cervical cancer.

2. Background on Metabolic Pathways of Interest in Cervical Cancer MRS

It is well-known that cancer differs from healthy cell metabolism, and that signaling
pathways are also greatly altered in cervical cancer [30–33]. One specific example of
metabolism change is the Warburg effect [34], which describes the change in the preferred
glucose metabolic pathway and is a well-understood phenomenon. In healthy cells, glucose
undergoes glycolysis to produce pyruvate. If oxygen is available, pyruvate will go through
the oxidative phosphorylation process, which is energy efficient. However, if oxygen is
unavailable, the pyruvate will be fermented to produce lactate, which produces much
less energy. In cancer cells, fermentation is prevalent, even in environments abundant
with oxygen, drastically altering lactic acid build-up and pyruvate by-products. Cervical
cancer MRS, however, has predominantly focused on two metabolic pathways: choline and
fatty acids.

2.1. Metabolic Pathways of Choline in Cancer

Choline is a well-studied metabolite in several pathologies, and the molecular path-
ways of this compound have been studied in cancer extensively. Choline is prominent in
different forms in the body, typically in the forms of free choline (Cho), phosphocholine
(PCh), and glycerophosphocholine (GPC). Changes in these choline species are indicative of
alterations in the enzymes that produce or utilize choline. This includes key enzymes such
as choline kinase, phospholipase C, lysophospholipase, and others [35–37]. There are also
important choline transporter enzymes that transport free choline from the extracellular
space to the intracellular space, which may be affected [36,37].

In the in vivo 1H MRS literature, it is well-reported that the concentration and dis-
tribution of these choline compounds are modified in cancerous tissues [38]. Notably, a
significant elevation of total choline (tCho), a summation of Cho, PCh, and GPC signals, has
been consistently reported to be elevated in various cancer pathologies [3]. In particular,
several forms of brain cancer have demonstrated significant elevations in tCho including
meningiomas [39] and glioblastomas (GBMs), and this elevated signal may be useful in
diagnosis or targeted therapies. In fact, there is an ongoing clinical trial escalating the
radiation dose to the regions of the tumor with elevated choline and decreased N-acetyl
aspartate (NAA) with promising preliminary results that indicate that the volume of spec-
troscopically abnormal tissue is a better biomarker of progression-free and overall survival
than the volume of residual post-contrast enhancement [40]. Prostate cancer and breast
cancer have also demonstrated increased tCho levels. Furthermore, breast cancer has also
demonstrated a redistribution of GPC into PC [41] associated with malignancy. Choline
may also play an important role in cervical cancer as a potential biomarker holding both
diagnostic and prognostic value. Studies investigating choline in cervical cancer and other
gynecological cancers are described in Section 3.
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2.2. Metabolic Pathways of Lipids in Cancer

Fatty acid metabolism also plays a large role in the energy metabolism of cancer [42].
Cellular membrane and signaling molecules typically rely on fatty acids or lipids. One
example is the use of lipids in the phospholipid bilayer, which encases cells and acts as
a barrier between the internal organelles and the external environment. In cancer cells,
the proliferation of cells is supported by the abundance of lipids in order to create these
membranes. Lipids also play a vital role in the storage of energy such as the storage of
triglycerides in fat cells, which can be released as an energy source at a later time. In
the case of cancer cells, these stored fatty acids can be released to act as building blocks
for membranes. While the exact role that altered lipid storage plays in cancer is still not
well-understood, it is well-known that an abundance of lipids will support increased
proliferation. Therefore, fatty acid metabolism and synthase may act as therapeutic targets
in the case of cervical cancer [43,44]. Several studies have detected lipids in cancer by
employing 1H MRS, most notably in the cases of breast [45,46] and brain cancer [47,48].
Although this space has not been as thoroughly explored as choline metabolism, there are
several studies that have evaluated lipid levels in cervical cancer, as discussed below.

