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Simple Summary: In cancer cells, gross changes in gene expression help to enhance the uptake
of glucose—the blood sugar—for the increased formation of building blocks for the cancer cells’
unlimited growth. An issue related to the rewired cancer cell metabolism is that even under sufficient
oxygen supply, cancer cells metabolize a large fraction of the glucose to lactic acid (or “lactate”). In
non-cancerous cells, lactate would be formed only during oxygen deprivation in order to re-oxidize
the cytosolic electron carrier NADH, which forms during the glycolytic glucose breakdown. This
phenomenon of lactate secretion from cancer cells under aerobic conditions was named the “Warburg
Effect”, but the actual reasons for that are often regarded as not yet understood. However, when
we acknowledge that the reprogramming of the different metabolic pathways of cancer cells is not
neatly fine-tuned, it becomes plausible that lactate formation just serves to dispose of cytosolic
electrons that exceed the capacity of the mitochondrial electron transport chain to accept cytosolic
electrons. Interestingly, the kinetic properties of the enzymes that metabolize the glycolysis end
product pyruvate are sufficient to explain the priorities for metabolite flux at the pyruvate junction in
cancer cells: 1. mitochondrial oxidative phosphorylation for efficient ATP production, 2. cytosolic
electrons that exceed oxidative phosphorylation capacity need to be disposed of and secreted as
lactate, and 3. biosynthesis reactions for cancer cell growth. In other words, a number of cytosolic
electrons just take the “emergency exit” from the cell by lactate secretion to maintain the cytosolic
redox balance.

Abstract: Cancer cells metabolize a large fraction of glucose to lactate, even under a sufficient
oxygen supply. This phenomenon—the “Warburg Effect”—is often regarded as not yet understood.
Cancer cells change gene expression to increase the uptake and utilization of glucose for biosynthesis
pathways and glycolysis, but they do not adequately up-regulate the tricarboxylic acid (TCA) cycle
and oxidative phosphorylation (OXPHOS). Thereby, an increased glycolytic flux causes an increased
production of cytosolic NADH. However, since the corresponding gene expression changes are
not neatly fine-tuned in the cancer cells, cytosolic NAD+ must often be regenerated by loading
excess electrons onto pyruvate and secreting the resulting lactate, even under sufficient oxygen
supply. Interestingly, the Michaelis constants (KM values) of the enzymes at the pyruvate junction are
sufficient to explain the priorities for pyruvate utilization in cancer cells: 1. mitochondrial OXPHOS
for efficient ATP production, 2. electrons that exceed OXPHOS capacity need to be disposed of and
secreted as lactate, and 3. biosynthesis reactions for cancer cell growth. In other words, a number of
cytosolic electrons need to take the “emergency exit” from the cell by lactate secretion to maintain the
cytosolic redox balance.

Keywords: Warburg effect; anaerobic; aerobic glycolysis; glucose; pyruvate; lactate; lactic acid; cancer;
tumor; KM value; Michaelis constant

1. Introduction

In the 1920s, Otto Warburg, as well as Gerty and Carl Cori, conducted experiments that
revealed the metabolization of glucose to lactic acid (also called lactate, the anion of lactic
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acid) in tumor cells even under sufficient oxygen supply [1–6]. Later, this effect of “aerobic
glycolysis” was called the “Warburg effect” [7,8]. This observation contrasted Warburg’s
findings that normal (non-tumor) tissue produced lactate essentially only under conditions
of oxygen deprivation. Warburg originally claimed this effect (which he attributed to
impaired respiration) to be a cause of cancer [6,8]. However, nowadays, we know that
essentially genetic and gene expression changes that facilitate uncontrolled cell growth
cause cancer [9–12], while the production of considerable amounts of lactate, even in the
presence of sufficient amounts of O2—“aerobic” or “normoxic” glycolysis—is supposed to
be a consequence of such gene expression changes rather than their cause [9,11,13,14].

Even though for many tumor cells (mostly in solid tumors) short supply of oxygen
can also be an important issue due to insufficient vascularization and limitations in O2
diffusion [15–17], tumor cells routinely also display the Warburg effect under conditions
of sufficient oxygen supply. Notably, the tricarboxylic acid (TCA) cycle (also named citric
acid cycle or Krebs cycle), as well as the electron transport chain (ETC) and oxidative phos-
phorylation (OXPHOS), have been shown to be active in many cancer cells [13,14,18–22],
as it is also the case in other highly proliferating cells, such as lymphocytes [23]. Actually,
the cells even require ongoing oxidative phosphorylation for efficient proliferation [19,24],
since they can produce much more ATP in the presence of sufficient O2 [25].

In this review, I will focus on the need for tumor cells to secrete lactate even in the
presence of oxygen, i.e., the actual “Warburg effect”. Even though a few particular gene
expression changes are actually involved in causing the metabolic effects of the Warburg
effect itself, I will only briefly touch on those gene expression changes that actually cause
cancer, but rather focus on the mechanistic aspects of the key enzymes at the pyruvate
junction—the point where several metabolic pathways branch from the principal first end
product of glycolysis, pyruvate. In combination with some very limited changes in the
expression of some of these key enzymes, mainly their enzymatic properties tell us what the
priorities for the use of glucose in cancer cells are, and thereby fully explain the supposed
enigma of why cancer cells secrete lactate. It is all about maintaining the cytosolic redox
balance in an environment in which rather coarse gene expression changes have rewired
the carbon metabolite flux in the cancer cells in order to support their unlimited growth.

