Effects of Weight Loss on Key Obesity-Related Biomarkers Linked to the Risk of Endometrial Cancer: A Systematic Review and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility
2.2.1. Study Selection
2.2.2. Patient Selection
2.3. Data Extraction
2.4. Quality Assessment
2.5. Statistical Analysis
2.6. Heterogeneity
3. Results
3.1. Study Characteristics
3.1.1. Systematic Review
3.1.2. Meta-Analysis
3.2. Comparison of the Effects of Different Interventions on Weight Loss
Meta-Analysis on the Effectiveness of Weight-loss Interventions on Reducing Weight
3.3. Comparison of Intervention-Associated Weight Loss on Inflammatory Markers
3.3.1. CRP
Meta-Analysis on the Effectiveness of Weight loss on CRP
3.3.2. TNF-α
Meta-Analysis on the Effectiveness of Weight loss on TNF-α
3.3.3. IL-6
Meta-Analysis on the Effectiveness of Weight loss on IL-6
3.4. Comparison of Intervention-Associated Weight Loss on Hormones
3.4.1. Leptin
Meta-Analysis on the Effectiveness of Weight loss on Leptin
3.4.2. Adiponectin
Meta-Analysis on the Effectiveness of Weight loss on Adiponectin
3.4.3. Sex Hormones
Estradiol
Estrone
Testosterone
Meta-Analysis on the Effectiveness of Weight loss on Sex Hormones
3.5. Intervention Effects on Key Tumor Growth Factors
3.6. Heterogeneity
3.7. Bias
3.8. Quality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Cote, M.L.; Ruterbusch, J.J.; Olson, S.H.; Lu, K.; Ali-Fehmi, R. The Growing Burden of Endometrial Cancer: A Major Racial Disparity Affecting Black Women. Cancer Epidemiol. Biomark. Prev. 2015, 24, 1407–1415. [Google Scholar] [CrossRef]
- Clarke, M.A.; Devesa, S.S.; Harvey, S.V.; Wentzensen, N. Hysterectomy-Corrected Uterine Corpus Cancer Incidence Trends and Differences in Relative Survival Reveal Racial Disparities and Rising Rates of Nonendometrioid Cancers. J. Clin. Oncol. 2019, 37, 1895–1908. [Google Scholar] [CrossRef]
- Dubil, E.A.; Tian, C.; Wang, G.; Tarney, C.M.; Bateman, N.W.; Levine, D.A.; Conrads, T.P.; Hamilton, C.A.; Maxwell, G.L.; Darcy, K.M. Racial disparities in molecular subtypes of endometrial cancer. Gynecol. Oncol. 2018, 149, 106–116. [Google Scholar] [CrossRef]
- Morrow, C.; Bundy, B.N.; Kurman, R.J.; Creasman, W.T.; Heller, P.; Homesley, H.D.; Graham, J.E. Relationship between surgical-pathological risk factors and outcome in clinical stage I and II carcinoma of the endometrium: A Gynecologic Oncology Group study. Gynecol. Oncol. 1991, 40, 55–65. [Google Scholar] [CrossRef]
- Papatla, K.; Huang, M.; Slomovitz, B. The obese endometrial cancer patient: How do we effectively improve morbidity and mortality in this patient population? Ann. Oncol. 2016, 27, 1988–1994. [Google Scholar] [CrossRef]
- Arem, H.; Irwin, M.L. Obesity and endometrial cancer survival: A systematic review. Int. J. Obes. 2013, 37, 634–639. [Google Scholar] [CrossRef]
- Kokts-Porietis, R.L.; Elmrayed, S.; Brenner, D.R.; Friedenreich, C.M. Obesity and mortality among endometrial cancer survivors: A systematic review and meta-analysis. Obes. Rev. 2021, 22, e13337. [Google Scholar] [CrossRef]
- Winder, A.A.; Kularatna, M.; Maccormick, A.D. Does Bariatric Surgery Affect the Incidence of Endometrial Cancer Development? A Systematic Review. Obes. Surg. 2018, 28, 1433–1440. [Google Scholar] [CrossRef]
- Rock, C.L.; Pande, C.; Flatt, S.W.; Ying, C.; Pakiz, B.; Parker, B.A.; Williams, K.; Bardwell, W.A.; Heath, D.D.; Nichols, J.F. Favorable changes in serum estrogens and other biologic factors after weight loss in breast cancer survivors who are overweight or obese. Clin. Breast Cancer 2013, 13, 188–195. [Google Scholar] [CrossRef]
- Jensterle, M.; Janez, A.; Fliers, E.; Devries, J.H.; Vrtacnik-Bokal, E.; Siegelaar, S.E. The role of glucagon-like peptide-1 in reproduction: From physiology to therapeutic perspective. Hum. Reprod. Update 2019, 25, 504–517. [Google Scholar] [CrossRef]
- Gomez-Huelgas, R.; Ruiz-Nava, J.; Santamaria-Fernandez, S.; Vargas-Candela, A.; Alarcon-Martin, A.V.; Tinahones, F.J.; Bernal-Lopez, M.R. Impact of Intensive Lifestyle Modification on Levels of Adipokines and Inflammatory Biomarkers in Metabolically Healthy Obese Women. Mediat. Inflamm. 2019, 2019, 1–9. [Google Scholar] [CrossRef]
- Kleist, B.; Wahrburg, U.; Stehle, P.; Schomaker, R.; Greiwing, A.; Stoffel-Wagner, B.; Egert, S. Moderate Walking Enhances the Effects of an Energy-Restricted Diet on Fat Mass Loss and Serum Insulin in Overweight and Obese Adults in a 12-Week Randomized Controlled Trial. J. Nutr. 2017, 147, 1875–1884. [Google Scholar] [CrossRef] [PubMed]