3. In Vivo MRS Studies in Cervical Cancer

Early cervical cancer MRS studies have focused on diagnosing the disease and iden-
tifying the key metabolites of interest. One of the earlier studies for 1H-MRS of cervical
carcinoma was performed in 1998 by Lee et al. [49]. In this study, fifty-one patients were
included, forty-four of which were pathologically confirmed squamous cell carcinoma
and seven of which were confirmed as adenocarcinoma. Spectra were acquired on a 1.5 T
scanner using a body transmit coil and an endovaginal surface receive coil, which was
placed in the posterior fornix of the vagina by a gynecologist. A PRESS sequence was
utilized with TR = 3000 ms and TE = 20 and 135 ms, and the voxel was placed inside
apparent cancerous tissue based on the T2-weighted images, or in the center of the cervix
itself if abnormal tissue was not visible. The voxel size was between 1 and 3 cc. The key
findings of the study were that squamous cell carcinoma could be discriminated from the
normal cervix by using the triglyceride peak at 1.3 ppm (89% sensitivity, 57% specificity,
84% accuracy), and adenocarcinoma could be discriminated from the normal cervix by
using the lipid peak at 2.0 ppm (86% sensitivity, 100% specificity, 98% accuracy), potentially
offering an alternative to biopsy. While the results were promising, the qualitative nature of
the analysis, which focused on the simple presence of peaks rather than the concentration
values, was one weakness of the study. A more quantitative and statistical approach is
necessary to demonstrate true cancer sub-type discrimination.

Studies looking into the role of choline metabolism in cervical cancer have also showed
interesting results. One study, conducted by Booth et al. [50], reported the results of in vivo
MRS acquired on a variety of gynecological tumors. The study included fourteen patients
with ovarian cancer, eleven patients with cervical cancer, and four patients with uterine
cancer. The spectra were acquired on a 3 T MR scanner with a torso coil for acquisition.
The voxel position and size was dependent on the tumor location, ranging from 5.3 to
81.3 mm3, and the PRESS sequence was used with the following acquisition parameters:
TR/TE = 1500/72 ms and 128 water-suppressed excitations. Choline peaks were prominent
in 93%, 73%, and 100% of ovarian, cervical, and uterine cancers, respectively. However, no
significant differences were found in the choline signals based on the level of malignancy
of the tumor specified as the tumor stage. This study may have had more definitive results
with a larger sample size and a more statistical approach for comparing data.

Another study by De Silva et al. [51] also demonstrated interesting results regarding
choline. The group carried out an in vivo spectroscopic imaging study on forty-seven
women, nineteen of which had cervical intraepithelial neoplasia (CIN) and twenty-eight
of which had cervical cancer. The MRSI study was performed on a 1.5 T scanner using
an endovaginal ring coil and PRESS voxel localization. The spectroscopic imaging was
localized in the coronal plane, with a 16 × 16 voxel acquisition, slice thickness of 15 mm,
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FOV of 120 × 120 mm2, TR/TE = 888/135 ms, and four signal averages. The epithelial
and stromal voxels were identified, and metabolic signals from choline and lipids were
quantified from these separate regions. The results showed that patients with cervical
cancer had significantly elevated choline values (p = 0.033) compared to patients with CIN
in the epithelium, however, there were no significant differences in the stroma. Additionally,
no differences in any of the triglycerides or other lipids were found.