As a basis for understanding, I will first give a brief overview of glucose metabolization
and lactate production, as well as the consumption of lactate in normal (non-cancer) body
tissues (Section 2), with a focus on the enzymes at the pyruvate junction that play a role
in the production and utilization of the key metabolite pyruvate (Section 3). Then, I will
consider the gene expression and metabolic changes in tumor cells in Section 4, which
will be just a brief overview, since many excellent studies and reviews have explained
these aspects in detail. Finally, I will return to the key enzymes at the pyruvate junction
and explain their properties, largely in terms of their Michaelis constants (KM values), an
aspect that may have been underestimated in the literature about the Warburg effect. Just
by careful inspection of their kinetic properties (in addition to the aspects of altered gene
regulation), these enzymes tell us what the most important metabolic pathways deriving
from the pyruvate junction are (Section 5). Based on the results, it becomes clear that the
regeneration of ATP by the TCA cycle and OXPHOS is the first priority, while the disposal
of overflow electrons via the generation of lactate just serves to maintain the cytosolic redox
balance under the conditions of the coarse gene expression deregulation in cancer cells.

2. Glucose and Lactate Metabolism in Normal Body Tissues

Glucose is a standard C6 carbon source for virtually all tissues in the body and is
broken down by glycolysis [26]. On the way from glucose to pyruvate, glucokinase (GK) in
liver and pancreatic β-cells and hexokinase (HK) in virtually all other cells phosphorylate
glucose to glucose-6-phosphate (Figure 1). After two further conversion steps, the C6 body
fructose-1,6-bisphosphate (F1,6BP) is formed, which then is cleaved into two C3 bodies,
which yield two molecules of glyceraldehyde-3-phosphate (or glyceral-3-phosphate). The
next step is catalyzed by glyceraldehyde-3-phosphate dehydrogenase (GAPDH). This step
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is important, since it oxidizes the substrate and transfers a hydride ion (H−, i.e., one proton
coming with two electrons) from the substrate to the electron carrier NAD+, reducing it
to NADH. The C3 bodies are further converted to phosphoenolpyruvate (PEP). The last
step then converts PEP to pyruvate and is catalyzed by pyruvate kinase (PK). In the entire
flow of glycolysis, per one C6 molecule of glucose, two ATP molecules are generated by
substrate-level phosphorylation, i.e., without the requirement for O2.
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P, glucose-6-phosphate; F1,6BP, fructose-1,6-bisphosphate; Glyceral-3-P, glyceral(dehyde)-3-phos-
phate; 1,3-BPG, 1,3-bisphosphoglycerate; PEP, phosphoenolpyruvate; Ala, alanine; Ac-CoA, acetyl-
coenzyme A; NAD+, nicotinamide adenine dinucleotide; NADH, reduced form of NAD+. 

In most tissues, the end product of glycolysis, pyruvate (C3), can be used by the mi-
tochondrial pyruvate dehydrogenase (PDH) to generate acetyl-Coenzyme A (Ac-CoA), 
which delivers its C2 acetyl residue to the TCA cycle, where both C atoms are finally re-
leased in their maximally oxidized form as two molecules of CO2 [27]. The electrons 

Figure 1. Glucose utilization in non-cancerous cells (skeletal and heart muscle, liver, erythrocyte).
This view is simplified to allow readers to focus on the metabolization of glucose and the pro-
duction, as well as the consumption, of lactate in the tissues. Abbreviations: HK, hexokinase;
GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PK, pyruvate kinase; PDH, pyruvate de-
hydrogenase; PC, pyruvate carboxylase; ALT, alanine transaminase; LDH, lactate dehydrogenase;
TCA, Tricarboxylic acid cycle (or Krebs cycle); ETC, electron transport chain (i.e., respiratory chain).
Glucose-6-P, glucose-6-phosphate; F1,6BP, fructose-1,6-bisphosphate; Glyceral-3-P, glyceral(dehyde)-
3-phosphate; 1,3-BPG, 1,3-bisphosphoglycerate; PEP, phosphoenolpyruvate; Ala, alanine; Ac-CoA,
acetyl-coenzyme A; NAD+, nicotinamide adenine dinucleotide; NADH, reduced form of NAD+.

In most tissues, the end product of glycolysis, pyruvate (C3), can be used by the
mitochondrial pyruvate dehydrogenase (PDH) to generate acetyl-Coenzyme A (Ac-CoA),
which delivers its C2 acetyl residue to the TCA cycle, where both C atoms are finally
released in their maximally oxidized form as two molecules of CO2 [27]. The electrons
yielded by the stepwise oxidation of the moderately reduced C atoms from glucose are
transported by electron carriers such as NADH to enter the mitochondrial ETC and are
finally transferred to O2 as the final electron acceptor (Figure 1). In summary, they yield
about 32 ATP per one C6 glucose by all steps, including oxidative phosphorylation.

Only in erythrocytes (red blood cells, RBCs), there are no mitochondria, for the obvious
reason that the RBCs are supposed to transport the O2 from the lungs to peripheral tissues
instead of using up the O2 for their own energy demands. In this case, the two electrons
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from the NADH generated in the GAPDH reaction need to be disposed of in some other way.
Otherwise, NAD+ levels would decrease quickly, and glycolysis would stop. Therefore, in
RBCs this electron disposal problem is solved by transferring the two electrons from NADH
to the end product of glycolysis, pyruvate, to form lactate in the lactate dehydrogenase
(LDH) reaction (Figure 2). The lactate must then be secreted from the erythrocytes (Figure 1).
Similarly, muscle cells that sometimes need to work intensely, even under insufficient
oxygen supply conditions, can use this “emergency exit” for the electrons from cytosolic
NADH and form lactate from pyruvate in order to keep glycolysis running (Figure 1). The
lactate secreted from the muscle—similar to the lactate from erythrocytes—can then be
used by the liver (or by kidney) [28] to first form pyruvate and then glucose in the process
of gluconeogenesis, and the liver can then provide this glucose again for the peripheral
tissues. This glucose–lactate cycle is called the Cori cycle [29].
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Figure 2. The lactate dehydrogenase reaction. NADH provides a hydride ion that is transferred to
the C atom of the carbonyl group of pyruvate. Thereby, the two electrons of the hydride ion provide
both electrons of the H-C bond in the resulting lactate (in red). The C=O double bond of pyruvate
switches one electron pair outside, which then acquires a proton from the solution, forming the
hydroxyl group in lactate. In short, NADH is a two-electron carrier and transfers these two electrons
to pyruvate, forming lactate [26,30,31].

