Ensemble Deep Learning-Based Image Classification for Breast Cancer Subtype and Invasiveness Diagnosis from Whole Slide Image Histopathology
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset and Implementation Details
2.2. Data Preprocessing
2.3. Implementation of VGG16 and ResNet50 Architectures
2.4. Implementation of Ensemble Learning
3. Results
4. Discussion
4.1. Computational Efficiency
4.2. Algorithmic Advancements
4.3. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Cancer Facts & Figures 2024; American Cancer Society: New York, NY, USA, 2024. [Google Scholar]
- Alyami, W.; Kyme, A.; Bourne, R. Histological validation of MRI: A review of challenges in registration of imaging and whole-mount histopathology. J. Magn. Reson. Imaging 2022, 55, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Çinar, U. Integrating Hyperspectral Imaging and Microscopy for Hepatocellular Carcinoma Detection from H&E Stained Histopathology Images. Ph.D. Thesis, Middle East Technical University, Ankara, Turkey, 2023. [Google Scholar]
- Panayides, A.S.; Amini, A.; Filipovic, N.D.; Sharma, A.; Tsaftaris, S.A.; Young, A.; Foran, D.; Do, N.; Golemati, S.; Kurc, T.; et al. AI in medical imaging informatics: Current challenges and future directions. IEEE J. Biomed. Health Inform. 2020, 24, 1837–1857. [Google Scholar] [CrossRef] [PubMed]
- Brancati, N.; Frucci, M.; Riccio, D. Multi-classification of breast cancer histology images by using a fine-tuning strategy. In Proceedings of the Image Analysis and Recognition: 15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, 27–29 June 2018; Springer International Publishing: Cham, Switzerland, 2018; pp. 771–778. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Aresta, G.; Araújo, T.; Kwok, S.; Chennamsetty, S.S.; Safwan, M.; Alex, V.; Marami, B.; Prastawa, M.; Chan, M.; Donovan, M. BACH: Grand challenge on breast cancer histology images. Med. Image Anal. 2019, 56, 122–139. [Google Scholar] [CrossRef] [PubMed]
- Chennamsetty, S.S.; Safwan, M.; Alex, V. Classification of breast cancer histology image using ensemble of pre-trained neural networks. In Proceedings of the Image Analysis and Recognition: 15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, 27–29 June 2018; Springer International Publishing: Cham, Switzerland, 2018; pp. 804–811. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Zhu, C.; Song, F.; Wang, Y.; Dong, H.; Guo, Y.; Liu, J. Breast cancer histopathology image classification through assembling multiple compact CNNs. BMC Med. Inform. Decis. Mak. 2019, 19, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Spanhol, F.A.; Oliveira, L.S.; Petitjean, C.; Heutte, L. A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 2015, 63, 1455–1462. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, L.; Ma, K.; Fang, J. Breast cancer microscope image classification based on CNN with image deformation. In Proceedings of the Image Analysis and Recognition: 15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, 27–29 June 2018; Springer International Publishing: Cham, Switzerland, 2018; pp. 845–852. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Yan, R.; Ren, F.; Wang, Z.; Wang, L.; Zhang, T.; Liu, Y.; Rao, X.; Zheng, C.; Zhang, F. Breast cancer histopathological image classification using a hybrid deep neural network. Methods 2020, 173, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, A.; Pramanik, P.; Sarkar, R. A multi-stage approach to breast cancer classification using histopathology images. Diagnostics 2022, 13, 126. [Google Scholar] [CrossRef]
- Wakili, M.A.; Shehu, H.A.; Sharif, M.H.; Sharif, M.H.U.; Umar, A.; Kusetogullari, H.; Ince, I.F.; Uyaver, S. Classification of breast cancer histopathological images using DenseNet and transfer learning. Comput. Intell. Neurosci. 2022, 2022, 8904768. [Google Scholar] [CrossRef]
- Toğaçar, M.; Özkurt, K.B.; Ergen, B.; Cömert, Z. BreastNet: A novel convolutional neural network model through histopathological images for the diagnosis of breast cancer. Phys. A Stat. Mech. Its Appl. 2020, 545, 123592. [Google Scholar] [CrossRef]
- Man, R.; Yang, P.; Xu, B. Classification of breast cancer histopathological images using discriminative patches screened by generative adversarial networks. IEEE Access 2020, 8, 155362–155377. [Google Scholar] [CrossRef]