- Jakicic, J.M.; Marcus, B.H.; Lang, W.; Janney, C. Effect of exercise on 24-month weight loss maintenance in overweight women. Arch. Intern. Med. 2008, 168, 1550–1559; discussion 9–60. [Google Scholar] [CrossRef] [PubMed]
- von Gruenigen, V.E.; Courneya, K.S.; Gibbons, H.E.; Kavanagh, M.B.; Waggoner, S.E.; Lerner, E. Feasibility and effectiveness of a lifestyle intervention program in obese endometrial cancer patients: A randomized trial. Gynecol. Oncol. 2008, 109, 19–26. [Google Scholar] [CrossRef]
- Linkov, F.; Maxwell, G.L.; Felix, A.S.; Lin, Y.; Lenzner, D.; Bovbjerg, D.H.; Lokshin, A.; Hennon, M.; Jakicic, J.M.; Goodpaster, B.H.; et al. Longitudinal evaluation of cancer-associated biomarkers before and after weight loss in RENEW study participants: Implications for cancer risk reduction. Gynecol. Oncol. 2012, 125, 114–119. [Google Scholar] [CrossRef]
- Madeddu, C.; Sanna, E.; Gramignano, G.; Tanca, L.; Cherchi, M.C.; Mola, B.; Petrillo, M.; Macciò, A. Correlation of Leptin, Proinflammatory Cytokines and Oxidative Stress with Tumor Size and Disease Stage of Endometrioid (Type I) Endometrial Cancer and Review of the Underlying Mechanisms. Cancers 2022, 14, 268. [Google Scholar] [CrossRef] [PubMed]
- Rundle-Thiele, D.; Shrestha, S.; Janda, M. Prevention of endometrial cancer through lifestyle Interventions: A systematic review and synthesis. Gynecol. Oncol. Rep. 2022, 39, 100900. [Google Scholar] [CrossRef] [PubMed]
- Thompson, H.J.; Sedlacek, S.M.; Wolfe, P.; Paul, D.; Lakoski, S.G.; Playdon, M.C.; McGinley, J.N.; Matthews, S.B. Impact of Weight Loss on Plasma Leptin and Adiponectin in Overweight-to-Obese Post Menopausal Breast Cancer Survivors. Nutrients 2015, 7, 5156–5176. [Google Scholar] [CrossRef]
- Fabian, C.J.; Kimler, B.F.; Donnelly, J.E.; Sullivan, D.K.; Klemp, J.R.; Petroff, B.K.; Phillips, T.A.; Metheny, T.; Aversman, S.; Yeh, H.-W. Favorable modulation of benign breast tissue and serum risk biomarkers is associated with > 10 % weight loss in postmenopausal women. Breast Cancer Res. Treat. 2013, 142, 119–132. [Google Scholar] [CrossRef]
- Christou, N.V.; Lieberman, M.; Sampalis, F.; Sampalis, J.S. Bariatric surgery reduces cancer risk in morbidly obese patients. Surg. Obes. Relat. Dis. 2008, 4, 691–695. [Google Scholar] [CrossRef]
- Linkov, F.; Elishaev, E.; Gloyeske, N.; Edwards, R.; Althouse, A.D.; Geller, M.A.; Svendsen, C.; Argenta, P.A. Bariatric surgery-induced weight loss changes immune markers in the endometrium of morbidly obese women. Surg. Obes. Relat. Dis. 2014, 10, 921–926. [Google Scholar] [CrossRef]
- Ward, K.K.; Roncancio, A.M.; Shah, N.R.; Davis, M.-A.; Saenz, C.C.; McHale, M.T.; Plaxe, S.C. Bariatric surgery decreases the risk of uterine malignancy. Gynecol. Oncol. 2014, 133, 63–66. [Google Scholar] [CrossRef]
- McCawley, G.M.; Ferriss, J.S.; Geffel, D.; Northup, C.J.; Modesitt, S.C. Cancer in obese women: Potential protective impact of bariatric surgery. J. Am. Coll. Surg. 2009, 208, 1093–1098. [Google Scholar] [CrossRef]
- Knudsen, L.B.; Lau, J. The Discovery and Development of Liraglutide and Semaglutide. Front. Endocrinol. (Lausanne) 2019, 10, 155. [Google Scholar] [CrossRef]
- Frías, J.P.; Davies, M.J.; Rosenstock, J.; Pérez Manghi, F.C.; Fernández Landó, L.; Bergman, B.K.; Liu, B.; Cui, X.; Brown, K. Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 503–515. [Google Scholar] [CrossRef]
- Coskun, T.; Sloop, K.W.; Loghin, C.; Alsina-Fernandez, J.; Urva, S.; Bokvist, K.B.; Cui, X.; Briere, D.A.; Cabrera, O.; Roell, W.C.; et al. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: From discovery to clinical proof of concept. Mol. Metab. 2018, 18, 3–14. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Aronne, L.J.; Stefanski, A. Tirzepatide Once Weekly for the Treatment of Obesity. Reply N. Engl. J. Med. 2022, 387, 1434–1435. [Google Scholar] [CrossRef]
- Rubino, D.M.; Greenway, F.L.; Khalid, U.; O’Neil, P.M.; Rosenstock, J.; Sørrig, R.; Wadden, T.A.; Wizert, A.; Garvey, W.T.; Arauz-Pacheco, C.; et al. Effect of Weekly Subcutaneous Semaglutide vs Daily Liraglutide on Body Weight in Adults with Overweight or Obesity without Diabetes: The STEP 8 Randomized Clinical Trial. JAMA 2022, 327, 138–150. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Covidence Systematic Review Software. [Internet]. Innovation, V.H. Available online: http://www.covidence.org (accessed on 23 September 2023).