Lipid peaks have also been shown to undergo alterations in cervical cancer. Mahon
et al. [52] analyzed MRS data acquired from eleven controls and twenty-seven patients
with cervical cancer. Importantly, their work focused on comparing in vivo results to ex
vivo magic angle spinning (MAS) MR spectroscopy. The in vivo MR spectra were acquired
on a 1.5 T scanner using an endovaginal coil. A 3.6 cc voxel was placed either on healthy
tissue or on cancerous tissue, with the voxel containing at least 50% abnormal tissue as
seen on a T2-weighted MR image. A PRESS sequence was used for the acquisition with
TR/TE = 1600/135 ms and a total of 128 signal averages. The MAS data were acquired on
tissue samples taken from the biopsy of six healthy controls (biopsies were taken unrelated
to cancer) and nineteen of the cervical cancer patients. An 11.75 T machine was used to
acquire the MAS spectra, which had a much higher signal-to-noise ratio than the in vivo
MRS data. Overall, the in vivo results demonstrated the presence of choline and elevated
lipid species in the cervical cancer MRS using a more qualitative approach. In addition,
the MAS spectra demonstrated significant quantitative differences in the -CH2 and -CH3
lipid species as well as choline. Another report from Mahon et al. [53], utilizing a similar
approach to the above, focused on the relationship between choline, lipids, and tumor
load. The in vivo quantitative results showed significant increases in the lipid signal for
the cervical cancer MRS (p < 0.05). However, there was no correlation between the tumor
load and metabolite levels.

A study by Lin et al. [54] looked into the potential value of MR spectroscopy for
the prediction of poor prognostic human papillomavirus (HPV) genotypes. The group
acquired spectra from fifty-two cervical cancer patients on a 3 T system using an exter-
nal spine coil and body coil. The spectra were acquired using a PRESS sequence with
TR/TE = 2000/35 ms and 128 averages. The spectra were analyzed using the LCModel
(version 6.3-0 K) software [55] following eddy current correction. LCModel is a peak fitting
software that is able to incorporate prior knowledge of signals to fit spectra in a linear
least-squares manner, and has been shown to provide superior quantification relative to
simple spectral peak maximums or peak integrals for quantification, as performed in many
earlier studies. In this study, the lipid peaks resonating at 0.9, 1.3, and 2.0 ppm and the
total choline peak at 3.2 ppm were quantified. The results demonstrated that the 0.9 ppm
lipid peak signal was significantly increased (p = 0.032) for patients with poor prognostic
HPV genotypes, defined as HPV18, 39, 45, and the absence of HPV infection. Furthermore,
the elevated lipid peak could be used to discriminate between HPV18 and HPV16 with a
sensitivity of 83%, a specificity of 90%, and an area under of the curve (AUC) of 0.82 when
analyzing the receiver operating characteristic (ROC) curve. No significant differences in
choline values were reported.

Lipid signals in cervical cancer have also been investigated at high field strengths.
Arteaga de Castro et al. [25] were the first group to acquire 7 T spectra of cervical cancer.
In their study, they included ten women with Stage IB1–IIB2 cervical cancer at a point
after definitive therapy was already initiated. All MRS data were acquired on a 7 T system.
The coils used for the acquisition were a pelvis coil and an endorectal coil. For the 7 T
acquisition, a STEAM sequence was used for both single-voxel and CSI acquisitions with
VAPOR for water suppression. The single-voxel parameters included: TR = 1400 ms,
TE = 36–75 ms, 192 averages, and voxel sizes varying from 20 to 50 mm3. The CSI scan
had a TR/TE = 1400/10 ms and a 5 × 5 × 5 mm3 voxel size covering a 30 × 30 mm2 FOV.
The spectra were quantified using NMRWizard (version 2012-10-09), which is a LCModel
based software. While no statistically significant results were found, the authors were
able to take advantage of the higher field strength to distinguish fatty acid peaks that



Cancers 2024, 16, 2141 6 of 13

overlap at lower field strengths. Additionally, the 2.1 ppm/1.3 ppm ratio was higher as a
function of tumor grade, demonstrating a trend of more unsaturated fatty acids in poorly
differentiated tumors.

