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Simple Summary: The manual assessment and identification of tumor-associated macrophages
(TAMs) with a single marker limits a thorough analysis of their spatial distribution and density.
We applied a digital workflow to compare the features of TAM populations identified by CD163
and CD206 and showed that these markers highlighted TAM populations with distinct clinical
implications. The spatial distribution of CD163 TAMs and their interactions with tumor-infiltrating
lymphocytes (TILs) refined the prognostic value in breast cancer. Conversely, CD206 TAMs may not
have any unfavorable prognostic impact.

Abstract: Tumor-associated macrophages (TAMs) is a key element in the breast tumor microenvi-
ronment. CD163 and CD206 have been utilized for TAM identification, but the clinical implications
of TAMs identified by these markers have not been thoroughly explored. This study conducted a
comparative analysis of CD163 and CD206 TAMs using digital image analysis, focusing on their
spatial distribution and prognostic significance in relation to tumor-infiltrating lymphocytes (TILs).
Distinct clinico-pathological and prognostic characteristics were noted between the two types of
TAMs. CD163 TAMs were linked to high-grade tumors (p = 0.006), whereas CD206 TAMs were associ-
ated with a higher incidence of nodal metastasis (p = 0.033). CD206 TAMs were predominantly found
in the stroma, with more cases being stromal CD206-high (sCD206-high) than tumoral CD206-high
(tCD206-high) (p = 0.024). Regarding prognostication, patients stratified according to stromal and
tumoral densities of CD163 showed different disease-free survival (DFS) time. Specifically, those
that were sCD163-low but tCD163-high exhibited the poorest DFS (chi-square = 10.853, p = 0.013).
Furthermore, a high sCD163-to-stromal-TILs ratio was identified as an independent predictor of
unfavorable survival outcomes (DFS: HR = 3.477, p = 0.018). The spatial distribution and interactions
with TILs enhanced the prognostic value of CD163 TAMs, while CD206 TAMs appeared to have
limited prognostic utility in breast cancer cases.

Keywords: breast cancers; CD163; CD206; tumor-associated macrophage

1. Introduction

Previously, the significance of the tumor microenvironment (TME) in breast cancer de-
velopment and treatment response has gained increasing recognition [1]. Tumor-associated
macrophages (TAMs) are a key component of the TME, constituting over 50% of tumor
mass in some cases [2]. Unlike the proinflammatory M1 polarized macrophages [3], TAMs
demonstrate properties more akin to M2 polarized macrophages, known for their immuno-
suppressive functions, support of wound healing, and contribution to tumor progression
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and therapy resistance [4]. In various cancers, including breast cancer, the presence of
TAMs has been linked to unfavorable outcome [5].

In earlier studies, TAMs were identified by CD68, a pan-macrophage marker expressed
by both M1 and M2 polarized macrophages [6]. Subsequently, CD163, a scavenger receptor,
and CD206, a C-type mannose receptor 1, upregulated in M2 macrophages have been
used as TAM markers [7–11]. Despite their common expression in M2 macrophages, these
markers may represent different subsets of TAMs. The CD163 level is increased in response
to IL-10, while CD206 is upregulated by IL-4 and IL-13 [12]. Therefore, the TAM subsets
represented by the two markers could be associated with a specific cancer milieu and found
in cancers with different features. Notably, there were differential clinico-pathological
associations of CD163 and CD206 TAMs. CD163 TAMs were positively associated with a
higher tumor grade, while CD206 TAMs were associated with smaller tumor size in triple-
negative breast cancer (TNBC) [13]. Moreover, a high density of CD163 was associated with
poor outcomes in breast cancer in several studies [14]. However, the outcome association
of CD206 TAMs is less well-studied and showed inconsistent results [13,15]. Most TAM
studies to date used a single marker, with few examining multiple markers on tissue
microarrays [16]. Studies comparing CD163 and CD206 TAMs in breast cancer are lacking.
The most clinically relevant TAM subset in breast cancer has not been fully examined.

More recently, a better prognostication was suggested with the combined assessment of
TAMs and tumor-infiltrating lymphocytes (TILs) in breast cancers. TNBC with high TAMs
(CD68/CD163) and low TILs, but not those with high TILs, was associated with poor patient
survival [17]. HER2+ breast cancers with a high CD8-TIL-to-CD68-TAM ratio derived more
benefit from anti-HER2 treatment [18]. Additionally, the spatial localization of TAMs could
also affect the prognosis. The distance of CD163 TAM from cancer cells and a higher
average number of them in close contact with cancer cells were independent predictors
of unfavorable prognosis [19]. Interestingly, in gastric cancers, the spatial locations of
CD163 and CD206 TAMs were related to their proximity to tumor cells and associated with
specific environmental gene signatures and PD-L1 expression [20], implying an interactive
process between cancer cells and the TME. For the CD163 and CD206 TAMs, their spatial
significance and combined assessment with TILs remain to be explored.