- Flemyng, E.; Dwan, K.; Moore, T.H.; Page, M.J.; Higgins, J.P. Risk of Bias 2 in Cochrane Reviews: A phased approach for the introduction of new methodology. Cochrane Database Syst. Rev. 2020, 10, ED000148. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses 2013. Available online: http://www.evidencebasedpublichealth.de/download/Newcastle_Ottowa_Scale_Pope_Bruce.pdf (accessed on 23 September 2023).
- The Cochrane Collaboration. Review Manager Web (RevMan Web); The Cochrane Collaboration: London, UK, 2020. [Google Scholar]
- Abulmeaty, M.M.A.; Ghneim, H.K.; Alkhathaami, A.; Alnumair, K.; Al Zaben, M.; Razak, S.; Al-Sheikh, Y.A. Inflammatory Cytokines, Redox Status, and Cardiovascular Diseases Risk after Weight Loss via Bariatric Surgery and Lifestyle Intervention. Medicina 2023, 59, 751. [Google Scholar] [CrossRef]
- Lorenzo, P.M.; Sajoux, I.; Izquierdo, A.G.; Gomez-Arbelaez, D.; Zulet, M.A.; Abete, I.; Castro, A.I.; Baltar, J.; Portillo, M.P.; Tinahones, F.J.; et al. Immunomodulatory effect of a very-low-calorie ketogenic diet compared with bariatric surgery and a low-calorie diet in patients with excessive body weight. Clin. Nutr. 2022, 41, 1566–1577. [Google Scholar] [CrossRef] [PubMed]
- Abbenhardt, C.; McTiernan, A.; Alfano, C.M.; Wener, M.H.; Campbell, K.L.; Duggan, C.; Foster-Schubert, K.E.; Kong, A.; Toriola, A.T.; Potter, J.D.; et al. Effects of individual and combined dietary weight loss and exercise interventions in postmenopausal women on adiponectin and leptin levels. J. Intern. Med. 2013, 274, 163–175. [Google Scholar] [CrossRef]
- Aldubayan, M.A.; Pigsborg, K.; Gormsen, S.M.; Serra, F.; Palou, M.; Galmés, S.; Palou-March, A.; Favari, C.; Wetzels, M.; Calleja, A.; et al. A double-blinded, randomized, parallel intervention to evaluate biomarker-based nutrition plans for weight loss: The PREVENTOMICS study. Clin. Nutr. 2022, 41, 1834–1844. [Google Scholar] [CrossRef]
- Babatunde, O.A.; Adams, S.A.; Truman, S.; Sercy, E.; Murphy, A.E.; Khan, S.; Hurley, T.G.; Wirth, M.D.; Choi, S.K.; Johnson, H.; et al. The impact of a randomized dietary and physical activity intervention on chronic inflammation among obese African-American women. Women Health 2020, 60, 792–805. [Google Scholar] [CrossRef]
- Campbell, K.L.; Foster-Schubert, K.E.; Alfano, C.M.; Wang, C.-C.; Wang, C.-Y.; Duggan, C.R.; Mason, C.; Imayama, I.; Kong, A.; Xiao, L.; et al. Reduced-calorie dietary weight loss, exercise, and sex hormones in postmenopausal women: Randomized controlled trial. J. Clin. Oncol. 2012, 30, 2314–2326. [Google Scholar] [CrossRef] [PubMed]
- Claessens, M.; van Baak, M.A.; Monsheimer, S.; Saris, W.H. The effect of a low-fat, high-protein or high-carbohydrate ad libitum diet on weight loss maintenance and metabolic risk factors. Int. J. Obes. (Lond.) 2009, 33, 296–304. [Google Scholar] [PubMed]
- Duggan, C.; Tapsoba, J.D.; Stanczyk, F.; Wang, C.Y.; Schubert, K.F.; McTiernan, A. Long-term weight loss maintenance, sex steroid hormones, and sex hormone-binding globulin. Menopause 2019, 26, 417–422. [Google Scholar]
- Lopez-Legarrea, P.; de la Iglesia, R.; Abete, I.; Navas-Carretero, S.; Martinez, J.A.; Zulet, M.A. The protein type within a hypocaloric diet affects obesity-related inflammation: The RESMENA project. Nutrition 2014, 30, 424–429. [Google Scholar] [CrossRef]
- Moszak, M.; Klupczynska, A.; Kanikowska, A.; Kokot, Z.; Zawada, A.; Grzymisławska, M.; Grzymisławski, M. The influence of a 3-week body mass reduction program on the metabolic parameters and free amino acid profiles in adult Polish people with obesity. Adv. Clin. Exp. Med. 2018, 27, 749–757. [Google Scholar] [CrossRef]
- Pinto, A.M.; Bordoli, C.; Buckner, L.P.; Kim, C.; Kaplan, P.C.; Del Arenal, I.M.; Jeffcock, E.J.; Hall, W.L. Intermittent energy restriction is comparable to continuous energy restriction for cardiometabolic health in adults with central obesity: A randomized controlled trial; the Met-IER study. Clin. Nutr. 2020, 39, 1753–1763. [Google Scholar] [CrossRef]