Lactate can be consumed not only by the liver but also by the heart muscle, which is
the muscle with the likely best supply of oxygen. Therefore, the heart muscle can oxidize
lactate and use the resulting pyruvate as a carbon source for the TCA cycle. For this reason,
the heart muscle cells express LDH-1 or closely related isoforms [32–34], of which some
have low KM values and therefore ensure efficient use of lactate from the blood, depending
on the blood lactate concentrations, which can largely vary according to the body´s energy
consumption conditions (rest vs. exercise) (see Table 1 and references therein). Since
LDH catalyzes a reversible reaction and, similar to virtually all enzymes, only accelerates
the reaction but does not shift the equilibrium, it is not surprising that extracellular and
intracellular lactate and pyruvate concentrations appear in quite similar ratios (Table 1).

Remarkably, the concentrations of pyruvate and lactate were reported to be higher
in the cancer cell lines than in the red blood cells (Table 1). However, in these studies the
metabolite concentrations were analyzed only in cancer cells but not in normal tissues for
comparison. The increased lactate and pyruvate concentrations may support cancer cell
growth by also increasing the concentrations of upstream glycolytic metabolites. Since the
LDH supports the maintenance of the intracellular lactate/pyruvate ratio, the increase in
intracellular lactate concentration may also be due to changes in the expression of lactate
transporters in the cancer cells. Accordingly, the monocarboxylate transporters MCT-1
and MCT-4, which have higher KM values for lactate compared to MCT-2 and MCT-3, are
upregulated in many cancer cells [35–41], thereby supporting the maintenance of higher
concentrations of lactate and upstream metabolites in the cancer cells.
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Table 1. Key metabolite concentrations in blood, and intracellularly in red blood cells and tumor
cell lines.

Sample Metabolite
Concentration (mM)

Ratio References
Means Range 1 SD n 2

Blood

lactate (resting) 1.597 0.800–3.500 0.738 10
[lac]/[pyr]

22.0

[42–50]

pyruvate (resting) 0.073 0.032–0.120 0.027 7 [46–52]

lactate (exercising) 6.200 5.500–7.500 0.748 5 - [45,47,49,50,52]

RBC

lactate 1.021 0.200–1.870 0.454 7
[lac]/[pyr]

16.7

[43,44,46,53–55]

pyruvate 0.061 0.043–0.083 0.013 5 [46,53–55]

NAD+ 0.051 0.040–0.062 0.011 2
[NAD+]/[NADH]

1.9

[46,55]

NADH 0.027 0.027 0.000 1 [55]

Tumor cell
line

lactate 13.033 2.000–35.525 10.905 12
[lac]/[pyr]

17.8

[39,56,57]

pyruvate 0.733 0.130–5.880 1.326 19 [56–60]

NAD+ 0.486 0.470–0.502 0.016 2
[NAD+]/[NADH]

6.9

[58,59]

NADH 0.070 0.065–0.075 0.005 2 [58,59]
1 As found over all the various references. Detailed values and additional information are shown in Supplementary
Table S1. 2 Number of independent experiments from references.

Nevertheless, all tissues (except for RBCs) that express LDH can either consume or
produce lactate [61]. The latter is—in contrast to widespread assumptions—also true for the
heart muscle [62,63] which can also secrete lactate, depending on both internal and external
lactate and pyruvate concentrations and (limiting) oxygen supply. Recent tracer studies
have shown that the carbon atoms provided by fed glucose appear in lactate (also produced
by the heart muscle) and in other downstream metabolites. In turn, lactate is also routinely
utilized by virtually all tissues to feed the TCA cycle and other pathways [28,64–70] (see
Figure 1). Moreover, lactate can even stimulate its own use by mitochondria by yet un-
known mechanisms, independent of its actual use [69]. In short, lactate can be produced by
virtually all tissues, and it can be consumed by all tissues that have mitochondria.

3. Key Enzymes and Metabolites at the Pyruvate Junction

For understanding the utilization of carbon backbones downstream of glycolysis
in normal (non-cancerous) tissues, it appears useful to have a look at the properties of
the enzymes at the pyruvate junction, i.e., the enzymes that produce pyruvate and then
convert it to other metabolites. The Michaelis constants (or KM values) of enzymes are
a reciprocal measure for the affinity of the enzyme to the substrate. The KM value is the
substrate concentration at which the velocity (v0) of the reaction is ½ of the maximal velocity
(vmax), and a low KM indicates a high substrate affinity, whereas a high KM indicates a low
substrate affinity.