This study compared the clinical significance of CD206 and CD163 TAMs in a series of
well-characterized breast cancers. Further prognostic assessment was conducted on their
spatial distribution and interactions with TILs. Manual counting and a semi-quantitative
analysis have been used for TAM evaluation in most previous studies [13,15,21]. The
analysis is labor-intensive and prone to inter-/intra-rater variations. Here, a digital analysis
approach was adopted for a more detailed and objective quantitative assessment on whole-
tissue sections.

2. Materials and Methods
2.1. Patients

Invasive breast carcinoma patients from 2005 to 2008 at Prince of Wales Hospital,
the Chinese University of Hong Kong (PWH, CUHK), were included in this retrospec-
tive study. All the excision specimens were formalin-fixed, paraffin-embedded (FFPE)
with routine tissue processing. The hematoxylin and eosin (H&E)-stained slides were
reviewed to confirm diagnosis (WHO classification) [22] and grade (modified Bloom and
Richardson) [23]. Patient particulars and clinical data were retrieved from medical records,
including the patient’s age, tumor size, lymph node involvement, pT and pN stages, and
patient’s outcome data. In addition, stromal TILs (sTILs), fibrotic focus, necrosis, apocrine
and lymphovascular invasion (LVI) were evaluated as previously reported [24]. Regarding
the outcome data, disease-free survival (DFS) was defined as the duration from the date
of initial diagnosis to the first detection of breast cancer-specific relapse or death. Overall
survival (OS) was defined as the time interval from the date of initial diagnosis to the date
of death. The study was approved by the Joint Chinese University of Hong Kong New
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Territories East Cluster Clinical Research Ethics Committee. The effect on survival was
assessed based on REMARK criteria [25].

2.2. Immunohistochemistry (IHC) Staining of Tumor Sections

IHC on four-micron freshly cut FFPE sections was carried out using the Ventana Bench-
Mark ULTRA system (Ventana, Tucson, AZ, USA) after deparaffinization, rehydration, and
antigen retrieval. Antigen retrieval was carried out using Cell Conditioning Solution (CC1,
Tris-based EDTA buffer, pH 8.0; Ventana, Tucson, AZ, USA). The sections were stained
with antibodies against CD163 (clone 10D6) and CD206 (clone 5C11). The signals were
detected using the Ultraview Universal DAB Detection Kit (Ventana, Tucson, AZ, USA).
Sections were counterstained by hematoxylin, dehydrated and mounted manually. The
slides were scanned by a Leica Aperio GT 450 scanner (Leica Biosystems, Danvers, MA,
USA) at 400× magnification. The whole slide images were analyzed using our established
digital pipeline.

For all other markers, including ER, PR, HER2, Ki67, EGFR, c-Kit, P63, CK5/6, CK14,
and PDL1, the results were retrieved from our database based on our previous tumor
microarray analysis. Details on antibody clones, staining conditions, and assessments
are shown in Supplementary Table S1. IHC surrogates for molecular subtype classifica-
tion are as follows: luminal A (ER+, PR ≥ 20%, HER2−, Ki67 < 20%), luminal B (ER+,
PR < 20%/and HER2+/and Ki67 ≥ 20%), HER2 over-expressed (HER2-OE; ER−, PR−,
HER2+), and TNBC (ER−, PR−, HER2−).

