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Simple Summary: Multiparametric MRI with radiomics features derived from T2WI and ADC
maps distinguished non-tumor regions from significant cancer and predicted the Gleason score
using support vector machine (SVM) and random forest (RF) classification methods with tuned
hyperparameters, as well as recursive feature elimination (RFE) and the least absolute shrinkage and
selection operator (LASSO) feature selection methods. Successful application of a novel approach
to machine learning incorporating recursive feature elimination combined with random forest and
support vector classifiers allowed stratification of Gleeson scores in clinical cohorts at a sensitivity
greater than 0.91.

Abstract: We developed a novel machine-learning algorithm to augment the clinical diagnosis of
prostate cancer utilizing first and second-order texture analysis metrics in a novel application of
machine-learning radiomics analysis. We successfully discriminated between significant prostate
cancers versus non-tumor regions and provided accurate prediction between Gleason score cohorts
with statistical sensitivity of 0.82, 0.81 and 0.91 in three separate pathology classifications. Tumor
heterogeneity and prediction of the Gleason score were quantified using two feature selection
approaches and two separate classifiers with tuned hyperparameters. There was a total of 71 patients
analyzed in this study. Multiparametric MRI, incorporating T2WI and ADC maps, were used to derive
radiomics features. Recursive feature elimination (RFE), the least absolute shrinkage and selection
operator (LASSO), and two classification approaches, incorporating a support vector machine (SVM)
(with randomized search) and random forest (RF) (with grid search), were utilized to differentiate
between non-tumor regions and significant cancer while also predicting the Gleason score. In T2WI
images, the RFE feature selection approach combined with RF and SVM classifiers outperformed
LASSO with SVM and RF classifiers. The best performance was achieved by combining LASSO and
SVM into a model that used both T2WI and ADC images. This model had an area under the curve
(AUC) of 0.91. Radiomic features computed from ADC and T2WI images were used to predict three
groups of Gleason score using two kinds of feature selection methods (RFE and LASSO), RF and
SVM classifier models with tuned hyperparameters. Using combined sequences (T2WI and ADC
map images) and combined radiomics (1st and GLCM features), LASSO, with a feature selection
method with RF, was able to predict G3 with the highest sensitivity at a level AUC of 0.92. To predict
G3 for single sequence (T2WI images) using GLCM features, LASSO with SVM achieved the highest
sensitivity with an AUC of 0.92.
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1. Introduction

Prostate cancer is the second predominant male tumor globally, with 1,276,106 new
cases and 358,989 deaths in 2018 [1,2]. That is 7.1% of new cases and 3.8% of all male cancer
mortality in 2018 [3]. Globally, the median age for detection of prostate cancer is 66 years
old, and both the recurrence and fatality rates rise with age [4,5]. Early detection of tumors
increases the chances of being cured because treatment works even if the cancer is localized.

Multiparametric magnetic resonance imaging (mp-MRI) has been used extensively
in prostate cancer (PCa) scanning, identification, and grading throughout the last few
decades [6,7]. It is possible to obtain high-resolution anatomical and functional images
using the mp-MRI imaging technique [8]. T1 weighted images (T1WI) and T2 weighted
images (T2WI) are anatomic sequences used in multiparametric prostate MRI. For example,
the zonal structure and tumor foci cannot be identified using T1WI. It is possible to employ
T1WI to discover biopsy-associated haemorrhage, which can interfere with the capacity of
other PCa MRI techniques to provide accurate diagnoses. T2WI provides the best soft-tissue
imaging for malignancies, zonal morphology, seminal vesicle (SV), anterior fibromuscular
stroma (AFS), neurovascular bundles, and the capsule [9]. Diffusion-weighted imaging
(DWI), Magnetic resonance spectroscopic imaging (MRSI), and Dynamic contrast-enhanced
(DCE) are functional MRI sequences [10]. The DWI technique was developed and imple-
mented to detect an acute cerebrovascular stroke. DWI compares water diffusion in soft
tissues and free solution to produce image contrast. When a PCa grows, there is a growth
in cellularity and degradation of ductal architecture, which limits fluid flow through the
prostate [11]. The b-value and Apparent Diffusion Coefficient (ADC) are the two types
of images used for analysis in DWI. Tumor diagnostic outcome is improved by utilizing
b-values between 1400 and 2000 [12–14]. Clinical interpretation from DWI is subjective;
nevertheless, water molecules’ limitations may be measured quantitatively. Interpretation
is performed with ADC maps and ADC measurements (mm2/s). and ADC levels and
Gleason scores are proportionally related [15,16]. By using a machine learning approach
with clinically relevant radiomics metrics as inputs we aim to improve the interpretation
and augment clinical diagnosis.