- Boumaraf, S.; Liu, X.; Zheng, Z.; Ma, X.; Ferkous, C. A new transfer learning based approach to magnification dependent and independent classification of breast cancer in histopathological images. Biomed. Signal Process. Control. 2021, 63, 102192. [Google Scholar] [CrossRef]
- Soumik, M.F.I.; Aziz, A.Z.B.; Hossain, M.A. Improved transfer learning based deep learning model for breast cancer histopathological image classification. In Proceedings of the 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI), Rajshahi, Bangladesh, 8–9 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4. [Google Scholar]
- Liu, M.; He, Y.; Wu, M.; Zeng, C. Breast histopathological image classification method based on autoencoder and siamese framework. Information 2022, 13, 107. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Dey, A.; Singh, P.K.; Sarkar, R. DRDA-Net: Dense residual dual-shuffle attention network for breast cancer classification using histopathological images. Comput. Biol. Med. 2022, 145, 105437. [Google Scholar] [CrossRef]
- Koné, I.; Boulmane, L. Hierarchical ResNeXt models for breast cancer histology image classification. In Proceedings of the Image Analysis and Recognition: 15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, 27–29 June 2018; Springer International Publishing: Cham, Switzerland, 2018; pp. 796–803. [Google Scholar]
- Ray, R.K.; Linkon, A.A.; Bhuiyan, M.S.; Jewel, R.M.; Anjum, N.; Ghosh, B.P.; Mia, M.T.; Badruddowza; Sarker, M.S.U.; Shaima, M. Transforming Breast Cancer Identification: An In-Depth Examination of Advanced Machine Learning Models Applied to Histopathological Images. J. Comput. Sci. Technol. Stud. 2024, 6, 155–161. [Google Scholar]
- Addo, D.; Zhou, S.; Sarpong, K.; Nartey, O.T.; Abdullah, M.A.; Ukwuoma, C.C.; Al-antari, M.A. A hybrid lightweight breast cancer classification framework using the histopathological images. Biocybern. Biomed. Eng. 2024, 44, 31–54. [Google Scholar] [CrossRef]
- Sahran, S.; Qasem, A.; Omar, K.; Albashih, D.; Adam, A.; Abdullah, S.N.H.S.; Abdullah, A.; Hussain, R.I.; Ismail, F.; Abdullah, N.; et al. Machine learning methods for breast cancer diagnostic. In Breast Cancer Surgery; IntechOpen: London, UK, 2018; pp. 57–76. [Google Scholar]
- Alirezazadeh, P.; Dornaika, F.; Moujahid, A. Chasing a Better Decision Margin for Discriminative Histopathological Breast Cancer Image Classification. Electronics 2023, 12, 4356. [Google Scholar] [CrossRef]
- Bayramoglu, N.; Kannala, J.; Heikkilä, J. Deep learning for magnification independent breast cancer histopathology image classification. In Proceedings of the 2016 23rd International conference on pattern recognition (ICPR), Cancun, Mexico, 4–8 December 2016; IEEE: Piscataway, NJ, USA; pp. 2440–2445. [Google Scholar]
- Gour, M.; Jain, S.; Sunil Kumar, T. Residual learning based CNN for breast cancer histopathological image classification. Int. J. Imaging Syst. Technol. 2020, 30, 621–635. [Google Scholar] [CrossRef]
- Titoriya, A.; Sachdeva, S. Breast cancer histopathology image classification using AlexNet. In Proceedings of the 2019 4th International Conference on Information Systems and Computer Networks (ISCON), Mathura, UP, India, 21–22 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 708–712. [Google Scholar]
- Deniz, E.; Şengür, A.; Kadiroğlu, Z.; Guo, Y.; Bajaj, V.; Budak, Ü. Transfer learning based histopathologic image classification for breast cancer detection. Health Inf. Sci. Syst. 2018, 6, 1–7. [Google Scholar] [CrossRef]
- Vesal, S.; Ravikumar, N.; Davari, A.; Ellmann, S.; Maier, A. Classification of breast cancer histology images using transfer learning. In Proceedings of the Image Analysis and Recognition: 15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, 27–29 June 2018; Springer International Publishing: Cham, Switzerland, 2018; pp. 812–819. [Google Scholar]
- Ahmad, N.; Asghar, S.; Gillani, S.A. Transfer learning-assisted multi-resolution breast cancer histopathological images classification. Vis. Comput. 2022, 38, 2751–2770. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, L.; Chen, S.; Ni, D.; Lei, B.; Wang, T. Accurate automated detection of invasive ductal carcinoma in whole-slide images of breast cancer tissues using deep learning. BMC Bioinform. 2020, 21, 1–12. [Google Scholar]