We can first consider pyruvate kinase, which converts PEP to pyruvate. PK comes
in different isoforms [71], and some PK isoforms (including PKM2) undergo complex
regulation by allosteric effectors, as well as phosphorylation of the enzyme [71–74]. PKM1
expressed in the muscle and the brain is not stimulated by the upstream glycolytic metabo-
lite F1,6BP but by default has a high affinity for its substrate PEP, with a low KM of about
0.057 mM (see Table 2). Thus, under energy demand conditions PKM1 keeps glycolysis
running to feed the PDH and the TCA cycle reactions. In contrast, in other tissues, includ-
ing the liver, the erythrocytes, and many others, either the PKL/R or the PKM2 isoforms
are expressed. These have moderately high KM values of 0.42 to 0.74 mM for PEP in the
absence of F1,6BP (Table 2), while 1 mM of the allosteric activator F1,6BP strongly reduces
the KM values to about 0.07–0.08 mM [75], i.e., increases the affinity of the enzymes for
PEP by about 10-fold (Table 2). This regulation by F1,6BP may be required to allow a
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certain extent of accumulation of F1,6BP and the upstream glucose-6-phosphate, since
glucose-6-phosphate can be used also for the pentose phosphate pathway (PPP), which is
required particularly in RBCs for the NADPH-dependent production of glutathione and in
hepatocytes for various biosynthesis reactions involving riboses and/or NADPH.

Table 2. KM values of key enzymes at the pyruvate junction.

Enzyme Subtype Cell Type Normal/
Tumor Substrate Allosteric

Effector 1
KM (mM)

Means
KM (mM)
Range 2

KM
(mM)SD n 3 References

PK

M1 muscle normal PEP - 0.057 0.032–0.085 0.019 7 [76–82]

M2 many

normal PEP - 0.421 0.140–0.860 0.223 8 [77–79,81–85]

tumor PEP - 0.648 0.130–2.100 0.542 9 [57,86,87]

normal PEP F1,6BP 0.064 0.030–0.100 0.026 4 [77,78,85,88]

tumor PEP F1,6BP 0.103 0.030–0.170 0.057 3 [57,86,87]

L, R liver, RBC
normal PEP - 0.736 0.500–1.100 0.178 8 [75,78,79,81,88,89]

normal PEP F1,6BP 0.073 0.060–0.090 0.013 3 [75,81]

PDH normal pyruvate - 0.020 0.005–0.043 0.011 9 [90–97]

PC normal pyruvate - 0.265 0.230–0.300 0.035 2 [98,99]

GPT/
ALT

normal pyruvate - 2.800 0.070–12.50 4.858 5 [100–104]

normal Ala - 22.003 10.12–34.00 7.735 8 [100–107]

normal Glu - 9.830 3.22–15.00 4.568 4 [101–103,107]

normal 2-OG - 0.523 0.100–1.100 0.356 6 [100–103,105,106]

LDH

1
(B, H)

heart,
(RBC)

normal pyruvate - 0.100 0.034–0.243 0.063 17 [30,32,106,108–
120]

normal lactate - 5.916 2.000–9.690 2.911 8 [30,32,108,109,115,
121,122]

normal NADH - 0.038 0.014–0.069 0.023 3 [32,112,116]

normal NAD+ - 0.123 0.075–0.170 0.039 3 [30,109,121]

5
(A, M)

liver,
muscle,
(heart)
(RBC)

normal pyruvate - 0.288 0.095–0.630 0.173 12
[30,32,109,111,113,

115,117,118,120,
123,124]

normal 4 pyruvate - 0.630 - - 1 4 [124]

tumor 4 pyruvate - 0.780 - - 1 4 [124]

normal lactate - 15.940 6.880–40.000 7.759 15 [30,32,109,115,121,
122,124,125]

normal 4 lactate - 10.730 - - 1 4 [124]

tumor 4 lactate - 21.780 - - 1 4 [124]

normal NADH - 0.173 0.016–0.330 0.157 2 [32,124]

normal 4 NADH - 0.300 - - 1 4 [124]

tumor 4 NADH - 0.330 - - 1 4 [124]

normal NAD+ - 0.337 0.220–0.500 0.119 3 [109,121,124]

normal NAD+ - 0.500 0.220–0.500 0.119 3 [124]

tumor NAD+ 0.990 - - 1 [124]

1 Stated only when applied for experimental KM measurement. 2 As found over all the various references. Details
are shown in Supplementary Tables S2–S5. 3 Number of independent experiments from references. Where
available, data for tumor cells are shown separately from normal cells. 4 For one study [124], the value for
normal cells is also displayed separately for direct comparison with its counterpart in tumor cells from the
same study (in italics). Details are shown in Supplementary Tables S2 and S5. Abbreviations: GPT, glutamate
pyruvate transaminase; GPT, glutamate oxoglutarate transaminase (=ALT); Ala, alanine; Glu, glutamate; 2-OG,
2-oxoglutarate (α-ketoglutarate).

When we consider the reactions that utilize pyruvate, pyruvate dehydrogenase has a
very low KM of about 0.02 mM for pyruvate (Table 2). This is by far the lowest KM of all
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enzymes utilizing pyruvate, and it means that the PDH reaction is, in principle, overriding
all other pyruvate consuming reactions. The PDH activity can be inhibited by PDH kinases
(PDKs) and stimulated by PDH phosphatases (PDPs), with PDKs activated by acetyl-CoA,
NADH, and ATP (i.e., then finally inhibiting PDH activity), and PDKs can be inhibited by
pyruvate, CoA, NAD+, and ADP (i.e., then finally allowing activation of PDH) [126]. In
short, PDH is activated by substrate availability and energy demand but inhibited by its
own products, by ATP and by NADH. Thus, due to its extremely low KM for pyruvate,
PDH must be regarded as the principal gate keeper for the use of pyruvate towards the
TCA cycle and oxidative phosphorylation.