Radiomics can generate (200+) statistical variables from medical images automatically.
Patient anatomy can significantly vary in shape and texture depending on the imaging
technique used [17]. Using automated or semi-automated radiomic metrics we could
improve diagnostic accuracy. Textural analysis has been used to extract tissue information
from medical images since the 1980s [18,19]. It recognizes that intratumor heterogeneity
has significant implications for cancer research, which could be represented by tumors’
texture [20,21]. Radiomics relies heavily on texture analysis (TA), a necessary part of the
process [21,22]. Radiomics is the technique used to collect essential and extensive data
from clinical images and give variables that can be used to assist in detection, prognostic,
and treatment response [22–27]. When developing a radiomics model, selecting the best
Machine Learning (ML) model is key and different ML approaches may perform differently
when applied to different tissues [27–33].

Training is used to derive many of the algorithm parameters used by machine learning
(ML), and most contemporary ML algorithms must tune parameters to improve feature
identification referred to as Hyperparameters [34–36]. The hyperparameters are fine-tuned
to optimize an algorithm for a specific learning task [37]. Hyperparameter optimization
usually employs Grid and Random Search techniques [38]. Grid Search is a method using
all possible permutations of hyperparameters. The training data and the number of layers
can be adjusted in a grid search as hyperparameters [39]. In contrast to a grid search,
randomized search does not perform a comprehensive investigation of the hyperparameter
space. Nonetheless, it permits us to investigate a wider variety of hyperparameter value
settings more effectively and affordably [39]. Weerts et al. [37] stated that an increased
tuning risk and relative tuning risk were observed from the random forest’s max features
and SVM’s gamma and C, suggesting that it is essential to tune these hyperparameters. In
the domain of prostate cancer classification and grading, many prior studies have applied
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machine learning techniques with default hyperparameters, often without extensive hy-
perparameter optimization. In contrast, our research distinguishes itself by prioritizing
hyperparameter tuning. This deliberate optimization process enhances the precision and
reliability of our ML models, contributing to great precision in clinically relevant results.
Our work aims to advance the field by systematically refining the parameters that underpin
the diagnosis of prostate cancer.

The study aimed to use different classifiers (with tuned hyperparameters) and two
feature selection methods (i.e., to find the best for classification and prediction). Multi-
parametric MRI-derived radiomics features were used (including T2WI and ADC map
images). First, to quantify tumor heterogeneity between significant versus non-tumor
regions. Second, to predict Gleason scores (i.e., G2 = 3 + 4; G3 = 4 + 3; and G4 = 4 + 4 = 8,
3 + 5 = 8 (G4), 9 (G5) or 10 (G5)) for significant prostate cancer.

2. Materials and Methods
2.1. Patient Group

This study utilized a dataset from The Cancer Imaging Archive (TCIA) funded through
the SPIE, NCI/NIH, AAPM, and Radboud University [40]. The population set used in
this work consists of 99 patients, including T2WI and Apparent Diffusion Coefficient map
(ADC) series from the open-source, freely released SPIE-AAPM-NCI PROSTATEx-2 [34].
the total number of patients (n = 99); received a 3T mp-MRI using a body coil. n = 29 The
patients had a non-significant tumor at (3 + 3) Gleason grade excluded; (e) n = 71 patients
had a significant tumor (≥3 + 4) at Gleason grade (GS).

Images were obtained using a Siemens 3T MRI techniques (MAGNETOM Skyra,
Siemens Healthcare, Erlangen, Germany) utilising a pelvic phased-array coil. The axial
T2WI and ADC maps were employed for imaging assessment. The current clinical practice
uses a T2WI and a minimum of one if not two functional approaches (e.g., DCE, and
spectroscopic) are used to identify prostate cancer [8,41,42]. For precise localization, all
biopsies were done under MR monitoring. A pathologist then rated biopsy specimens,
which served as the ground truth. T2WI was obtained using a turbo spin echo sequence
with 0.5 mm resolution and 3.6 mm slice thickness. The Diffusion weighted images were
obtained using a single-shot echo-planar imaging procedure utilizing 2 mm in-plane
resolution, 3.6 mm slice thickness, and three-dimensional diffusion encoding gradients.
The scanner program generated the ADC map from three b-values (50, 400, and 800 s/mm2).
Table 1 contains a description of the mp-MRI acquisition settings. The images were collected
with no endorectal coil in line with PI-RADS recommendations for prostate MRI images [41].

Table 1. Multiparametric MRI sequence parameters.

Sequence Parameter T2WI ADC

Repetition time (ms) 5560 2700
Echo time (ms) 104 63
Flip angle (degrees) 160 90
Bandwidth (Hz/px) 200 1500
Phase FoV% 100 65.625
Slice thickness (mm) 3 3
Slice gap (mm) 3 3
Average 4 8
Phase encoding direction Row Row
Number of acquisitions 1 1

2.2. Segmentation

Regions of interest (ROIs) for significant cancer were segmented manually from T2WI,
and ADC images predefined ROIs from PROSTATEx-2 Challenge that is available on
TCIA [40,43]. The LIFEx package was used for the segmentation process [20]. Non-tumor
regions cancers segmented depending on the same region for significant cancer (in different
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regions) assessed for every subject’s lesion. Figure 1 illustrates a typical malignancy cancer
segmentation on mp-MRI.
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of Interest (ROIs) that correspond to cancer locations on histology slides and MRI, specifically T2
weighted images and Apparent Diffusion Coefficient map images from 71 subjects; (ii) extracting both
1st and 2nd orders features; and (iii) conducting ROC-AUC analysis, which includes the generation
of ROC curves.