- Araujo, T.; Aresta, G.; Castro, E.; Rouco, J.; Aguiar, P.; Eloy, C.; Polonia, A.; Campilho, A. Classification of breast cancer histology images using Convolutional Neural Networks. PLoS ONE 2019, 14, e0218677. [Google Scholar] [CrossRef] [PubMed]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Sayın, İ.; Soydaş, M.A.; Mert, Y.E.; Yarkadaş, A.; Ergün, B.; Sözen Yeh, S.; Üvet, H. Comparative Analysis of Deep Learning Architectures for Breast Cancer Diagnosis Using the BreaKHis Dataset. arXiv, 2023; arXiv:2309.01007. [Google Scholar]
- Parvin, F.; Hasan, M.A.M. A comparative study of different types of convolutional neural networks for breast cancer histopathological image classification. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 945–948. [Google Scholar]
- Zerouaoui, H.; Idri, A. Deep hybrid architectures for binary classification of medical breast cancer images. Biomed. Signal Process. Control. 2022, 71, 103226. [Google Scholar] [CrossRef]
- Singh, A.; Randive, S.; Breggia, A.; Ahmad, B.; Christman, R.; Amal, S. Enhancing Prostate Cancer Diagnosis with a Novel Artificial Intelligence-Based Web Application: Synergizing Deep Learning Models, Multimodal Data, and Insights from Usability Study with Pathologists. Cancers 2023, 15, 5659. [Google Scholar] [CrossRef]
- Singh, A.; Wan, M.; Harrison, L.; Breggia, A.; Christman, R.; Winslow, R.L.; Amal, S. Visualizing Decisions and Analytics of Artificial Intelligence based Cancer Diagnosis and Grading of Specimen Digitized Biopsy: Case Study for Prostate Cancer. In Proceedings of the 28th International Conference on Intelligent User Interfaces, New York, NY, USA, 27–31 March 2023; pp. 166–170. [Google Scholar]
- Milosevic, M.; Jin, Q.; Singh, A.; Amal, S. Applications of AI in multi-modal imaging for cardiovascular disease. Front. Radiol. 2024, 3, 1294068. [Google Scholar] [CrossRef]
Model | Average Train Accuracy | Average Validation Accuracy | Train Loss | Average Validation Loss |
---|---|---|---|---|
VGGNet 16 | 98.72 | 79.95 | 0.0966 | 0.7399 |
ResNet 50 | 99.05 | 80.47 | 0.0564 | 0.4489 |
Ensemble Model (5-fold cross-validation) | 99.84 | 92.58 | 0.0591 | 0.2793 |
Model | Train Accuracy | Train Jaccard Index | Val Accuracy | Val Jaccard Index | Average Accuracy |
---|---|---|---|---|---|
EfficientNet B0 | 79.69402 | 0.673097 | 84.95638 | 0.75735 | 84.95 |
VGGNet 16 | 96.91175 | 0.937524 | 97.38273 | 0.955309 | 97.38 |
ResNet 34 | 97.75888 | 0.962849 | 98.22481 | 0.96945 | 98.22 |
ResNet 50 | 97.4744 | 0.957038 | 97.30434 | 0.953921 | 97.30 |
Ensemble Models (ours) | 98.41952 | 0.973193 | 98.42964 | 0.973642 | 98.43 |
Model | Train Accuracy | Train Jaccard Index | Val Accuracy | Val Jaccard Index | Average Accuracy |
---|---|---|---|---|---|
Ensemble Models (ours) | 99.76887 | 0.995616 | 99.71931 | 0.994532 | 99.71930712 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balasubramanian, A.A.; Al-Heejawi, S.M.A.; Singh, A.; Breggia, A.; Ahmad, B.; Christman, R.; Ryan, S.T.; Amal, S. Ensemble Deep Learning-Based Image Classification for Breast Cancer Subtype and Invasiveness Diagnosis from Whole Slide Image Histopathology. Cancers 2024, 16, 2222. https://doi.org/10.3390/cancers16122222
Balasubramanian AA, Al-Heejawi SMA, Singh A, Breggia A, Ahmad B, Christman R, Ryan ST, Amal S. Ensemble Deep Learning-Based Image Classification for Breast Cancer Subtype and Invasiveness Diagnosis from Whole Slide Image Histopathology. Cancers. 2024; 16(12):2222. https://doi.org/10.3390/cancers16122222
Chicago/Turabian StyleBalasubramanian, Aadhi Aadhavan, Salah Mohammed Awad Al-Heejawi, Akarsh Singh, Anne Breggia, Bilal Ahmad, Robert Christman, Stephen T. Ryan, and Saeed Amal. 2024. "Ensemble Deep Learning-Based Image Classification for Breast Cancer Subtype and Invasiveness Diagnosis from Whole Slide Image Histopathology" Cancers 16, no. 12: 2222. https://doi.org/10.3390/cancers16122222
APA StyleBalasubramanian, A. A., Al-Heejawi, S. M. A., Singh, A., Breggia, A., Ahmad, B., Christman, R., Ryan, S. T., & Amal, S. (2024). Ensemble Deep Learning-Based Image Classification for Breast Cancer Subtype and Invasiveness Diagnosis from Whole Slide Image Histopathology. Cancers, 16(12), 2222. https://doi.org/10.3390/cancers16122222