2.3. Digital Image Analysis by QuPath

Digital microscopic images were imported into QuPath for tumor recognition and cell
detection analysis (Supplementary Figure S1). Five regions of interest (ROI) of 1.96 mm2,
including a hotspot stromal region, a hotspot tumor region, and three representative
stromal–tumor interfaces, were selected. Hotspot areas were identified by examining
the entire section under low-power magnification for stromal and tumor regions with
the highest staining. The same ROIs were applied to CD206 and CD163 IHC stained
images from the same case. The tumor and stromal regions were annotated using a model-
assisted approach. Tumor and stromal areas were identified by a cancer detection model
for breast cancers, which was developed based on our previous studies [26]. By adjusting
the thresholds of probability, at least nine predicted tumor labels were generated for each
sample. The best-fit tumor mask for each case was selected manually. The analysis of the
stromal area was limited to 50 µm from the tumor to avoid missing areas in some ROIs. For
the detection of CD163 and CD206 TAMs, a similar digital workflow as described previously
by QuPath [24], which comprised color deconvolution, cell detection and segmentation,
and immunostaining expression detection, was adopted. CD163 and CD206 TAMs were
automatically detected based on the optical density of DAB staining. The accuracy of the
digital workflow for tumor detection and IHC assessment was verified by a pathologist.
The parameters used for cell detection and IHC assessment are listed in Supplementary
Table S2. The total cell counts and coordinates of CD206/CD163 TAMs and areas in
tumor and stroma regions for each ROI were exported. The average density of CD163 and
CD206 TAMs from all ROIs in different regions, i.e., CD163 and CD206 densities in the
tumor nest (tCD163 and tCD206) and the stroma (sCD163 and sCD206) were calculated
accordingly. The average distance of sCD163/CD206 TAMs from the tumor nest was also
evaluated. Median values were adopted as cutoffs to categorize the cohort into TAM-high
and -low groups.

2.4. Statistical Analysis

The data were analyzed using the statistical software SPSS for Windows, Version 27.
Spearman’s rank-order correlation was utilized to correlate tumoral and stromal CD163
and CD206 and sTIL as continuous variables. Wilcoxon signed-rank test was used to
compare the density of CD163 and CD206 in the tumor and stroma. CD163 and CD206
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expressions were compared for the clinic-pathological features, biomarkers expressions,
and molecular subtypes as categorical variables by chi-square analysis or Fisher’s exact
test. The Mann–Whitney U test was applied for analysis of the differences in patient’s
age and tumor size with CD163 and CD206 expressions. Survival data were evaluated by
multivariate cox regression analysis and the Kaplan–Meier method. Statistical significance
was established at p < 0.05.

3. Results
3.1. Cohort Features

A total of 225 invasive breast cancer cases were included in this cohort, including
16 cases of grade I, 124 cases of grade II and 85 cases of grade III cancers, with a median
patient age of 47 (mean 48.6, range 29–82) and a median tumor size of 1.8 cm (mean 2.09,
range 0.1–7.6 cm). Among them, there were 219 invasive breast carcinomas of no special
type (IBC-NST), 4 invasive lobular carcinomas (ILC), 1 mixed ILC/IDC, and 1 mucinous
carcinoma. Based on the results of IHC, 52 cases were classified as luminal A, 123 cases
as luminal B, 21 cases as HER2-enriched, and 26 cases as TNBC. Three cases were not
classified due to incomplete IHC data.

3.2. Correlations of CD163 and CD206 TAM Density with Clinico-Pathological and Biomarker
Features in Different Regions

CD163 and CD206 expression was successfully assessed in 220 and 211 cases, respec-
tively (Figure 1 and Supplementary Figure S2). Overall, the median stromal density for
CD163 (sCD163) and CD206 (sCD206) TAMs were 354.1 cells/mm2 (mean 538.7, range
2.3–3398.0 cells/mm2) and 303.2 cells/mm2 (mean 409.2, range 9.3–2707.8 cells/mm2),
respectively. The median tumoral density for CD163 (tCD163) and CD206 (tCD206) TAM
were 210.8 cells/mm2 (mean 373.4, range 1.2–4037.4 cells/mm2) and 111.6 cells/mm2

(mean 177.0, range 2.9–2221.6 cells/mm2), respectively (Supplementary Figure S3). Cases
were categorized into high- and low-TAM subgroups based on the median density value.
sCD163 and tCD163 TAMs showed a stronger association with each other than CD206
TAMs (rs = 0.718 vs. 0.534). CD163 and CD206 TAMs only correlated with each other mod-
erately in the stroma or tumor nest (rs = 0.493 and 0.483, respectively). When categorized
as high and low subgroups, there were more sCD206-high, tCD206-low cases (p = 0.024),
but not for CD163. A trend of more tCD163-high than tCD206-high was found (p = 0.066)
(Supplementary Table S3 and Supplementary Figure S3).