2.3. Feature Extraction

Pre-processing, including intensity normalization and spatial resampling, was con-
ducted for all mp-MRI images using LIFEx to derive radiomics features. The dimensions
were rescaled to 0.5 × 0.5 × 3 mm, preserving the dataset’s in-plane and inter-plane resolu-
tions. The radiomics features uniformity achieved using grey-level discretization defined
between 1 and 128 bits/pixel. Absolute resampling between the minimum and maximum
fixed bounds for all ROIs used for intensity resizing parameters [20]. Figure 2 demonstrates
the analysis procedures. For each ROI, (a) 5 features were computed from the histogram,
and (b) Six features were computed from grey-level features co-occurrence, leading to
11 features per ROI for each patient.
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2.4. Feature Selection

Feature selection refers to the process of selecting essential features in predictive
models. Irrelevant features can degrade the prediction model by contributing little to it [6].
Model overfitting challenges arise when there are too numerous features in the algorithm.
A significant feature containing fewer numbers, but high precision can be minimised by
determining the size of the feature set through the feature selection approach [44]. It is
popular to use recursive feature elimination (RFE) [31,45–48] and to select the best features
from the dataset. The least absolute shrinkage and selection operator (LASSO) and RFE
were employed in this study for feature selection due to their high performance and
widespread use. The Python environment with scikit-learn (version 1.0.2) was used to
implement these feature selection algorithms.

Classification and Prediction

Both support vector machine (SVM) with hyperparameter tuning via grid search [45,48–50]
and random forest (RF) with hyperparameter tuning via a randomized search [30,51] were
used to achieve optimal and fit classification performance for significant cancer versus non-
tumor regions and tuning hyper using the scikit-learn library from Python (1.0.2). These
classification techniques were selected and assessed because they have been extensively
used to identify different organs, as mentioned in previous studies [28,45,47,52]. To identify
regions of significant cancer we employed radiomics parameters based on statistical features
from both the 1st and 2nd order, derived from the Gray-Level Co-occurrence Matrix
(GLCM). Our approach involved utilizing two ML classifiers: the Support Vector Machine
algorithm and RF algorithm. For the RF model, we conducted a randomized search to fine-
tune its hyperparameters, which encompassed factors such as the number of estimators,
criterion, max depth, and max features. In contrast, for the SVM model, we engaged in
a grid search method to optimize hyperparameters such as C, gamma, and the choice of
kernel function.

To assess the effectiveness and dependability of these models, we carried out a K-fold
cross-validation (CV) procedure with K adjusted to 5. The meticulous validation process
ensured that the models we developed were able to accurately differentiate between areas
with significant cancer and non-tumor regions based on radiomics statistics.

In order to predict outcomes within GS cohorts, radiomics parameters, specifically
those relating to the first and second orders of the GLCM, were utilised as feed for a RF
classifier with randomized search as well as an SVM classifier with hyperparameter tuning
through grid search. The intention was to demonstrate the statistical significance of these
parameters. We trained the Random Forest model using a randomized search method with
various hyperparameter settings, including number estimators, criterion, max depth, and
max features.
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The SVM model with grid search trained with different hyperparameter settings
(including c, gamma, and kernel). Then the models were computed using starfield K-fold
cross-validation (k = 5). The RF and SVM-based tuning hyperparameter classifiers were
interpreted using a binary classification method, with G2 vs. rest, G3 versus rest, and G4
versus rest employed to illustrate the AUC-ROC. Because of class imbalance, a classifier’s
performance may suffer if all of the datasets are assigned to the majority class, leading to
high accuracy in classification but low specificity or sensitivity [53]. Several ways to deal
with this issue are through oversampling [54] and sample weighting [55]. To clarify the
operation of one vs rest worked, we classified G2 from G3 and G4 using ROC-AUC as a
binary classification. The G3 and G4 areas under curves were calculated utilizing the same
approach (one vs. rest). This study used Python’s scikit-learn (v. 1.0.2) library to verify
model validity using a five-fold cross-validation approach.

2.5. Statistical Analysis

Each radiomics parameter was tested for significance using the Kruskal-Wallis tech-
nique. Radiomic features and PCa patients’ significant cancer versus non-tumor regions
were correlated using Spearman correlation. Statistical significance was determined using
the Holm-Bonferroni method at a p-value of <0.05 [56].