- Porter Starr, K.N.; Orenduff, M.; McDonald, S.R.; Mulder, H.; Sloane, R.; Pieper, C.F.; Bales, C.W. Influence of Weight Reduction and Enhanced Protein Intake on Biomarkers of Inflammation in Older Adults with Obesity. J. Nutr. Gerontol. Geriatr. 2019, 38, 33–49. [Google Scholar] [CrossRef]
- Shah, K.; Armamento-Villareal, R.; Parimi, N.; Chode, S.; Sinacore, D.R.; Hilton, T.N.; Napoli, N.; Qualls, C.; Villareal, D.T. Exercise training in obese older adults prevents increase in bone turnover and attenuates decrease in hip bone mineral density induced by weight loss despite decline in bone-active hormones. J. Bone Miner. Res. 2011, 26, 2851–2859. [Google Scholar] [CrossRef] [PubMed]
- Stolzenberg-Solomon, R.Z.; Falk, R.T.; Stanczyk, F.; Hoover, R.N.; Appel, L.J.; Ard, J.D.; Batch, B.C.; Coughlin, J.; Han, X.; Lien, L.F.; et al. Sex hormone changes during weight loss and maintenance in overweight and obese postmenopausal African-American and non-African-American women. Breast Cancer Res. 2012, 14, R141. [Google Scholar] [CrossRef]
- Swora-Cwynar, E.; Kujawska-Łuczak, M.; Suliburska, J.; Reguła, J.; Kargulewicz, A.; Kręgielska-Narożna, M.; Marcinkowska, E.; Kanikowska, A.; Bielas, M.; Grzymisławski, M.; et al. The effects of a low-calorie diet or an isocaloric diet combined with metformin on sex hormones In obese women of child-bearing age. Acta Sci. Pol. Technol. Aliment. 2016, 15, 213–220. [Google Scholar] [CrossRef]
- Ceccarini, G.; Pelosini, C.; Ferrari, F.; Magno, S.; Vitti, J.; Salvetti, G.; Moretto, C.; Marioni, A.; Buccianti, P.; Piaggi, P.; et al. Serum IGF-binding protein 2 (IGFBP-2) concentrations change early after gastric bypass bariatric surgery revealing a possible marker of leptin sensitivity in obese subjects. Endocrine 2019, 65, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Dalmas, E.; Rouault, C.; Abdennour, M.; Rovere, C.; Rizkalla, S.; Bar-Hen, A.; Nahon, J.-L.; Bouillot, J.-L.; Guerre-Millo, M.; Clément, K.; et al. Variations in circulating inflammatory factors are related to changes in calorie and carbohydrate intakes early in the course of surgery-induced weight reduction. Am. J. Clin. Nutr. 2011, 94, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Freitas, W.R., Jr.; Oliveira, L.V.F.; Perez, E.A.; Ilias, E.J.; Lottenberg, C.P.; Silva, A.S.; Urbano, J.J.; Oliveira, M.C.; Vieira, R.P.; Ribeiro-Alves, M.; et al. Systemic Inflammation in Severe Obese Patients Undergoing Surgery for Obesity and Weight-Related Diseases. Obes. Surg. 2018, 28, 1931–1942. [Google Scholar] [CrossRef]
- Jacobsen, S.H.; Olesen, S.C.; Dirksen, C.; Jørgensen, N.B.; Bojsen-Møller, K.N.; Kielgast, U.; Worm, D.; Almdal, T.; Naver, L.S.; Hvolris, L.E.; et al. Changes in gastrointestinal hormone responses, insulin sensitivity, and beta-cell function within 2 weeks after gastric bypass in non-diabetic subjects. Obes. Surg. 2012, 22, 1084–1096. [Google Scholar] [CrossRef]
- Kim, S.R.; Ene, G.E.V.; Simpson, A.; Gesink, D.; Ferguson, S.E. Acceptability of bariatric surgery in people with endometrial cancer and atypical hyperplasia: A qualitative study. Gynecol. Oncol. 2023, 169, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Kjær, M.M.; Madsbad, S.; Hougaard, D.M.; Cohen, A.S.; Nilas, L. The impact of gastric bypass surgery on sex hormones and menstrual cycles in premenopausal women. Gynecol. Endocrinol. 2017, 33, 160–163. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.M.O.; Pareja, J.C.; Alegre, S.M.; Geloneze, S.R.; Kahn, S.E.; Astiarraga, B.D.; Chaim, A.; Baracat, J.; Geloneze, B. Visceral fat resection in humans: Effect on insulin sensitivity, beta-cell function, adipokines, and inflammatory markers. Obesity 2013, 21, E182–E189. [Google Scholar] [CrossRef] [PubMed]
- MacKintosh, M.L.; Derbyshire, A.E.; McVey, R.J.; Bolton, J.; Nickkho-Amiry, M.; Higgins, C.L.; Kamieniorz, M.; Pemberton, P.W.; Kirmani, B.H.; Ahmed, B.; et al. The impact of obesity and bariatric surgery on circulating and tissue biomarkers of endometrial cancer risk. Int. J. Cancer 2018, 144, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Moreira, S.M.B.P.; Bachi, A.L.L.; Jirjos, E.I.; Malheiros, C.A.; Vencio, S.; Alves, V.L.S.; Sousa, A.R.T.; Felipe, L.A.; Perez, E.A.; Lino, M.E.M.; et al. Roux-en-Y Gastric Bypass Improves Adiponectin to Leptin Ratio and Inflammatory Profile in Severely Obese Women with and without Metabolic Syndrome: A Randomized Controlled Trial. Nutrients 2023, 15, 3312. [Google Scholar] [CrossRef] [PubMed]