In line with their correlations, the clinico-pathological associations of the CD163 and
CD206 TAM density shared some similarities. Regardless of their locations, both TAMs
showed significant associations with a larger tumor size and high TIL level (p ≤ 0.016). The
stromal density of both were associated with the presence of necrosis, LVI, high Ki67, HER2
positivity, and PDL1+ immune cells (p ≤ 0.032). However, tCD163 showed associations
with a higher grade, high Ki67, HER2 positivity, and PDL1+ immune cells (p ≤ 0.038), but
not for tCD206. Additionally, sCD163 was associated with a higher grade, ER negativity, PR
negativity, P63 positivity and a differential distribution in molecular subtypes (p ≤ 0.012),
but not for sCD206. The sCD163 distribution was found to be the highest in HER2-OE
(80.9%), followed by TNBC (64.0%), luminal B (50.4%) and luminal A (30.6%). Only sCD206
showed a positive association with nodal metastasis (p = 0.033). The tCD206 showed
associations with ER negativity, PR negativity, and CK14 (p ≤ 0.022) positivity, but not
sCD206 (Table 1 and Supplementary Figure S4).
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Figure 1. Representative staining (brown color) of CD163 and the corresponding staining of CD206 
from the same patient. Panels (A,B) showed 40× magnification (major unit at scale: 100 microns) and 
panels (C,D) showed 200× magnification (major unit at scale: 10 microns). The presence of CD163 
TAM appears to be more notable in tumoral region than CD206 TAM (blue arrows indicated the 
CD163 TAM in tumoral regions). 

Table 1. Clinico-pathological and biomarker correlations of CD163 and CD206 TAM density at dif-
ferent regions. 

Features sCD163 tCD163 sCD206 tCD206 
  LO HI LO HI LO HI LO HI 

Clinico-pathological features 
Age Mean 48.3 49.0 48.7 48.6 47.7 49.3 48.7 48.6 

 SD 10.1 10.1 10.1 10.1 9.5 10.9 10.1 10.2 
 Median 46.5 48.0 47.0 47.0 46.0 47.5 47.0 47.0 
 IQR 41–56 41–45 42–54 40–56 41–54 41–57 41–54 41–56 
 Range 30–82 29–75 31–82 29–75 31–75 29–82 31–82 29–75 
 p 0.972  0.584  0.316  0.818  

Size Mean 1.89 2.27 1.87 2.29 1.90 2.31 1.87 2.29 

Figure 1. Representative staining (brown color) of CD163 and the corresponding staining of CD206
from the same patient. Panels (A,B) showed 40× magnification (major unit at scale: 100 microns) and
panels (C,D) showed 200× magnification (major unit at scale: 10 microns). The presence of CD163
TAM appears to be more notable in tumoral region than CD206 TAM (blue arrows indicated the
CD163 TAM in tumoral regions).

3.3. Correlations of sCD163 and sCD206 TAM Distance from Tumor Nest with
Clinico-Pathological and Biomarker Features

For a more detailed spatial analysis, we next examined the proximity of the different
TAMs from the tumor nest. The median distances between sCD163 and sCD206 TAMs and the
tumor nests were 22.99 µm (mean = 22.84, range 4.80–30.92 µm) and 24.07 µm (mean = 23.95,
range 16.21–29.63 µm), respectively (Supplementary Figure S5). sCD206 TAMs were located
significantly closer to the tumor than sCD163 TAMs, particularly in the luminal B HER2-OE
and TNBC subtypes (Supplementary Figure S6, p ≤ 0.024). Their distances from the tumor
nest correlated positively with each other (rs = 0.642, p < 0.001). For the clinico-pathologic
association, the sCD163-tumor distance showed negative associations with grade, sCD163,
tCD163, and tCD206 densities (p ≤ 0.048), while the sCD206-tumor distance was associated
negatively with ER, PR, and tCD206 densities (p ≤ 0.045) (Table 2, Supplementary Figure S4).
No associations were found with the other features.
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Table 1. Clinico-pathological and biomarker correlations of CD163 and CD206 TAM density at
different regions.