Using the Kruskal-Wallis test, each radiomics feature was looked at again to see
if it was significant in the GS cohorts. The value of the correlation between radiomics
characteristics and the GS groups for prostate cancer subjects was determined using the
Spearman correlation, which was employed to measure the correlation value. Statistical
significance was determined using the Holm-Bonferroni method at a p-value of <0.05 [56].

3. Result
3.1. Patients

This study used prostate cancer subjects from the SPIE, NCI/NIH, and AAPM
PROSTATEx-2 Cancer Imaging Archive (TCIA). To reflect the GS, subjects were categorized
as follows: 39 subjects, G2 = 3 + 4; 18 subjects, G3 = 4 + 3; and G4 = 4 + 4 = 8; 13 subjects,
3 + 5 = 8, 9 (G5), or 10 (G5) more accurately.

3.2. Relation between Radiomic Attributes and Significant versus Non-Tumor Regions

Each prostate cancer patient’s T2WI and ADC map images were used to extract
radiomics features. The Kruskal-Wallis approach was used to ascertain if any feature from
radiomics had statistical significance to make a comparison between significant tumor
versus non-tumor regions. The radiomics features correlated with significant cancer versus
nontumor regions using Spearman correlation.

In the Kruskal-Wallis significance test, eleven features were statistically significant:
skewness, kurtosis, entropylog10, entropylog2, uniformity, jointentropylog10, jointen-
tropylog2, correlation, contrast, dissimilarity, and angular second moment after applying
the Holm-Bonferroni correction (Table 2). The Spearman correlation among radiomics
attributes in significant cancer versus non-tumor regions reveals strong and significant
correlation values of 0.31, 0.30, −0.33, −0.23, 0.37, 0.46, 0.56, 0.56, −0.25, 0.27, 0.26, 0.76,
0.80, and 0.37 for skewness, kurtosis, entropylog10, entropylog2, uniformity, jointentropy-
log10, jointentropylog2, angular second moment, contrast, dissimilarity, and correlation,
respectively (Table 3).
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Table 2. Collating of radiomics parameters of significant cancer versus non-tumor regions.

Feature
Median (Interquartile 25th, 50th, and 75th Percentiles)

p
Significant Cancer Nontumor Regions

ADC
1st order
Skewness 0.37 (0.02, 0.37, 0.69) 0.03 (−0.29, 0.03, 0.47) 0.001
Kurtosis −0.49 (−0.85, −0.49, 0.29) −0.54 (−0.86, −0.54, −0.12) 0.52

Entropylog1o 1.14 (1.09, 1.14, 1.19) 1.09 (1.05, 1.09, 1.14) <0.001
Entropylog2 3.80 (3.62, 3.80, 3.97) 3.62 (3.50, 3.62, 3.80) <0.001
Uniformity 0.07 (0.06, 0.07, 0.08) 0.08 (0.07, 0.08, 0.10) <0.001

GLCM
JointEntropyLog2 6.18 (5.85, 6.18, 6.45) 6.05(5.83, 6.05, 6.21) 0.03

JointEntropyLog10 1.86 (1.79, 1.86, 1.94) 1.82(1.75, 1.82, 1.87) 0.006
Angular Second Moment 0.01 (0.01, 0.1, 0.01) 0.016 (0.014, 0.016, 0.019) 0.006

Contrast 145.64 (107.88, 145.64, 201.96) 84.02 (59.85, 84.02, 122.08) <0.001
Dissimilarity 9.30 (8.33, 930, 11.36) 7.51 (6.19, 7.51, 8.61) <0.001
Correlation 0.18 (0.06, 0.18, 0.35) 0.23 (0.09, 0.23, 0.39) 0.37

T2WI
1st order
Skewness 0.07 (−0.20, 0.07, 0.32) 0.15 (−0.20, 0.15, 0.43) 0.50
Kurtosis −0.18 (−0.55, −0.018, 0.43) −0.34 (−0.59, −0.34, 0.11) 0.18

Entropylog1o 1.30 (1.23, 1.30, 1.41) 1.06 (0.97, 1.06, 1.16) <0.001
Entropylog2 4.34 (4.11, 4.34, 4.69) 3.52 (3.24, 3.52, 3.85) <0.001
Uniformity 0.05 (0.04, 0.05, 0.06) 0.09 (0.07, 0.09, 0.12) <0.001

GLCM
JointEntropyLog2 7.50 (6.89, 7.50, 8.16) 6.45 (5.95, 6.45, 7.12) <0.001

JointEntropyLog10 2.31 (2.12, 2.31, 2.50) 1.96 (1.79, 1.96, 2.14) <0.001
Angular Second Moment 0.006 (0.004, 0.006, 0.01) 0.01 (0.01, 0.01, 0.02) <0.001

Contrast 92.42 (64.22, 92.42, 132.48) 13.36 (10.08, 13.36, 20.47) <0.001
Dissimilarity 7.62 (6.36, 7.62, 9.07) 2.88 (2.46, 2.88, 3.60) <0.001
Correlation 0.25 (0.13, 0.25, 0.35) 0.38 (0.24, 0.38, 0.50) <0.001

Table 3. Features related with the significant malignancy and the non-tumor regions are consid-
ered correlated.