All other enzymes at the pyruvate junction have much lower affinities for pyruvate
compared to PDH (Table 2). Pyruvate carboxylase (PC), which catalyzes the anaplerotic
production of oxaloacetate to refill the TCA cycle (Figure 1), has a KM of 0.265 mM for
pyruvate. This means that pyruvate is only used to refill oxaloacetate into the TCA cycle
when pyruvate accumulates because the TCA cycle is slowed down due to the deprivation
of its metabolites. Moreover, alanine aminotransferase (or alanine transaminase, ALT) has
an even much higher KM for pyruvate (about 2.8 mM). When we consider that the pyruvate
concentration in the cell on average is about 0.06 mM in RBCs and about 0.73 mM in cancer
cells (Table 1), this means that pyruvate is only used for the production of alanine when all
other needs for the use of pyruvate have been covered.

The KM of lactate dehydrogenase ranges in between those of PDH and ALT, depending
on the organ (Table 2). Thereby, a tissue may contain a spectrum of different isoforms
of the respective enzyme [33,34], while the enzymatic properties of each isoform are
defined by a given isoform´s subunit composition, as demonstrated by using recombinant
enzymes [117,118]. In the heart muscle, which, on the one hand, can efficiently use lactate
as a carbon source but, on the other hand, should also be able to efficiently dispose of
electrons via lactate secretion when O2 becomes limiting, a spectrum of LDH isoforms is
expressed [33,34] (Figure 1 and Table 2), of which LDH-1 (i.e., LDH-B) has a KM of only
0.1 mM for pyruvate and therefore can dispose of electrons efficiently. Erythrocytes, which
must dispose of electrons via lactate routinely since they have no mitochondria, also contain
a spectrum of LDH-1-5 isoenzymes [33,34], providing a range of KM values. In contrast,
the skeletal muscle and the liver, which should either secrete or consume lactate only above
a certain threshold, essentially express LDH-5 (LDH-A), which has a higher KM of about
0.29 mM for pyruvate (Table 2). The reason for that may be that the liver should routinely
use the lactate from erythrocytes but keep blood lactate levels high enough for lactate to be
consumed as a carbon source by the heart muscle and other organs. The skeletal muscle
must be able to dispose of electrons under limiting O2 conditions, but it should keep an
intracellular pyruvate concentration high enough to allow the use of pyruvate for many
other purposes, including the TCA cycle.

4. Switching to the Tumor Metabolic Phenotype

In cancer cells, the underlying regulatory mechanisms that result in the metabolic
reprogramming of the cell include (among others) the up-regulation of the mutated tumor
suppressor p53, Myc (Myelocytomatosis oncogene), HIF1 (hypoxia-induced factor 1), NRF2
(nuclear factor erythroid 2-related factor 2) and SQSTM1 (Sequestosome 1) [39,127–133].
These factors then up-regulate the expression of several enzymes involved in the uptake
and breakdown of glucose, including hexokinase 2 (HK2), pyruvate kinases, often including
the isoform PKM2, LDH-5 (LDH-A), pyruvate dehydrogenase kinase 1 (PDK1), which can
inhibit PDH activity according to metabolic requirements [39,41,126,127,129–131,134], as
well as the MCT-1 and MCT-4 transporters mentioned above [35–41].

In addition to glycolysis [9,11,135–137], the expression of enzymes of several biosynthesis-
related pathways is upregulated in cancer cells, including the PPP [9,11,22,135,136,138,139], which
provides riboses for the DNA and RNA synthesis, as well as NADPH, which is required in
large amounts in particular for lipid production, fatty acid synthesis [11,135,138], choles-
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terol synthesis [138], and amino acid synthesis [138]. Oncogenic viruses also cause the
reprogramming of the cells towards a cancer cell-like phenotype [138,140].

In contrast, the situation with the expression of enzymes involved in catabolic down-
stream pathways for the complete carbon-body breakdown and oxidative phosphorylation,
which finally provide energy, was found to be more diverse in cancer cells, perhaps also
due to the amphibolic nature of the TCA cycle. Some studies showed the up-regulation of
the TCA cycle and oxidative phosphorylation enzymes [9,11,19,135], whereas other studies
found these pathways down-regulated or not significantly regulated [136–138,141–143].
Not down-regulating or even up-regulating TCA and OXPHOS may make sense since
fast-growing cancer cells need a lot of energy, as illustrated by the finding that proliferating
cancer cells can up-regulate these pathways [19].

As described above, lactate dehydrogenase isoenzymes differ by their expression
among normal body tissues and by their affinities to their substrates. The LDH-1 expressed
in the heart and in red blood cells (RBCs) has a moderately low KM value of about 0.1 mM
for pyruvate. This allows the efficient disposal of lactate from RBCs, which obligatorily
secrete lactate because they do not have mitochondria. LDH-1 also allows the efficient
removal of lactate (i.e., electrons to be disposed of) from the heart muscle under limit-
ing oxygen conditions. In contrast, LDH-5, which is expressed in the liver, muscle and
other tissues, has a higher KM of about 0.29 mM for pyruvate. In addition, its KM for
NADH (0.17 mM) is higher than that of LDH-1 (0.04 mM). These higher KM values of
LDH-5 are supposed to support the disposal of electrons from the liver and other tissues
only under “electron overflow” conditions, i.e., when the TCA cycle or biosynthetic path-
ways are sufficiently supplied with pyruvate, and oxidative phosphorylation provides
enough ATP. Consistently, LDH-5 (LDH-A) was largely found to be up-regulated in many
tumors [11,133,135,138], while LDH-1 (LDH-B) was found to be down-regulated in tu-
mors [11,136]. However, for comparing the properties of LDH in tumor cells versus normal
cells, only insufficient data are available. Only one study [124] showed that the KM values of
LDH-5, partially purified from normal and breast cancer patients, for pyruvate and NADH
did not differ significantly, while the KM values for lactate and NAD+ approximately dou-
bled in tumor cells (see Table S5). The molecular basis for the latter effect was not specified
in the study. However, it can be generally stated that the kinetic parameters of a given
enzyme protein involved in pyruvate and lactate metabolism are essentially not changed by
mutations to work differently in comparison to the very same enzyme in normal tissue. In
contrast, the metabolic reprogramming in cancer cells is caused by gene expression changes
of the “normal”, unchanged “wild-type” enzyme, by changing the relative abundances of
its isoforms. In the case considered here, the normal wild-type LDH-5 (LDH-A) isoform
is up-regulated in many tumors, and this wild-type LDH-5 isoform has a lower affinity
(i.e., higher KM) for pyruvate compared to the normal wild-type LDH-1 (LDH-B) isoform,
while these differences in the KM for pyruvate are due to amino acid differences between
isoforms that cause subtle changes in the active center [120].