Features sCD163 tCD163 sCD206 tCD206

LO HI LO HI LO HI LO HI

Clinico-pathological features

Age Mean 48.3 49.0 48.7 48.6 47.7 49.3 48.7 48.6

SD 10.1 10.1 10.1 10.1 9.5 10.9 10.1 10.2

Median 46.5 48.0 47.0 47.0 46.0 47.5 47.0 47.0

IQR 41–56 41–45 42–54 40–56 41–54 41–57 41–54 41–56

Range 30–82 29–75 31–82 29–75 31–75 29–82 31–82 29–75

p 0.972 0.584 0.316 0.818

Size Mean 1.89 2.27 1.87 2.29 1.90 2.31 1.87 2.29

SD 1.06 1.31 1.04 1.31 1.03 1.37 1.04 1.32

Median 1.60 1.90 1.7 1.9 1.7 1.9 1.7 1.9

IQR 1.2–2.4 1.5–2.5 1.2–2.2 1.5–2.8 1.2–2.3 1.5–2.8 1.3–2.2 1.5–3.1

Range 0.2–5.6 0.1–7.6 0.1–5.6 0.2–7.6 0.2–5.6 0.1–7.6 0.1–5.6 0.2–7.6

p 0.008 0.008 0.016 0.003

TIL Low 101 69 100 70 91 72 100 63

High (>20) 7 41 8 40 10 36 17 29

p <0.001 <0.001 <0.001 0.003

Fibrotic
focus No 93 93 89 95 84 92 95 81

Yes 17 17 19 15 17 16 22 11

p 0.954 0.421 0.689 0.178

Necrosis No 93 66 85 74 87 70 93 64

Yes 15 44 23 36 14 38 24 28

p <0.001 0.058 <0.001 0.100

Apocrine No 99 97 98 98 93 96 104 85

Yes 9 13 10 12 8 12 13 7

p 0.393 0.686 0.433 0.393

Grade 1 12 3 12 3 10 4 11 3

2 67 52 62 57 56 59 63 52

3 29 55 34 50 35 45 43 37

p <0.001 0.006 0.108 0.209

LVI No 101 92 100 93 94 89 104 79

Yes 7 17 8 16 6 19 12 13

p 0.032 0.088 0.010 0.404

LN met No 57 58 56 59 62 52 67 47

Yes 47 50 49 48 35 54 48 41

p 0.872 0.792 0.033 0.490

Subtype Lum A 34 15 30 19 30 20 32 18

Lum B 60 61 64 57 53 61 67 47

HER2-OE 4 17 4 17 5 12 8 9
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Table 1. Cont.

Features sCD163 tCD163 sCD206 tCD206

LO HI LO HI LO HI LO HI

TNBC 9 16 9 16 13 13 9 17

p 0.001 0.005 0.149 0.071

Biomarkers

Ki67 Lo 42 21 38 25 39 24 39 24

Hi 64 88 68 84 61 82 76 67

p 0.001 0.038 0.011 0.244

HER2 Neg 102 84 101 85 94 88 105 77

Pos 4 26 5 25 6 19 10 15

p <0.001 <0.001 0.009 0.095

EGFR Neg 106 105 105 106 98 104 114 88

Pos 1 4 3 2 2 3 3 2

p 0.369 1.00 1.00 1.00

ER Neg 14 37 14 37 19 27 19 27

Pos 91 72 91 72 81 78 96 63

p <0.001 <0.001 0.249 0.022

PR Neg 17 36 20 33 23 27 20 30

Pos 88 72 87 73 77 77 95 59

p 0.004 0.036 0.623 0.007

c-kit Neg 98 99 97 100 92 98 108 82

Pos 10 10 11 9 9 9 9 9

p 0.983 0.623 0.898 0.572

P63 Neg 103 93 99 97 88 101 105 84

Pos 5 16 9 12 12 7 11 8

p 0.012 0.505 0.168 0.845

CK5/6 Neg 83 89 99 73 88 90 100 103

Pos 18 18 18 18 20 19 7 7

p 0.849 0.406 0.835 0.957

CK14 Neg 100 103 102 101 96 99 114 81

Pos 7 7 6 8 4 9 3 10

p 0.957 0.593 0.197 0.019

PDL1ic Neg 83 62 84 61 76 65 85 56

Pos 24 48 23 49 25 43 32 36

p 0.001 <0.001 0.020 0.071

PDL1T Neg 87 90 86 91 81 88 96 73

Pos 9 15 11 13 11 12 11 12

p 0.284 0.800 0.993 0.416
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Table 2. Clinico-pathological and biomarker correlations of CD163 and CD206 TAM distance from
tumor nest.

Features sCD163 sCD206

LO HI LO HI

Clinico-pathological features

Age Mean 49.4 47.9 47.5 49.4

SD 10.1 10.1 10.0 10.3

Median 48.0 46.0 45.0 48.0

IQR 42–48 41–54 40–53 43–56

Range 30–75 29–82 29–75 29–82

p 0.208 0.121

Size Mean 2.33 1.81 2.15 2.02

SD 1.40 0.91 1.34 1.10

Median 1.90 1.70 1.80 1.80

IQR 1.4–2.9 1.3–2.2 1.2–2.6 1.4–2.3

Range 0.2–7.6 0.1–5.6 0.2–7.0 0.1–7.6

p 0.010 0.964

TIL Low 84 86 84 84

High (>20) 24 23 23 24

p 0.841 0.897

Fibrotic focus No 94 89 93 89

Yes 14 20 14 19

p 0.275 0.359

Necrosis No 79 79 84 74

Yes 29 30 23 34

p 0.912 0.097

Apocrine No 100 95 99 95

Yes 8 14 8 13

p 0.185 0.260

Grade 1 5 10 10 4

2 54 64 57 63

3 49 35 40 41

p 0.028 0.438

LVI No 95 98 95 95

Yes 13 10 11 13

p 0.508 0.700

LN met No 61 55 65 52

Yes 45 50 39 53

p 0.451 0.059

Subtype Lum A 24 25 28 22

Lum B 62 59 61 58

HER2-OE 10 10 6 12

TNBC 12 13 10 16



Cancers 2024, 16, 2147 9 of 16

Table 2. Cont.