Feature r p

ADC
1st order
Skewness 0.315 <0.001

Entropylog1o 0.305 <0.001
Entropylog2 0.305 <0.001
Uniformity −0.331 <0.001

GLCM
Angular Second Moment −0.236 0.005

Contrast 0.376 <0.001
Dissimilarity 0.468 <0.001

T2WI
1st order

Entropylog1o 0.561 <0.001
Entropylog2 0.561 <0.001
Uniformity −0.254 0.002

GLCM
JointEntropyLog2 0.270 0.001

JointEntropyLog10 0.269 0.001
Contrast 0.765 <0.001

Dissimilarity 0.809 <0.001
Correlation 0.370 <0.001
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3.3. Classifiers and Feature Selection Performance

The radiomics features were fed into a model that used RF and SVM classifiers with
tuned hyperparameters to distinguish between significant cancer versus non-tumor re-
gions in 71 PCa patients. For T2WI images, the RFE combined RF Classification algorithm
obtained the maximum AUC of 0.95 ± 0.01 (with 5-fold CV). Furthermore, the RFE com-
bined the SVM classification algorithm obtained the second maximum AUC of 0.94 ± 0.01
(with 5-fold cross-validation). Nevertheless, the feature selection technique LASSO using
support vector machine classifier obtained the maximum AUC of 0.93 ± 0.01 (with 5-fold
cross-validation). Furthermore, the selection technique LASSO combined random forest
obtained the second maximum AUC of 0.88 ± 0.02 (with 5-fold CV). The LASSO combined
SVM Classification algorithm obtained the maximum AUC of 0.89 ± 0.00 (with 5-fold CV)
for ADC images.

The feature selection approach LASSO combined RF classification algorithm also
obtained the second maximum AUC of 0.89 ± 0.02 (with 5-fold CV). Nevertheless, the
selection approach recursive feature elimination combined random forest classification
algorithm obtained the maximum AUC of 0.85 ± 0.02 (with 5-fold cross-validation). Fur-
thermore, the RFE combined SVM selection technique obtained the second maximum AUC
of 0.84 ± 0.01 (with 5-fold CV). We selected the most appropriate feature selection tech-
nique and classification algorithm, Figures 2 and 3 depict the significant receiver operating
characteristic area under curves (ROC-AUC) for T2WI and ADC map images, respectively.
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For combined sequences (T2WI and ADC map images), the LASSO combined SVM
Classification algorithm obtained the maximum AUC of 0.91. RFE combined with the
RF classification algorithm obtained the second maximum AUC of 0.88. For combined
sequences (T2WI and ADC map images), the RFE combined SVM Classification algorithm
obtained an AUC of 0.81and LASSO combined RF classification algorithm obtained an
AUC of 0.84.

3.4. Relationship between GS and Radiomics Attributes

The Kruskal-Wallis approach was used to ascertain if any feature from the radiomics
aspect had statistical significance to make comparisons between the GS groups after retriev-
ing radiomics features from T2WI and ADC map images of every prostate cancer subject.
The radiomics features and GS cohorts were correlated using Spearman’s correlation.

The Kruskal-Wallis test showed that the three GS cohorts (G2, G3, and G4) were
statistically different in uniformity (Table 4). After applying the Holm-Bonferroni correction,
no other characteristics were significantly different between GS groups. The correlation
coefficients for entropylog2, entropylog10, uniformity and the angular second moment are
0.23, 0.23, −0.24, and −0.26. These numbers have a low correlation (Table 5).
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Table 4. Collating of radiomics parameters of PCa that are related with the GS.

Feature
Gleason Score Median (Interquartile 25th, 50th, and 75th Percentiles)

p
G2 G3 G4

ADC
1st order
Skewness 0.30 (−0.01, 0.30, 0.58) 0.60 (−0.12, 0.60, 1.24) 0.39 (0.10, 0.39, 0.75) 0.92
Kurtosis −0.49 (−0.87, −0.49, 0.26) −0.38 (−0.78, −0.38, 1.24) −0.34 (−0.90, −0.34, 0.49) 0.81
Entropylog1o 1.12 (1.08, 1.12, 1.16) 1.15 (1.09, 1.15, 1.21) 1.16 (1.09, 1.16, 1.22) 0.03
Entropylog2 3.75 (3.61, 3.75, 3.87) 3.83 (3.62, 3.83, 4.03) 3.88 (3.64, 3.88, 3.06) 0.03
Uniformity 0.07 (0.07, 0.07, 0.08) 0.07 (0.06, 0.07, 0.08) 0.07 (0.06, 0.07, 0.08) 0.01
GLCM
JointEntropyLog2 6.12 (5.87, 6.12, 6.47) 7.84 (7.42, 7.84, 8.22) 6.28 (6.11, 6.28, 6.60) 0.03
JointEntropyLog10 1.84 (1.76, 1.84, 1.94) 2.36 (2.24, 2.36, 2.54) 1.89 (1.83, 1.89, 1.98) 0.18
Angular Second
Moment 0.02 (0.01, 0.02, 0.02) 0.005 (0.0037, 0.005, 0.006) 0.01 (0.01, 0.01, 0.01) 0.05