In addition, the version of pyruvate kinase [71] that usually is expressed in fetal as
well as in many normal adult tissues, PKM2, was reported to be up-regulated in cancer
cells [9,144] and to be regulated in a positive feedback loop with HIF1 [145]. Even though it
is widely assumed that PKM2 acts as a bottleneck in metabolite flux through glycolysis in
cancer cells [146], this view is challenged by some reports, showing that PKM2 activity is
not limiting for metabolite flux in cancer cells [57,147], and it is even dispensable for cancer
cells [148]. For PKM2, KM values for the enzymes from tumor cells were also reported
(Table 2), but the results show that neither in the absence nor in the presence of F1,6BP do
the KM values for pyruvate essentially differ among the enzymes. This again suggests that
changes in glycolysis rates in the investigated tumor cells are largely due to the expression
changes mentioned above, but they are not due to the change in intrinsic enzyme kinetic
parameters by mutation of the coding sequence of the enzyme. However, PKM2 is not the
only pyruvate kinase found to be up-regulated in cancer cells. In some cases, the subtype
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of up-regulated PK was not specified [149], or PKL/R was found up-regulated [11,135], or
PKM2 was explicitly shown not to be up-regulated [150].

Even the resulting increase in the actual metabolite concentrations in the cancerous
cells compared to non-cancerous cells has been demonstrated by some studies, including
metabolites of the TCA cycle, lactate, and amino acids [20,133]. Metabolite concentrations
after Hepatitis C Virus (HCV)-associated reprogramming of hepatocellular metabolism
were also analyzed, showing an increase in the concentrations of the metabolites of gly-
colysis [138], PPP [138], the TCA cycle [138], amino acids [138,151], fatty acid [138], and
cholesterol biosynthesis [138].

5. Maintaining the Redox Balance under the Forced Growth Conditions in Cancer Cells

Under conditions of sufficient supply of glucose both in normal and in cancer cells,
carbon-body flux through glycolysis [26], the PDH reaction, and the TCA cycle, together
with the downstream electron transport chain (and oxidative phosphorylation) in the
mitochondrion, provide enough energy in form of ATP [27] that is required for cell growth.
Thereby, the ATP yield from glycolysis in combination with PDH, TCA, and ETC/OXPHOS
is about 16-fold higher than the ATP yield provided by the sole anaerobic glycolysis [27].
Accumulating mitochondrial ATP can then slow down the TCA cycle at the isocitrate
dehydrogenase reaction, resulting in the accumulation of citrate, which can shuttle to
the cytosol and provide acetyl-CoA for fatty acid synthesis [27,29,152,153]. Moreover, in
any growing cells the synthesis of some non-essential amino acids and porphyrins also
requires to withdraw metabolites from the TCA cycle [27,154] (see Figure 3). For the above
reasons, it would absolutely not make sense for a growing cancer cell to completely shut
down the TCA cycle and ETC/OXPHOS. This idea is strongly supported by the findings
that mitochondrial function is largely retained among many tumors [20,21,155], and that
suppression of mitochondrial function resulted in impaired tumorigenicity [22].

Only under these conditions of cytosolic electron accumulation, excess electrons from
cytosolic NADH must be discharged and transferred to pyruvate, thereby forming lactate
(Figure 3), which is then exported from the cancer cell in order to get rid of the excess
electrons. In other words, lactate secretion from the tumor cell meets the short-term
needs for electron disposal from cytosolic NADH to regenerate cytosolic NAD+, which is
required to keep glycolysis running. From this view, nothing is enigmatic about lactate
secretion from tumor cells; it just serves the short-term need to dispose of the excess
cytosolic electrons.

These needs for providing both enough ATP and enough metabolites for cancer cell
growth while maintaining the cytosolic redox balance (i.e., getting rid of excess electrons)
are perfectly reflected by the KM values of the enzymes at the pyruvate junction (please
see the blow-up in Figure 3). Pyruvate dehydrogenase, the gate keeper for efficient down-
stream ATP synthesis via the TCA cycle and ETC/OXPHOS, has an extremely low KM of
0.02 mM for pyruvate (Table 2), i.e., it binds pyruvate with very high affinity. By that,
the KM of PDH is much lower than intracellular pyruvate concentrations (Table 1). Just
by these facts, we are informed about what is the most important pathway at the pyru-
vate junction in cancer cells. It is the efficient production of large amounts of ATP which
are required for the increased growth demands of the cancer cell. Even if PDH kinases
(PDKs) are overexpressed in many cancers [126], this essentially means that the PDH activ-
ity is adjusted more strictly to the metabolic requirements in the mitochondrion but not
completely stopped.