Treatment response has been monitored using MRS, and studies have focused on
both choline and lipid signals. One study was undertaken by Allen et al. [56], which
used MRS for initial detection and follow-up after the radiation treatment of cervical
cancer. A total of eight healthy volunteers, sixteen pre-treatment patients, and eighteen
post-treatment patients were scanned. All spectra were acquired on a 1.5 T scanner using
a PRESS sequence with TR/TE = 1600/140 ms. To minimize invasiveness, an external
pelvic surface coil was used for the acquisitions rather than an endovaginal coil. Prior to
treatment, patients had elevated choline levels. For patients with no disease at time of
follow-up, no elevated choline was detected, whereas for patients with local recurrence or
biopsy confirm recurrence, the choline levels remained high. While this study demonstrates
the non-invasive detection of treatment response using MRS, it does have a few weaknesses
that need to be highlighted. The type of radiation treatment was not specified in the
publication, and it is not clear whether the same patients were scanned pre-treatment and
post-treatment. In addition, no quantification or statistical analysis was used in this study,
thus limiting the results.

Another work focusing on therapy response was by Dolciami et al. [24], where they
studied the role of MR spectroscopy as a prognostic test for assessing the response of
cervical cancer to neoadjuvant chemotherapy. Seventeen patients were included in their
study and these patients were scanned utilizing a 3 T scanner. A PRESS acquisition with
TR = 1500 ms and TE = 28 and 144 ms with a voxel size of 18 × 18 × 18 mm3 was used.
The shorter TE spectra were used for metabolite quantitation, which was performed using
LCModel. The patients were split into good responders (GR), partial responders (PR),
and non-responders (NR) following neoadjuvant chemotherapy based on the radiological
response determined by two radiologists. Lipids at 1.28 ppm, tCho, and the ratio between
the two (Lipids/tCho) were all significantly different between the GR and PR-or-NR groups.
The lipids were significantly elevated in the PR-or-NR group (p = 0.04), whereas tCho was
elevated in the GR group (p = 0.04). This finding is interesting because the tCho elevation in
GR is in directly conflict with the results presented by Allen et.al. in their work, although the
results could also be indicative of another parameter difference or condition. For example,
the differences in TE employed by the two studies suggest that perhaps a difference in the
T2 values could also play a role in these contrasting findings. T2 values in cervical cancer
are unknown, and it is not clear how therapy may change these relaxation times. Similarly,
T1 relaxation values may also differ between these types of acquisitions. A study with a
larger sample size needs to be conducted in order to determine whether tCho is actually
increasing for GR patients.

Multimodal imaging is a powerful tool in MRI. One study conducted by Rizzo
et al. [57] evaluated the role of diffusion weighted imaging (DWI) in combination with
spectroscopy as an early response marker to non-surgical therapies for cervical cancer. A
total of sixteen patients underwent radiation therapy, chemotherapy, or chemo-radiation
therapy and were stratified into responders and non-responders at the end of the therapies,
and no evidence of disease (NED) or progression of disease (PD) after a five-year follow-up.
The patients in the study had MRIs acquired on a 1.5 T scanner using an 18-channel external
coil at pre-treatment, mid-treatment, and end of treatment timepoints. The MRS acquisition
parameters were: voxel size = 3.8 cc, TR/TE = 2000/135 ms, and averages = 192. For
responders, the absolute apparent diffusion coefficients (ADC) of the tumor increased
(p = 0.0001) from the baseline to mid-treatment. Comparatively, the non-responders had no
changes. When analyzing the percent increase compared to the baseline, however, there
were no statistically significant changes at mid-treatment or at the end of treatment for
the ADC differences. Similarly, tCho ratios with respect to water also demonstrated no
significant changes throughout the course of treatment.
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Another group that leveraged the capabilities of DWI was Payne et al. [58]. They
conducted research to investigate the diffusion characteristics and metabolism of stage
1 cervical cancer. The research included sixty-two patients and used a similar approach
and the same methodology described above in De Silva et al. [51] The diffusion sequence
utilized five different b-values, 0, 100, 300, 500, and 800 s/mm2, and the authors employed
in-house software (IDL 6.1) to calculate the ADC values from these data. The ADC values
were significantly lower in well/moderately differentiated tumors and poorly differenti-
ated tumors compared to normal tissue. There were no significant changes in tCho, and
furthermore, there were no significant correlations found between ADC and tCho.