Contrast 132.43 (101.12, 132.43, 182.76) 83.79 (64.25, 83.79, 128.98) 149.88 (107.82, 149.88, 220.89) 0.15
Dissimilarity 9.01 (8.05, 9.01, 10.79) 7.09 (6.25, 7.09, 9.03) 9.84 (8.25, 9.84, 11.96) 0.14
Correlation 0.18 (0.02, 0.18, 0.33) 0.26 (0.14, 0.26, 0.47) 0.20 (0.05, 0.20, 0.41) 0.54
T2WI
1st order
Skewness 0.03 (−0.22, 0.03, 0.29) 0.23 (−0.12, 0.23, 0.47) −0.03 (−0.26, −0.03, 0.23) 0.85
Kurtosis −0.14 (−0.47, −0.14, 0.64) 0.07 (−0.39, 0.07, 0.27) −0.62 (−0.76, −0.62, −0.31) 0.78
Entropylog1o 1.29 (1.23, 1.29, 1.38) 1.33 (1.26, 1.33, 1.44) 1.28 (1.18, 1.28, 1.38) 0.76
Entropylog2 4.31 (4.09, 4.31, 4.61) 4.42 (4.20, 4.42, 4.47) 4.28 (3.92, 4.28, 4.61) 0.76
Uniformity 0.05 (0.04, 0.05, 0.06) 0.05 (0.04, 0.05, 0.06) 0.05 (0.04, 0.05, 0.07) 0.80
GLCM
JointEntropyLog2 7.48 (6.87, 7.48, 8.16) 6.17 (5.75, 6.17, 6.41) 7.12 (6.79, 7.12, 8.23) 0.40
JointEntropyLog10 2.28 (2.11, 2.28, 2.25) 1.88 (1.76, 1.88, 2.01) 2.19 (2.06, 2.19, 2.48) 0.72
Angular Second
Moment 0.008 (0.004, 0.01, 0.01) 0.01 (0.01, 0.01, 0.02) 0.01(0.01, 001, 0.01) 0.69

Contrast 94.93 (69.61, 94.93, 138.60) 180.96 (126.01, 180.96, 280.64) 101.25 (54.24, 101.25, 125.81) 0.62
Dissimilarity 7.68 (6.58, 7.68, 9.03) 9.71 (8.62, 9.71, 13.23) 7.97 (6.06, 7.97, 9.17) 0.63
Correlation 0.24 (0.10, 0.24, 0.34) 0.24 (0.07, 0.24, 0.33) 0.22 (0.14, 0.22, 0.31) 0.78

Table 5. Features that relate to the GS are considered correlates.

Feature r p

ADC
1st order
Uniformity −0.30 0.02

3.5. Prediction of Gleason Score

The RF and SVM classifiers with tuning hyperparameters model predicted the GS
groups of 71 prostate cancer subjects using all radiomics features. For ADC map images,
using 1st order features, the LASSO combined RF Classification algorithm was an AUC
of 0.82 for G2 subjects, 0.53 for G4 subjects, and 0.50 for G3 subjects. The RFE combined
RF Classification algorithm was an AUC of 0.77 for G3 subjects, 0.71 for G3 subjects, and
0.43 for G4 subjects. The RFE combined SVM Classification algorithm was an AUC of
0.81 for G3 subjects, 0.48 for G2 subjects, and 0.25 for G4 subjects. The LASSO combined
SVM Classification algorithm was an AUC of 0.77 for G4 subjects, 0.40 for G2 subjects, and
0.22 for G4 subjects. For ADC map images, using 1st order features, the LASSO with RF
classification algorithm obtained the highest AUC of 0.82 to predict G2 (Figure 4).
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Figure 4. ROC-AUC of predicting GS of prostate cancer from RF classifier (using LASSO feature
selections) using 1st order features obtained from ADC map images.