Features sCD163 sCD206

LO HI LO HI

p 0.988 0.247

Biomarkers

Ki67 Lo 29 33 32 31

Hi 78 74 72 77

p 0.547 0.742

HER2 Neg 90 95 94 92

Pos 17 13 11 16

p 0.415 0.341

EGFR Neg 106 104 105 103

Pos 1 4 0 5

p 0.369 0.060

ER Neg 25 25 18 31

Pos 82 81 86 76

p 0.970 0.045

PR Neg 24 27 17 33

Pos 81 80 87 73

p 0.686 0.012

c-kit Neg 98 98 98 97

Pos 9 11 9 10

p 0.670 0.810

P63 Neg 94 100 100 94

Pos 14 8 7 13

p 0.177 0.159

CK5/6 Neg 91 88 94 84

Pos 16 21 13 23

p 0.400 0.068

CK14 Neg 100 102 100 100

Pos 7 7 6 8

p 0.971 0.605

PDL1ic Neg 69 75 73 70

Pos 38 34 34 38

p 0.501 0.596

PDL1T Neg 89 87 90 83

Pos 14 10 9 16

p 0.475 0.134

sCD163
density Lo 46 61 51 52

Hi 61 47 51 55

p 0.048 0.839
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Table 2. Cont.

Features sCD163 sCD206

LO HI LO HI

tCD163
density Lo 40 67 45 58

Hi 67 41 57 49

p <0.001 0.145

sCD206
density Lo 49 48 49 50

Hi 52 53 56 51

p 0.888 0.684

tCD206
density Lo 45 68 51 63

Hi 56 33 54 38

p 0.001 0.045

3.4. Survival Analysis

Follow-up data were available for 163 patients, with a median follow-up time of
110 months (ranging from 1–143 months). Among them, there were 23 death/relapses
(14.1%). Kaplan–Meier analyses revealed that the densities of sCD206, sCD163, tCD206,
and tCD163 TAMs or the distance of sCD163/sCD206 to the tumor nest on their own
showed no correlations with prognosis in the overall cohort or ER− and ER+ subgroups
(Supplementary Figures S7 and S8). Patients were further classified into four groups
according to TAM density in stromal and tumoral compartments. Differences in DFS were
found for CD163 TAM subgroups (chi-square = 10.853, p = 0.013). Particularly, the small
subset of patients who had low sCD163 but high tCD163 had the worst DFS. A similar
trend was also noted in OS (Figure 2 and Supplementary Figure S9). Next, we also explored
the prognostic value of relative proportion of different TAMs and TILs. The ratios of TAM
density to sTIL were evaluated, and the median score was used as a cutoff. High relative
scores of sCD163, tCD163 and sCD206 to sTIL were significantly associated with worse
OS (chi-square = 8.923, p = 0.003; chi-square = 6.604, p = 0.010; and chi-square = 3.974,
p = 0.046, respectively) (Figure 3). Significant differences for CD163 TAM/sTIL were also
observed in both ER+ and ER- subsets, particularly for OS (Supplementary Figure S10).
Multivariate cox regression analysis revealed that the relative score of sCD163 to sTIL was
a poor independent prognostic feature for OS (HR = 3.477, p = 0.018). A trend was observed
in DFS (HR = 1.671, p = 0.058) (Table 3).

Table 3. Multivariate Cox regression on DFS and OS.

Feature * HR Lower 95% CI Upper 95% CI p-Value

OS

pN 2.866 1.602 5.127 <0.001

sCD163/TIL 3.477 1.238 9.767 0.018

DFS

Tumor Size 1.588 1.077 2.342 0.020

pN 2.111 1.227 3.632 0.007

sCD163/TIL 1.671 0.983 2.840 0.058
* Features included at the initial step: Age, tumor size, grade, pT, pN, ER, PR, HER2, Ki67 status, TIL status,
sCD163-tCD163 subgroups, CD206/TIL (median), sCD163/TIL (median), tCD206/TIL (median), tCD163/TIL
(median). Backward stepwise wald method was used and only the last step was shown.
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Figure 3. Kaplan–Meier analysis of DFS and OS according to the TAM density in relation to sTIL.
Patients were stratified into two subgroup based on the median TAM density/sTIL ratio. High
stromal TAM/sTIL showed significantly worse. Difference in survival curves were assessed with a
log-rank test.