As displayed in Table 1, several parameters differed between the studies presented.
For example, the TE of the acquisition plays a large role in the effects of T2 decay on the
spectra, and shorter TEs will result in less T2 decay. Lipids will typically have a higher
signal at these shorter TE values. The results of the studies, also summarized in Table 1,
displayed consistent results for the most part. In general, lipid and tCho signals are higher
in cervical cancer compared to controls. Lipids, and specifically the distribution of lipid
species, may act as a biomarker for disease progression and response to therapy. tCho
may play a leading role as a biomarker for diagnosis; however, it is not clear how well this
biomarker may perform for treatment prognosis or response.

Table 1. Summary of cervical cancer MRS findings.

Number of
Patients

Field
Strength (T)

MRS
Sequence TR/TE (ms) Clinical Finding Reference

51 1.5 PRESS 3000/20 and
3000/135

Lipid peaks can be used to discriminate
between squamous cell carcinoma and
adenocarcinoma

[49]

14 3 PRESS 1500/72
tCho peaks prominent in different GYN
cancers, however, cannot discriminate level
of malignancy

[50]

47 1.5 PRESS CSI 888/135 tCho are elevated in cancer compared to
cervical intraepithelial neoplasia (p = 0.033) [51]

39 1.5 PRESS 1600/135 tCho and lipids are elevated in cervical
cancer patients [52]

27 1.5 PRESS 1600/135
Lipid peaks are significantly elevated in
cervical cancer, however there was no
correlation with tumor load

[53]

52 3 PRESS 2000/35 Lipid peaks can be used to distinguish poor
prognostic HPV genotypes [54]

10 7 STEAM and
CSI

1400/36–75
1400/10

Lipid ratios were higher as a function of tumor
grade, however the result was not significant [25]

16–18 1.5 PRESS 1600/140 tCho levels remain high for patients with
recurrence after radiation treatment [56]

17 3 PRESS 1500/28 and
1500/144

Lipids are significantly elevated in partial or
no response group, and Choline is elevated in
good responder group

[24]

16 1.5 PRESS 2000/135 No MRS changes. ADC values of the tumor
increased at the mid-treatment time point [57]

62 1.5 PRESS CSI 888/135
No MRS changes. ADC values of the tumor
were significantly lower compared to
normal tissue

[58]

4. Future of MRS in Cervical Cancer

There have been major improvements in the field of MRS in recent decades. Most of
the studies discussed above have not leveraged these recent advances, and therefore there
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may be significant potential to advance cervical cancer characterization by utilizing MRS.
While none of the applications below have directly been applied to cervical cancer, there is
a strong possibility that using the technologies may improve the signal, spatial resolution,
or metabolite discrimination.

4.1. Technological Improvement in Acquisition

One of the aspects that was leveraged in a few recent studies, but could be utilized
more prominently, was field strength [5]. The signal-to-noise ratio (SNR) for metabolites
generally increases linearly as a function of field strength, meaning a 3 T acquisition will
have roughly double the SNR compared to a 1.5 T acquisition. In addition to improved
SNR, the spectral dispersion increases as a function of field strength, allowing for better
peak identification.

A technology that was not incorporated as much in cervical cancer MRS studies was
an improved localization technique. While PRESS and STEAM offer adequate localization,
techniques such as LASER or semi-LASER acquisitions [59,60] exist, which have the po-
tential to provide better signal localization and minimize the chemical shift displacement
effects. This is especially important for higher field strengths of 7 T, where the sLASER
adiabatic refocusing pulses result in reduced chemical shift displacement error and sensi-
tivity to static and radiofrequency inhomogeneity. A downside to these types of techniques,
however, is that they require longer repetition times to accommodate the increased specific
absorption rates of the adiabatic pulses. However, the overall result is improved sensitivity,
which can be significant when dealing with lower SNR signals. Shimming improvements
such as the use of nonspherical harmonic shim hardware [61] are also possible, which
would help further improve localization and SNR and allow for a better distinction of
metabolites with neighboring resonances.