For combined sequences (T2WI and ADC map images) and features (1st order and
GLCM), the LASSO combined RF Classification algorithm had an AUC of 0.92 for G3
subjects. For combined sequences (T2WI and ADC map images) and features (1st order and
GLCM), the RFE combined RF Classification algorithm was AUC of 0.73 for G3 subjects
and 0.61 for G4 subjects, respectively and 0.54 for G2 subjects. For combined sequences
(T2WI and ADC map images) and features (1st order and GLCM), the LASSO combined
SVM classification algorithm was an AUC of 0.78 for G4 subjects, 0.65 for G3, and 0.62
for G2 subjects. For combined sequences (T2WI and ADC map images) and features (1st
order and GLCM), the RFE combined SVM. For combined sequences (T2WI and ADC map
images), the LASSO with RF classification algorithm obtained the maximum AUC of 0.92
to predict G3 (Figure 5).
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For T2WI images, using 1st-order features, the LASSO combined RF Classification
algorithm was an AUC of 0.81 for G4 subjects, 0.67 for G3 subjects, and 0.63 for G2 subjects.
For T2WI images, using 1st order features, the LASSO with RF classification algorithm
obtained the highest AUC of 0.81 to predict G4 (Figure 6).
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4. Discussion

In PCa assessment, mp-MRI has been demonstrated to be a superior technique, al-
lowing for greater accuracy when detecting cancerous growths. That is the only imaging
approach with enough spatial resolution and soft tissue contrast to identify prostate cancer
effectively [8] without using ionising radiation. Prostate tumor aggressiveness can be eval-
uated using artificial intelligence, such as radiomics [57]. Consequently, radiomics could
be an innovative and effective method for extracting further clinically relevant data [17].
Radiomics can diagnose prostate cancer early, grade it according to Gleason, determine
therapy response, and anticipate biochemical recurrence [57].

Different clinical settings may require different ML techniques for discriminating be-
tween sacral chordoma and sacral giant cell malignancies; LASSO using a generalised linear
model (GLM) significantly outperformed [29,48]. However, when it came to scoring colon
microarray gene expression and identifying meningioma, random forest and eXtreme Gradi-
ent Boosting (XGBoost) classification methods achieved the best performance [30–32,48,58].
Wang et al. revealed that the ML approach of recursive elimination features using a sup-
port vector machine is better than other feature selection and classification methods [48].
As a result, it is essential and recommended to discover appropriate machine learning
approaches in various clinical implementations in future studies. In the context of prostate
cancer classification and grading, our research stands out due to its focus on hyperparam-
eter tuning. While many prior studies have applied machine learning techniques with
default hyperparameters, we have systematically optimized these parameters to enhance
the precision and robustness of our models. This approach has demonstrated its potential
to contribute to more accurate and clinically relevant diagnoses, highlighting the critical
role of hyperparameter optimization in medical applications of machine learning.

4.1. Significant Cancer versus Non-Tumor Regions

The Kruskal-Wallis test was utilised to examine radiomics characteristics’ relevance in
differentiating significant cancer versus non-tumor regions. Then, Spearman correlation
was performed to determine the association between radiomics attributes and significant
cancer versus non-tumor regions. Two feature selection methods (REF and LASSO) and two
classifiers (RF and SVM) with tuned hyperparameters (randomised search and grid search)
were used to create an effective ML algorithm. The analysis between radiomics features
and the significant versus non-tumor regions revealed eleven radiomics features that are
statistically significant (i.e., skewness, kurtosis, entropylog1o, entropylog2, uniformity, join-
tEntropyLog2, jointEntropyLog10, correlation, contrast, dissimilarity, and angular second
moment) with the capacity to discriminate between the significant and non-tumor regions.
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Skewness and kurtosis reflect the distribution and shape of pixel intensities, indicating
tissue composition or structural variations. Both entropylog1o and entropylog2 measure
randomness in pixel distribution, revealing spatial tumor cell distribution. Uniformity
indicates pixel intensity homogeneity, suggesting uniform tissue composition or density.
Joint entropy reflects spatial relationship randomness, correlating with tumor heterogeneity.
Correlation measures linear intensity relationships, indicating tissue structure homogeneity.
Contrast reveals local intensity variations, suggesting distinct tumor features. Dissimilarity
measures intensity differences between neighboring voxels, reflecting tissue heterogeneity.
Angular second moment quantifies intensity uniformity, indicating tissue texture homo-
geneity. Overall, these features provide insights into tumor heterogeneity by quantifying
pixel intensity distribution, texture, and spatial relationships within the tumor region.

Prostate cancer discrimination employing multiparametric MRI radiomics was de-
signed and tested in this study, and the technique consistently performed well in the
present study. As this study reveals, classification accuracy varies between ML techniques.
For T2WI, RF and SVM classifiers were observed to be very useful when used with REF
(AUC = 0.95 ± 0.01, and 0.94 ± 0.01, respectively). The second-best result was observed
using LASSO selection with SVM and RF classifiers (AUC = 0.93 ± 0.01 for T2WI, and
0.89 ± 0.00 for ADC map, respectively). That is following previous findings have shown
that this system is adequate to other feature selection techniques and classifiers in various
organs [32,45,55,57,59,60]. With support vector machines and random forests classifiers,
the AUC for the T2WI sequence was maximum with the selection approach using the REF.
Radiomic features can be used to identify the T1-2 and T3-4 stages using an unsupervised
clustering algorithm and the supervised LASSO technique, according to Sun et al. [61].
This finding might link to the fact that morphological T2WI depends on the tumor signal
for its assessment. The second-highest AUC was achieved using the selection approach of
LASSO with SVM and RF. Wang et al. achieved the best result when combining a support
vector machine with recursive feature reduction [62].