The second important pathway deriving from the pyruvate junction is the LDH
reaction. In contrast to red blood cells, which need to efficiently dispose of the electrons
from NADH and therefore largely express LDH-1 (LDH-B) with a low KM for pyruvate
of 0.1 mM, cancer cells express LDH-5 (LDH-A) with a higher KM of about 0.29 mM. This
means that only accumulating pyruvate that is not used to feed the TCA cycle is available
to accept excess “overflow” electrons and form lactate, which then disposes of the electrons
from the cells by being secreted. Thus, we can call the LDH reaction the “emergency exit”
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for overflow electrons in the cytosol. Consistently, the KM of LDH-5 for lactate, i.e., for the
reverse reaction from lactate to pyruvate, is about 16 mM, i.e., about 50-fold higher than its
KM for pyruvate.
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Figure 3. Changes in metabolite flux and maintenance of redox balance in growing cancer cells.
This view is simplified to allow the reader to focus on metabolite flux at the pyruvate junction. The
blow-up in the right part emphasizes the Michaelis constants (KM values) of enzymes at the pyruvate
junction (see Table 2), with the KM value of PKM2 shown under stimulation by F1,6BP. Orange arrows
pointing downwards indicate the slow-down of metabolite and electron flux through the TCA cycle
and ETC/OXPHOS. PPP, pentose phosphate pathway; Ser, serine; Asp, aspartate; Asn, asparagine;
Glu, glutamic acid; Gln, glutamine; Pro, proline; Arg, arginine.

Consequently, in cancer cells, the TCA cycle and ETC/OXPHOS are only moderately
slowed down by the gene regulatory mechanisms described above but not completely
stopped, allowing the ongoing production of enough ATP and TCA metabolites required for
growth. Concurrently, glycolysis and PPP flux are enhanced to allow increased withdrawal
of metabolites that are required for growth as well, including amino acids, riboses, and
NADPH (as detailed in Section 4).

Under normal conditions in non-cancerous cells, the electrons from cytosolic NADH
are transported into the mitochondrion via the malate and glycerophosphate shuttles [27],
entering the ETC/OXPHOS. Under these conditions, all electrons from the cytosolic NADH
can be discharged to the ETC and are finally transferred to O2, with no need to discharge
excess cytosolic electrons to pyruvate. In contrast, under the conditions of enhanced
glycolytic flux in cancer cells, the cytosolic NAD+ is increasingly reduced to NADH in the
GAPDH reaction, while the mitochondrial ETC/OXPHOS cannot accept all electrons from
cytosolic NADH. Since the down-regulation of the TCA cycle and ETC/OXPHOS activities
is largely managed by gene expression changes, the neat fine-tuning of these changes must
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be assumed to be slow, or even fail, compared to the need to correctly adjust the redox
balance of the cell (i.e., getting rid of excess cytosolic electrons) in every single second in
its life.

Ranked even behind LDH in the priority list for the use of pyruvate, ALT can convert
pyruvate to alanine for biosynthesis purposes, with a KM of 2.8 mM for pyruvate, i.e.,
again about 10-fold higher than the KM of LDH. Thus, also in cancer cells, alanine is only
synthesized from pyruvate when the needs for efficient ATP synthesis (by PDH, the TCA
cycle and OXPHOS), as well as the maintenance of the cytosolic redox balance by LDH,
are covered.

Taken together, the ranking list of pathways at the pyruvate junction in cancer cells is
as follows: (1) the production of sufficient amounts of ATP via PDH, the TCA cycle, and
ETC/OXPHOS; (2) maintenance of the cytosolic redox balance by disposing of overflow
electrons via the LDH reaction; and (3) the use of pyruvate for the synthesis of oxaloacetate
(PC reaction) and alanine (ALT reaction). Thereby, the secretion of lactate meets the
short-term needs of the cell for maintaining the cytosolic redox balance, compensating
possible imbalances between the up-regulation of glycolysis and the down-regulation of
ETC/OXPHOS. Only beyond this, lactate secretion can become obligatory when O2 is
actually in short supply, e.g., in tumors with insufficient vascularization.

The cotransport of lactate and protons by MCT-1—4 transporters takes place according
to intracellular and extracellular lactate concentrations, since MCTs are energy-independent
transporters [36]. However, the secretion of large amounts of lactate may lead to lactate
acidosis. While this may be compensated in the body by changes in respiration, as well as
by the balance between reduced hepatic urea formation and renal bicarbonate elimination
versus increased renal NH4

+ secretion, it is known for non-tumorous adipocytes that lactate
inhibits glycolysis via signaling by the lactate receptor GPR81, resulting in a decrease in the
cAMP concentration [156]. In contrast, in breast cancer cells, this negative feedback loop of
lactate on glycolysis appears to be ineffective, since the knockdown of the lactate sensor
GPR81 actually decreased expression of hexokinase 2, PFK-1, LDH-A, and MCT-4, as well
as lactate secretion [157]. In turn, this means that the lactate sensing by the breast cancer
cells causes an increased expression of lactate transporters and glycolysis enzymes (of these,
LDH-A and MCT-4 are those isoenzymes with the highest KM in their respective spectrum
of isoenzymes), thereby supporting cancer cell growth irrespective of the acidification of
the environment by lactate.