- Moriconi, D.; Antonioli, L.; Masi, S.; Bellini, R.; Pellegrini, C.; Rebelos, E.; Taddei, S.; Nannipieri, M. Glomerular hyperfiltration in morbid obesity: Role of the inflammasome signalling. Nephrology 2022, 27, 673–680. [Google Scholar] [CrossRef]
- Nikolic, M.; Boban, M.; Ljubicic, N.; Supanc, V.; Mirosevic, G.; Pezo Nikolic, B.; Krpan, R.; Posavec, L.; Zjacic-Rotkvic, V.; Bekavac-Beslin, M.; et al. Morbidly obese are ghrelin and leptin hyporesponders with lesser intragastric balloon treatment efficiency: Ghrelin and leptin changes in relation to obesity treatment. Obes. Surg. 2011, 21, 1597–1604. [Google Scholar] [CrossRef] [PubMed]
- Sarwer, D.B.; Wadden, T.A.; Spitzer, J.C.; Mitchell, J.E.; Lancaster, K.; Courcoulas, A.; Gourash, W.; Rosen, R.C.; Christian, N.J. 4-Year Changes in Sex Hormones, Sexual Functioning, and Psychosocial Status in Women Who Underwent Bariatric Surgery. Obes. Surg. 2018, 28, 892–899. [Google Scholar] [CrossRef]
- Tussing-Humphreys, L.; Pini, M.; Ponemone, V.; Braunschweig, C.; Fantuzzi, G. Suppressed cytokine production in whole blood cultures may be related to iron status and hepcidin and is partially corrected following weight reduction in morbidly obese pre-menopausal women. Cytokine 2011, 53, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowska-Kulik, A.; Blus, E.; Kowalczyk, Z.; Baj, Z.; Majewska, E. The Effect of Noninvasive Bariatric Surgery on the Levels of Certain Adipokines and Atherosclerosis Risk Factors in Patients with Metabolic Syndrome. J. Am. Coll. Nutr. 2020, 39, 481–487. [Google Scholar] [CrossRef]
- Dushay, J.; Gao, C.; Gopalakrishnan, G.S.; Crawley, M.; Mitten, E.K.; Wilker, E.; Mullington, J.; Maratos-Flier, E. Short-term exenatide treatment leads to significant weight loss in a subset of obese women without diabetes. Diabetes Care 2012, 35, 4–11. [Google Scholar] [CrossRef]
- Gadde, K.M.; Allison, D.B.; Ryan, D.H.; Peterson, C.A.; Troupin, B.; Schwiers, M.L.; Day, W.W. Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): A randomised, placebo-controlled, phase 3 trial. Lancet 2011, 377, 1341–1352. [Google Scholar] [CrossRef] [PubMed]
- Garvey, W.T.; Batterham, R.L.; Bhatta, M.; Buscemi, S.; Christensen, L.N.; Frias, J.P.; Jódar, E.; Kandler, K.; Rigas, G.; Wadden, T.A.; et al. Two-year effects of semaglutide in adults with overweight or obesity: The STEP 5 trial. Nat. Med. 2022, 28, 2083–2091. [Google Scholar] [CrossRef]
- Iepsen, E.W.; Lundgren, J.; Dirksen, C.; Jensen, J.-E.; Pedersen, O.; Hansen, T.; Madsbad, S.; Holst, J.J.; Torekov, S.S. Treatment with a GLP-1 receptor agonist diminishes the decrease in free plasma leptin during maintenance of weight loss. Int. J. Obes. (Lond.) 2015, 39, 834–841. [Google Scholar] [CrossRef]
- Joo, N.S.; Kim, S.M.; Kim, K.M.; Kim, C.W.; Kim, B.T.; Lee, D.J. Changes of body weight and inflammatory markers after 12-week intervention trial: Results of a double-blind, placebo-control pilot study. Yonsei Med. J. 2011, 52, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.D.; Krishnarajah, J.; Lillioja, S.; de Looze, F.; Marjason, J.; Proietto, J.; Shakib, S.; Stuckey, B.G.A.; Vath, J.E.; Hughes, T.E. Efficacy and safety of beloranib for weight loss in obese adults: A randomized controlled trial. Diabetes Obes. Metab. 2015, 17, 566–572. [Google Scholar] [CrossRef]
- Sari, R.; Eray, E.; Ozdem, S.; Akbas, H.; Coban, E. Comparison of the effects of sibutramine versus sibutramine plus metformin in obese women. Clin. Exp. Med. 2010, 10, 179–184. [Google Scholar] [CrossRef]
- Smith, S.R.; Weissman, N.J.; Anderson, C.M.; Sanchez, M.; Chuang, E.; Stubbe, S.; Bays, H.; Shanahan, W.R.; Behavioral Modification and Lorcaserin for Overweight and Obesity Management (BLOOM) Study Group. Multicenter, placebo-controlled trial of lorcaserin for weight management. N. Engl. J. Med. 2010, 363, 245–256. [Google Scholar] [CrossRef]