Spectral editing is another technology that has not been applied in cervical cancer
MRS. This technique targets J-coupled metabolites and is capable of isolating their signal to
enhance quantitation [62,63]. From the literature, it is clear that lipid metabolism may be
of particular interest in cervical cancer prognosis, so using lipid editing to resolve in vivo
unsaturated lipid resonances [64,65] may offer a unique mechanism to identify biomarkers.

4.2. Spectroscopic Imaging

MRSI has been severely under-utilized and was only used in two studies; further-
more, metabolic maps of the different biochemicals were not present in the literature.
There have been significant advances in the field of MRSI, mostly facilitated by various
acceleration methods including the shortening of repetition times [66], under-sampling of
k-space [67–69], and spatial-spectral encoding [70]. Metabolic maps may allow for better
tumor delineation, may serve a prognostic role, or may help guide therapy. Specifically,
regions with abnormal metabolite signals may benefit from higher doses of radiation,
similar to the approach described by Ramesh et al. [40] in the phase II clinical trial for GBM.

4.3. Artificial Intelligence

Machine learning and artificial intelligence (AI) is another emerging technology that
has shown promise in MRS metabolite quantitation [71,72] as well as in the field of MRSI
acquisition [73]. The major advantage of AI is that patterns in data can often be readily
detected, offering another avenue for biochemical or radiomic identification. In general, AI
has several applications in the space of medical imaging, particularly in MRI [74]. It is also
possible to use machine learning techniques for cervical cancer prognosis [75], however,
a large amount of MRS data would first need to be acquired in a standardized manner
to accomplish this. With a plethora of data, it would be possible to build AI that can
help guide tumor grading or diagnosis [76,77]. Furthermore, AI may be able to aide with
planning a patient’s course of treatment [78], monitoring this treatment [79], and making
adjustments as necessary based on biomarker changes. Combining MRS data with DWI
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and/or T2-weighted MRI information may ultimately allow for patient-tailored treatments
and pave the road for personalized medicine.

5. Conclusions

Magnetic resonance spectroscopy offers a unique lens into understanding, diagnos-
ing, and assessing treatment response for cervical cancer. Currently, choline and fatty
acid metabolism have been found to be significantly different in cervical cancer patients
compared to normal subjects. However, the studies presented in this review article had
lower sample sizes and variable acquisition parameters and quantification methods, which
makes it difficult to generalize the results. Thus, there is a need to conduct standardized
MRS studies using modern acquisition techniques to determine the best use for MRS in the
diagnostic and prognostic clinical setting for cervical cancer. A large standardized MRS
dataset would enable the use of state-of-the-art technology such as artificial intelligence to
improve cancer treatment and allow for personalized treatment. Therefore, efforts should
be made to continue cervical cancer MRS studies.
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ADC Apparent diffusion coefficient
AI Artificial Intelligence
AUC Area under the curve
Cho Free choline
CIN Cervical intraepithelial neoplasia
DWI Diffusion weighted imaging
FOV Field of view
GBM Glioblastoma multiforme
GPC Glycerophosphocholine
GR Good responder
HPV Human papillomavirus
MAS Magical angle spinning
MRI Magnetic resonance imaging
MRS Magnetic resonance spectroscopy
MRSI Magnetic resonance spectroscopic imaging
NED No evidence of disease
NR Non-responder
PCh Phosphocholine
PD Progression of disease
PR Partial responder
PRESS Point-resolved spectroscopy
RF Radiofrequency
SIB Simultaneous integrated boost
SNR Signal-to-noise ratio
STEAM Stimulated echo acquisition mode
tCho Total choline
TE Echo time
TM Mixing time
TR Repetition time
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