Nevertheless, the T2WI model performed better than the ADC model (AUCs of
0.95 vs. 0.89, respectively). We observed that the AUC of the classification algorithm
generated from T2WI images using RF classifiers using the feature selection technique
(RFE) was the maximum AUC of 0.95 ± 0.01. In addition, the RFE combined with the
SVM classification algorithm obtained the second maximum AUC of 0.94 ± 0.01 (with
5-fold cross-validation). Additionally, T2WI could perform a non-invasive analysis of PCa
biological growth, which might assist in classifying patients for adequate treatment. It also
provides morphologic data for cancer diagnosis, localisation, and staging [62]. SVM and RF
classifiers combined LASSO (For LASSO, AUC of 0.89 ± 0.00, 0.89 ± 0.02 for SVM, and RF
classifiers, respectively) and RFE (for RFE, AUC of 0.84 ± 0.01, 0.85 ± 0.02 for SVM, and RF
classifiers, respectively) for classification between significant cancer versus non-tumor from
ADC map images were lower when compared to T2WI images. For combined sequences
(T2WI and ADC map images), the LASSO combined SVM classification algorithms had
an AUC of 0.91. The second-highest AUC was 0.88 for the RFE with the RF classification
algorithm. Features from several sequences achieved lower performance compared to
single sequence features.

4.2. GS Prediction

The Kruskal-Wallis test assessed radiomics features’ ability to predict GS in prostate
cancer patients. Radiomics attributes and GS cohorts were then correlated using Spearman
correlation. The ML algorithm was developed using feature selection methods (REF and
LASSO) and classifiers (RF and SVM) with tuned hyperparameters (randomised search
and grid search). ADC map images revealed one radiomics feature from the uniformity
that could distinguish GS cohorts. Uniformity refers to the homogeneity of pixel intensities,
indicating a consistent tissue composition or density. This feature offers insights into
tumor heterogeneity by assessing the distribution of pixel intensities, texture variations,
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and spatial relationships within the tumor region, providing a comprehensive view of its
internal characteristics.

For combined sequences (T2WI and ADC map images), the LASSO combined RF
classification algorithm obtained the maximum AUC of 0.92 to predict G3 related to G4
(SVM-LASSO, AUC = 0.78) and G2 (RF-LASSO, AUC = 0.66). In addition, for T2WI images,
using GLCM features, the LASSO combined SVM classification algorithm obtained the
highest AUC of 0.92 to predict G3 related to G2 (RF-LASSO, AUC = 0.56) and G4 (SVM-
LASSO, AUC = 0.61). Furthermore, for ADC map images, using the 1st order features, the
LASSO with RF classification algorithm obtained the maximum AUC of 0.82 to predict G2
related to G3 (SVM-RFE, AUC = 0.81) and G4 (SVM-LASSO, AUC = 0.53). Additionally, for
T2WI images, using First-order features, the LASSO combined RF classification algorithm
obtained the maximum AUC of 0.81 to predict G4 related to G2 (SVM-LASSO and RF-RFE,
AUC = 0.66, and 0.66 respectively) and G4 (RF-RFE, AUC = 0.78).

The results we obtained agree with those of several other studies using texture analy-
sis [63,64]. Texture features, such as those of the first and second order derived from ADC
and T2WI, and sample augmentation, were demonstrated to effectively achieve reasonably
accurate classification of Gleason patterns [55]. Our findings align with employing the
Gleason score as the primary criterion for differentiating benign from significant prostate
tumors.

There are limitations identified in this research. There is a relatively low N number of
patients. A significant subject cohort (raw dataset) is required to fully validate and optimize
the performance for application in a clinical setting. We agree that there are limitations
to this work and that in clinical settings there are compromises made on mismatched
resolutions. Ideally all our data and all clinical data would be at the same resolution field
strength etc. providing uniformity in data acquisition and this step could be avoided. Due
to the nature of clinical MRI time and the time requirement of different sequences employed
this mismatch of resolutions will persist for the near future.

5. Conclusions

Within the scope of this study, the classification of prostate cancer and prediction of
GS groups using multiparametric MRI-based radiomics has been achieved. By prioritizing
hyperparameter tuning, we have significantly improved the precision and dependability
of our ML approaches. This work underscores the importance of meticulous parameter
optimization in enhancing the accuracy of medical diagnoses. Radiomics analysis based on
multiparametric MRI showed excellent results in discriminating non-tumor regions from
significant prostate cancer results obtained. The results of the radiomics analysis, which
depended on the multiparametric MRI, demonstrated superior outcomes in predicting
between GS groups. Our approach suggests that using multiple features and classifiers
with tuning hyperparameters provided a more clinically dependable method of identifying
clinically relevant features.
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