- Zheng, W. Molecular Classification of Endometrial Cancer and the 2023 FIGO Staging: Exploring the Challenges and Opportunities for Pathologists. Cancers 2023, 15, 4101. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Angelico, G.; Travaglino, A.; Inzani, F.; Arciuolo, D.; Valente, M.; D’alessandris, N.; Scaglione, G.; Fiorentino, V.; Raffone, A. New Pathological and Clinical Insights in Endometrial Cancer in View of the Updated ESGO/ESTRO/ESP Guidelines. Cancers 2021, 13, 2623. [Google Scholar] [CrossRef]
- Schüler-Toprak, S.; Skrzypczak, M.; Gründker, C.; Ortmann, O.; Treeck, O. Role of Estrogen Receptor β, G-Protein Coupled Estrogen Receptor and Estrogen-Related Receptors in Endometrial and Ovarian Cancer. Cancers 2023, 15, 2845. [Google Scholar] [CrossRef]
- Maliniak, M.L.; Cheriyan, A.M.; Sherman, M.E.; Liu, Y.; Gogineni, K.; Liu, J.; He, J.; Krishnamurti, U.; Miller-Kleinhenz, J.; Ashiqueali, R.; et al. Detection of crown-like structures in breast adipose tissue and clinical outcomes among African-American and White women with breast cancer. Breast Cancer Res. 2020, 22, 65. [Google Scholar] [CrossRef] [PubMed]
- l’yasova, D.; Colbert, L.H.; Harris, T.B.; Newman, A.B.; Bauer, D.C.; Satterfield, S.; Kritchevsky, S.B. Circulating levels of inflammatory markers and cancer risk in the health aging and body composition cohort. Cancer Epidemiol. Biomarkers Prev. 2005, 14, 2413–2418. [Google Scholar]
- Rustgi, V.K.; Li, Y.; Gupta, K.; Minacapelli, C.D.; Bhurwal, A.; Catalano, C.; Elsaid, M.I. Bariatric Surgery Reduces Cancer Risk in Adults with Nonalcoholic Fatty Liver Disease and Severe Obesity. Gastroenterology 2021, 161, 171–184.e10. [Google Scholar] [CrossRef] [PubMed]
- O’Flanagan, C.H.; Bowers, L.W.; Hursting, S.D. A weighty problem: Metabolic perturbations and the obesity-cancer link. Horm. Mol. Biol. Clin. Investig. 2015, 23, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Garikapati, K.K.; Ammu, V.; Krishnamurthy, P.T.; Chintamaneni, P.K.; Pindiprolu, S. Type-II endometrial cancer: Role of adipokines. Arch. Gynecol. Obstet. 2019, 300, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Boron, D.; Nowakowski, R.; Grabarek, B.O.; Zmarzly, N.; Oplawski, M. Expression Pattern of Leptin and Its Receptors in Endometrioid Endometrial Cancer. J. Clin. Med. 2021, 10, 2787. [Google Scholar] [CrossRef]
- Tao, Z.; Cheng, Z. Hormonal regulation of metabolism-recent lessons learned from insulin and estrogen. Clin. Sci. (Lond.) 2023, 137, 415–434. [Google Scholar] [CrossRef]
- Yang, X.; Wang, J. The Role of Metabolic Syndrome in Endometrial Cancer: A Review. Front. Oncol. 2019, 9, 744. [Google Scholar] [CrossRef] [PubMed]
- Barros, R.P.; Gustafsson, J.A. Estrogen receptors and the metabolic network. Cell Metab. 2011, 14, 289–299. [Google Scholar] [CrossRef]
- Allard, J.E.; Maxwell, G.L. Race disparities between black and white women in the incidence, treatment, and prognosis of endometrial cancer. Cancer Control. 2009, 16, 53–56. [Google Scholar] [CrossRef] [PubMed]
Study Name (Year) Country | Study Design | Intervention | Population (Intervention/Control) | Biomarkers Measured Pre- and Post-Intervention | BMI (Mean) | % Female | % Black | % White | Age (Mean) | Intervention Length |
---|---|---|---|---|---|---|---|---|---|---|
Intervention: Lifestyle | ||||||||||
* Abbenhardt (2013) USA [37] | RCT | Diet + exercise Exercise Diet Control | Women aged 50 to 75 (n = 116/117/118/87) | BMI; leptin; adiponectin | 30.9 | 100 | 8 | 92 | 57.9 | 12 months |
* Abulmeaty (2023) Saudi Arabia [35] | CT | Diet + exercise Control | Adults aged 18 to 60 (n = 14/24) | BMI; CRP; IL-6; TNF-α | 40.9 | 45 | NR | 87 | 35 | 6 months |
* Aldubayan (2022) Denmark [38] | RCT | Diet + exercise Control | Adults (n = 49/51) | BMI; weight; leptin; CRP; IL-6; adiponectin; TNF-α | 32.2 | 69 | NR | NR | 45.3 | 2.5 months |
* Babatunde (2020) USA [39] | RCT | Diet + PA Control | Adult women (n = 176/161) | BMI; weight; CRP; IL-6 | 39.1 | 100 | 100 | 0 | 49.5 | 12 months |