4. Discussion

TAMs represent a diverse group of immune cells that infiltrate the tumor microenvi-
ronment. Different markers, including CD206 and CD163, were used to identify TAMs,
and only very few studies have compared the clinical values of these markers. In this
study, we compared the features of CD163 and CD206 TAMs in breast cancers. While
both TAMs shared some similarities in their clinico-pathological associations, such as the
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association with larger tumor size and high levels of TILs, differences were also observed.
Only CD163 TAMs were associated with a higher grade, different molecular subtypes,
and hormonal receptor negativity. For CD206 TAMs, their stromal density showed an
association with nodal metastasis. The two TAMs also appeared to be located differently.
CD163 TAMs showed a strong correlation between their stromal and tumoral locations and
infiltrated into the tumor nest. In contrast, CD206 TAMs tend to be located in the stroma.
The lack of CD206 TAMs present within the tumor body in breast cancers was also reported
previously [27]. A similar preferential location of these two TAMs has been demonstrated
in gastric cancers [20]. All these suggest that CD163 and CD206 identified distinct TAMs.
This TAM heterogeneity could stem from their plasticity in response to signals from their
microenvironment [28]. A co-culture of CD206-positive TAMs isolated from tumor stroma
with tumor cells resulted in the loss of CD206-positive TAM populations [29]. On the
contrary, factors secreted by the high-grade tumor cells have been shown to skew TAM
differentiation into CD163 TAMs [30]. TAMs occupy distinct spatial niches within the tumor
that influence their functions [31,32]. As scavenger receptors, CD163 TAMs function in
clear apoptotic debris and engage in endocytosis [33]. They appeared to be more enriched
in cases with necrosis.

In terms of prognostication, similar to the results from the other report on digital
TAM analysis [16], TAM density alone did not seem to be informative. In addition to
TAM density, we assessed also spatial localization. A significantly worse survival rate was
observed in patients with low-sCD163 but high-tCD163 TAMs, but not for CD206 TAMs
and patients with high sCD163 in both stromal and tumor regions. The intra-epithelial
localization of TAMs in other cancers was also correlated with a poor survival [34,35].
Nonetheless, a high level of intra-epithelial TAMs may not always be associated with a
poor outcome. Cases with both high tCD163 and sCD163 in our cohort did not have a
worse outcome. Of note, these cases showed a higher level of sTIL. sTIL may counteract
the adverse impact of the CD163 TAM. In fact, the prognostic value of the CD163 TAM can
be refined by their relative proportion to sTILs, and it was shown to be an independent
prognostic feature in the current study. The prognostic association with TILs agreed with
the immunosuppressive role(s) of CD163 [36]. Consistently, their associations with high
environmental gene signatures of suppressive cytokines were reported [20]. Their clinical
impact in a neoadjuvant setting has been shown to depend on their spatial association
with CD8 [37]. Depending on the environmental stimuli, TAMs could exhibit functional
and phenotypic diversity [38]. Therefore, their anatomical localization and interactions
with other immune cell types in the TME need to be taken into consideration in their
outcome associations.

We did not find the prognostic impact of CD206 TAMs, in contrast to previous stud-
ies [13,15]. The precise composition of the immune component in the TME may affect its
prognostic impact. Also, there could be a diversity in CD206 TAMs. Notably, emerging
data have refuted the assumption that CD206 TAMs are strictly tumor-promoting. Specific
macrophage subsets co-expressing CD206 and SERPINH1 or MORC4 were connected
with positive patient prognosis in breast cancer [8]. In pre-clinical studies, CD206 TAMs
were found to be the primary source of CXCL9—the well-established chemoattractant
for CXCR3-expessing NK and CD8 T cells, driving anti-tumor immunity [39]. CD206
TAMs were also shown to have effective antigen cross-presentation capabilities, leading
to tumor antigen-specific CD8 T-cell activation [40]. All these results question the validity
of CD206 as a marker for protumoral TAMs. TAM-targeting strategies are being tested in
cancer therapy [41]. The dissection of TAM diversity and their relative roles in tumors may
provide information on strategies to selectively target the protumoral subset. Our study
compared the clinical relevance of these two TAM markers, which may provide a rationale
for selective macrophage-subset targeting in patients with breast cancer. Caution should be
taken in the development of CD206 TAM targeting [42].