* Campbell (2012) USA [40] | RCT | Diet + exercise Exercise Diet Control | Women aged 50 to 75 (n = 117/117/118/87) | BMI; weight; estradiol; estrone; testosterone | 30.9 | 100 | 8 | 92 | 57.9 | 12 months |
Claessens (2009) Netherlands [41] | RT | CR 6 weeks: HC maintenance HPC maintenance HPW maintenance | Adults aged 30 to 60 (n = 20/20/20) | BMI; weight; leptin; adiponectin | 32.9 | 52 | NR | NR | 45.4 | 4.5 months |
* Duggan (2019) USA [42] | RCT | Diet + exercise Control | Women aged 50 to 75 (n = 151/270) | BMI; estradiol; estrone; testosterone | 30 | 100 | 13 | 85 | 58.5 | 30 months |
Gomez-Huelgas (2019) Spain [12] | Cohort | Diet + Exercise | Adult women (n = 115) | BMI; weight; CRP; IL-6; adiponectin; resistin; TNF-α | 36.3 | 100 | NR | NR | 44.5 | 24 months |
* Lopez-Legarrea (2014) Spain [43] | RCT | RESMENA Diet Control | Adults (n = 48/48) | BMI; weight; TNF-α; IL-6; CRP | 35.9 | 50 | NR | NR | 50 | 2 months |
* Lorenzo (2022) Spain [36] | RCT | VLCKD RESMENA Diet Control | Adults (n = 20/20/32) | BMI; IL-6 | 35.7 | 63 | NR | NR | 40.2 | 6 months |
Moszak (2018) Poland [44] | Cohort | PA + hypocaloric diet | Adults (n = 24) | BMI; weight; CRP | 39.7 | 58 | NR | NR | 46 | <1 month |
Pinto (2020) UK [45] | RT | CER IER | Adults aged 35 to 75 (n = 22/21) | BMI; weight.; leptin; adiponectin | 31 | 72 | 10 | 90 | 53 | 1 month |
* Porter Starr (2019) USA [46] | HCT | HP TWL (control) | Adults aged 65 or older (n = 25/14) | BMI; weight; adiponectin; leptin; IL-6; CRP; TNF-α | 37 | 31 | 11 | 73 | 68.3 | 6 months |
* Shah (2011) USA [47] | RCT | Diet + exercise Exercise Diet Control | Adults aged 65 or older (n = 28/26/26/27) | BMI; leptin; estradiol | 37.8 | 63 | NR | NR | 69.8 | 12 months |
Stolzenberg-Solomon (2012) USA [48] | RT | PC IT | Women aged 50 or older (n = 105/173) | BMI; weight; estradiol; estrone; testosterone | 33.4 | 100 | 37 | 62 | 59.3 | 18 months |
Swora-Cwynar (2016) Poland [49] | RT | LC IM | Women aged 18 to 40 (n = 39/38) | BMI; weight; estradiol; testosterone | 38.1 | 100 | NR | NR | 31.4 | 3 months |
Study name (year) country | Study design | Intervention details | Population (intervention/control) | Biomarkers measured Pre-and post-intervention | BMI (mean) | % Female | % Black | % White | Age (mean) | Intervention length |
Intervention: Bariatric Surgery | ||||||||||
* Abulmeaty (2023) Saudi Arabia [35] | CT | SG Control | Adults aged 18 to 60 (n = 18/24) | BMI; CRP; IL-6; TNF-α | 40.9 | 45 | NR | NR | 35 | 6 months |
Ceccarini (2019) Italy [50] | CT | GB Lean control Surgical control | Adults aged 24 to 59 (n = 51/41/9) | BMI; leptin | 48.1 | 64 | NR | NR | 47.7 | 18 months |
* Dalmas (2011) France [51] | CT | RYGB Control | Adult women (n = 51/14) | BMI; leptin; adiponectin; TNF-α; IL-6; CRP; VEGF | 36 | 100 | NR | NR | 41.2 | 24 months |
* Freitas (2018) Brazil [52] | RCT | GB Control | Adults aged 18 to 65 (n = 55/14) | BMI; weight; leptin; adiponectin; TNF-α | 47.1 | 85 | 22 | 78 | 41.3 | 6 months |
Jacobsen (2012) Denmark [53] | Cohort | GB | Adults aged 20 to 60 (n = 8) | BMI; weight; leptin | 46.7 | 75 | NR | NR | 35.5 | <1 month |
Kim (2023) Korea [54] | Cohort | GB | Adults aged 20 to 65 (n = 63) | BMI; weight; leptin; adiponectin; Resistin | 38.9 | 70 | NR | NR | 37.5 | 12 months |
Kjaer (2017) Denmark [55] | Cohort | RYGB | Women aged less than 50 (n = 31) | BMI; weight; CRP; estradiol; estrone; testosterone | 44.1 | 100 | NR | NR | 34 | 12 months |
* Lima (2013) Brazil [56] | RCT | RYGB Control | Women aged less than 50 (n = 10/10) | BMI; weight; leptin; adiponectin; resistin; IL-6; TNF-α; CRP | 45.65 | 100 | NR | NR | 35.9 | 15 months |
* Lorenzo (2022) Spain [36] | RCT | Laparoscopic Control | Adults (n = 39/32) | BMI; IL-6 | 45.6 | 63 | NR | NR | 40.2 | 6 months |
MacKintosh (2019) UK [57] | Cohort | GB SG | Adult women (n = 72) | BMI; weight; leptin; CRP; IL-6; adiponectin; estradiol; progesterone; testosterone | 52.1 | 100 | NR | NR | 42 | 12 months |
* Moreira (2023) Brazil [58] | RCT | GB Control | Women aged 18 to 65 (n = 64/11) | BMI; weight; leptin; adiponectin; | 47 | 100 | 12 | 88 | 42.3 | 6 months |
* Moriconi (2022) Italy [59] | CT | RYGB Control | Adults aged 18 to 65 (n = 50/11) | BMI; leptin; adiponectin | 47 | 100 | 12 | NR | 42.3 | 6 months |
Nikolic (2011) Croatia [60] | Cohort | IGB | Adults aged 20 to 60 (n = 43) | BMI; weight; leptin | 41.1 | 82 | 0 | NR | 35 | 12 months |
Sarwer (2018) USA [61] | Cohort | GB | Adult women (n = 106) | BMI; weight; estradiol; testosterone | 44.5 | 100 | 3 | 97 | 41 | 48 months |
* Tussing-Humphreys (2011) USA [62] | CT | GB Control | Adult women (n = 20/20) | BMI; CRP; IL-6, TNF-α | 46.6 | 100 | 48 | 52 | 36.3 | 6 months |
* Wojciechowska-Kulik (2020) Poland [63] | CT | IGB Control | Adults (n = 30/18) | BMI; weight; leptin; adiponectin; CRP | 40.9 | 57 | NR | NR | 41.2 | 6 months |
Study name (year) country | Study design | Intervention details | Population (intervention/control) | Biomarkers measured Pre-and post-intervention | BMI (mean) | % Female | % Black | % White | Age (mean) | Intervention length |
Intervention: Pharmacotherapy | ||||||||||
* Dushay (2012) USA [64] | RCT | Exenatide Placebo | Women aged 18 to 70 (n = 21/21) | BMI: weight; leptin; adiponectin | 33.1 | 100 | NR | NR | 48 | 9 months |
* Gadde (2011) USA [65] | RCT | Phen/top 7.5/46 mg Phen/top 15/92 mg Placebo | Adults aged 18 to 70 (n = 498/995/994) | BMI; weight; CRP; adiponectin | 36.5 | 70 | 11 | 86 | 51.1 | 14 months |
* Garvey (2022) USA [66] | RCT | Semaglutide Placebo | Adults aged 18 or older (n = 152/152) | BMI; weight; CRP | 38.6 | 78 | 4 | 96 | 47.4 | 26 months |
* Iepsen (2015) UK [67] | RCT | Liraglutide Placebo | Adults aged 18 to 65 (n = 27/25) | BMI; weight; leptin | 30.8 | 85 | NR | NR | 46 | 12 months |
* Joo (2011) Korea [68] | RCT | Diacerein Placebo | Adults aged 20 or older (n = 12/7) | BMI; weight; CRP; adiponectin; TNF-α | 31 | 28 | NR | NR | 38 | 3 months |
* Kim (2015) Australia [69] | RCT | Beloranib Placebo | Adults aged 18 to 65 (n = 109/38) | BMI; weight; leptin; CRP; adiponectin; | 37.6 | 93 | NR | NR | 48.3 | 3 months |
Sari (2010) Turkey [70] | RT | Sibutramine Sibutramine + metformin | Adults aged 18 to 65 (n = 36/34) | BMI; weight; leptin; CRP | 39.8 | 100 | NR | NR | 46.9 | 12 months |
* Smith (2010) USA [71] | RCT | Lorcaserin Placebo | Adults aged 18 to 75 (n = 1595/1587) | BMI; weight; CRP | 36.2 | 83.5 | 19 | 81 | 44.1 | 12 months |
Study | Selection | Comparability | Outcomes/Exposure | Total |
---|---|---|---|---|
Abulmeaty, 2023 [35] | **** | * | *** | 8 |
Ceccarini, 2019 [50] | *** | * | ** | 6 |
Dalmas, 2011 [51] | ** | * | *** | 6 |
Gomez-Huelgas, 2019 [12] | *** | *** | 6 | |
Jacobsen, 2012 [53] | **** | *** | 7 | |
Kim, 2023 [54] | **** | *** | 7 | |
Kjaer, 2017 [55] | *** | *** | 6 | |
MacKintosh, 2019 [57] | *** | *** | 6 | |
Moriconi, 2022 [59] | **** | ** | *** | 9 |
Moszak, 2018 [44] | *** | *** | 6 | |
Nikolic, 2011 [60] | *** | *** | 6 | |
Sarwer, 2018 [61] | *** | *** | 6 | |
Tussing-Humphreys, 2011 [62] | ** | * | *** | 6 |
Wojciechowska-Kulik (2020) [63] | ** | * | *** | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clontz, A.D.; Gan, E.; Hursting, S.D.; Bae-Jump, V.L. Effects of Weight Loss on Key Obesity-Related Biomarkers Linked to the Risk of Endometrial Cancer: A Systematic Review and Meta-Analysis. Cancers 2024, 16, 2197. https://doi.org/10.3390/cancers16122197
Clontz AD, Gan E, Hursting SD, Bae-Jump VL. Effects of Weight Loss on Key Obesity-Related Biomarkers Linked to the Risk of Endometrial Cancer: A Systematic Review and Meta-Analysis. Cancers. 2024; 16(12):2197. https://doi.org/10.3390/cancers16122197
Chicago/Turabian StyleClontz, Angela D., Emma Gan, Stephen D. Hursting, and Victoria L. Bae-Jump. 2024. "Effects of Weight Loss on Key Obesity-Related Biomarkers Linked to the Risk of Endometrial Cancer: A Systematic Review and Meta-Analysis" Cancers 16, no. 12: 2197. https://doi.org/10.3390/cancers16122197
APA StyleClontz, A. D., Gan, E., Hursting, S. D., & Bae-Jump, V. L. (2024). Effects of Weight Loss on Key Obesity-Related Biomarkers Linked to the Risk of Endometrial Cancer: A Systematic Review and Meta-Analysis. Cancers, 16(12), 2197. https://doi.org/10.3390/cancers16122197