Limitations of our study included the small number of cases in subgroups of breast
cancer, making it difficult to draw conclusive results from the subtype analysis. sTIL was
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evaluated based on standard guidelines using H&E slides. The specific subtypes of sTIL in
the TME have not been considered. It is not clear if the differences in the sTIL composition
could affect the prognostic value of the sCD163/sTIL ratio. The generalizability of the
findings can be improved with the evaluation of an independent validation cohort, which
was absent in the current analysis. Instead of analyzing the entire section, only selected ROIs
in the same areas were used. Although both TAMs shared similar hotspot distribution,
there could still be some minor discrepancies in the minority of cases. Moreover, ROI
selection could introduce bias to the results.

5. Conclusions

In summary, this study revealed the heterogeneity among TAMs in breast cancers,
as identified by CD163 and CD206. The two subgroups of TAMs showed distinct clinico-
pathologic and prognostic features. CD163 TAMs were more prevalent in high-grade
tumors and intra-tumoral locations compared to CD206 TAMs. Furthermore, we have
also underscored the significance of the spatial distribution of CD163 TAMs and their
interactions with TILs in breast cancer prognosis. In particular, the CD163 TAM-to-sTIL
score was determined to be an independent feature in breast cancer survival. Conversely,
CD206 TAMs may not have an unfavorable prognostic impact. Further analysis with a
larger cohort will be required to validate the current findings in overall breast cancer as
well as breast cancer subsets. More investigations, such as those using multiplex imaging,
are necessary to better characterize the different TIL populations in relation to the two
TAMs, to better define the spatial expression of the two TAMs’ populations and understand
the underlying mechanism modulating the TME in breast cancer.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers16112147/s1. Figure S1. Schematic diagram of digital
analysis for CD163 and CD206 staining (A). After IHC staining of CD206 and CD163 (a), the slides
were digitalized (b). Annotation of tumor regions and selection of ROI on the scanned image
were performed by pathologists (c). Image analysis including cell detection and immunostain
quantification was performed using QuPath. Positive cells will be detected based on the optical
density of DAB (d). The coordinates of all the detected cells were extracted (e). The spatial and density
measurements were further analyzed using QuPath (f). (B) Representative example on ROI selection
and cell detection using QuPath. Five ROIs, including two hotspot stromal regions, two hotspot tumor
regions, and one representative stromal-tumor interface, were selected and annotated on the digital
images by pathologists (a). The image of immunostaining of TAM (DAB; brown chromogen) (b) and
the detection results (TAM: yellow, negative: purple) (c) were shown. Inserts showed the magnified
view. Figure S2. Representative staining of CD163 and the corresponding staining of CD206 from
same area at intra-tumor region (100x). Lower panels showed a high magnification (400x) of the
TAM staining in the stromal regions. Figure S3. The density of CD163 and CD206 TAM in different
tumor regions. (A) Box-and-whisker plot showing the density of CD163 and CD206 at stromal and
tumoral regions (‘x’ indicates the mean value and the line shows the median value). CD163 and
CD206 TAM were categorized as high and low subgroups. (B) The 100% stacked bar chart showed the
pair-wise comparison between the stromal and tumoral density of CD163 and CD206 TAM according
to the low and high subgroups. (C) The stacked bar chart showed the pair-wise comparison between
the CD163 and CD206 TAM subgroups at stromal and tumoral regions. Figure S4. The association
of clinico-pathological features and biomarkers with TAM density and distance from tumor nest.
The 100% stacked bar chart showed the proportion of TAM density/distance from tumor low and
high subgroups according to different categories of clinico-pathological features and biomarkers.
Chi-square test was used for statistical analysis. Figure S5. The distance of sCD163 and sCD206 TAM
from tumor nest. Box-and-whisker plot of the average minimal distance of CD163 TAM and CD206
TAM for each case. (‘x’ indicates the mean value and the line shows the median value). Figure S6. The
distance of sCD163 and sCD206 TAM from tumor nest in different breast cancer subtypes. Figure S7.
Kaplan-Meier analysis according to TAM densities in stromal and tumor compartments. Figure S8.
Kaplan-Meier analysis according to stromal TAM distance from tumor nest. Figure S9. Kaplan-Meier
analysis according to grouping based on TAM density in both stromal and tumor compartments.
Figure S10. Kaplan-Meier analysis of DFS (A) and OS (B) according to the TAM density in relation to
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sTIL. Table S1. Condition for IHC staining. Table S2. Parameter setting for QuPath analysis on cell
detection and IHC scoring. Table S3. Correlation of CD163 and CD206 TAM.
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