The above idea of using the LDH reaction as a temporary “emergency exit” for cytoso-
lic overflow electrons only for a fraction, but not for all of the metabolized glucose, also
makes sense when we consider the stoichiometry of carbon atoms during glucose break-
down. In glycolysis, one C6 glucose molecule is split into two C3 units (glyceraldehyde-
3-phosphate), giving rise to two molecules of NADH [26]. If these two NADH molecules
would serve to quantitatively produce two molecules of lactate from pyruvate in the LDH
reaction, the cell would secrete stoichiometric amounts of lactate, but no carbon-body
units would be left for any biosynthesis reactions deriving from the glycolysis metabolites
downstream of glucose-6-phosphate. While these considerations do not apply to the PPP
since it derives upstream of the GAPDH reaction, they apply in particular to lipid synthesis,
which requires carbon input into the TCA cycle. Thus, quantitatively discharging the
electrons from cytosolic NADH only to pyruvate (forming lactate) would be absolutely
useless for a growing cancer cell.

Therefore, we must consider that a certain fraction of cytosolic NADH must always
discharge its electrons in the mitochondrial ETC, since only then the remaining carbon-
body backbones can be used for synthesizing lipids and certain amino acids. These various
requirements must be continuously balanced and fine-tuned in the growing cell in a
dynamic way to meet the requirements of both ATP production and biosyntheses. Thereby,
the LDH enzymes help to keep the required redox balance in the cytosol in the cancer cells.
Consequently, a complete LDH knockout [158,159] switches the cells to a “respiration only”
phenotype (i.e., abolishes the Warburg effect) but does not kill the cells.
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The notion that the LDH reaction is only used as an “emergency exit” for cytosolic
overflow electrons does not mean that under the comfortable conditions of the supply
of a tumor with plenty of glucose, lactate production cannot be wasteful. In the early
experiments of Cori and Cori with chicken wing tumors (Table II in [4]), 23 mg of glucose
resulted in the production of 16.2 mg of lactate. This means that on average, about 73%
of the glucose entering a tumor was converted to lactate. Otto Warburg also found that a
Jensen sarcoma converted about 68% of the incoming glucose into lactate (Tables II and IV
in [5]). From a more recent tracer study, we can calculate that about 73% of glucose was
converted into lactate by the cancer cells (calculated from the consumption of glucose and
the production of lactate after 5 h, shown in the lower panel of Figure 2D in [68]). From an
NMR study, we can calculate that about 52% of the input glucose had been converted to
lactate in Huh-7 hepatoma cells (calculated from the data in Table 1 in [160]). In a study
with about 80 non-small cell lung cancer cells lines, the authors found that both the extent
of lactate secretion and the ratio of molecules of secreted lactate per molecules of input
glucose largely varied among different cancer cell lines [161]. However, the above findings
also make it sufficiently clear that not all of the incoming glucose is stoichiometrically
converted to lactate (which, as detailed above, would not make sense for growing cells).

In turn, from the above considerations, we can also conclude that it is sufficient
for the tumor cells to establish a relatively raw balance between the down-regulation of
the disposal of electrons from cytosolic NADH through ETC/OXPHOS on the one hand,
and the up-regulation of glucose uptake, glycolysis, and the withdrawal of carbon-body
backbones for biosynthesis purposes on the other hand, since a quite large fraction of
cytosolic overflow electrons can take the “emergency exit” to lactate.

6. Conclusions

Cancer cells reprogram their metabolism to meet the requirements of uncontrolled
growth. The tumor cells derive from normal cells by several mutations that either knock
down or knock out functions involved in growth control, as well as by mutations that
often result in uncontrolled overactivities that promote cell proliferation. Thereby, the
uptake and consumption of glucose by tumor cells is grossly increased to feed the PPP
and the glycolysis with metabolites for biosynthesis reactions. At the same time, the
downstream bottle-neck of the TCA cycle and OXPHOS is usually roughly kept in its
normal activity state, or it is even down-regulated to allow the accumulation of upstream
metabolites, which are then available for a massive increase in biosynthesis reactions for
growth. Remarkably, the TCA cycle and OXPHOS activity are primarily maintained in
cancer cells to allow efficient ATP production when oxygen is available. However, since
such gross changes in gene expression and protein activities—at least those caused by
somatic mutations—are usually not inherited, but often kill the host, we can assume that
often there may have been no chance and also no need during evolution for a delicate
fine-tuning of the balance between the above metabolic reprogramming events. Under
the above conditions of up-regulated glycolysis, the production of NADH in the GAPDH
reaction may therefore exceed the capacity of OXPHOS to re-oxidize cytosolic NADH to
NAD+. Simply, this is the reason why cancer cells secrete lactate even under a sufficient
oxygen supply (the phenomenon called the Warburg effect).

Careful inspection of the properties of the enzymes utilizing pyruvate in normal
cells reveals that they are well-suited for that task in various tissues, as detailed in
Sections 2 and 3 above. In cancer cells, the properties of these enzymes at the pyruvate
junction are not changed by cancer mutations but remain the same, while selected enzymes
are expressed in isoenzyme variants with higher KM values to increase metabolite con-
centrations in the cancer cells. One of them is LDH-5 (LDH-A), which is up-regulated in
many cancer cells to ensure disposal of only overflow electrons by virtue of the higher KM
value of LDH-5 for pyruvate (0.29 mM), in comparison with that of its isoenzyme LDH-1
(0.1 mM). This keeps the pyruvate concentrations in the cancer cells high enough, both
for efficient ATP production by the TCA cycle/OXPHOS and for biosynthesis reactions
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branching from the pyruvate junction. This is supported by changes in lactate transporter
expression towards MCT-4 and MCT-1, which also have higher KM values, to support the
increase in intracellular metabolite concentrations.

In the combined view of both aspects—the uncontrolled cytosolic redox imbalance and
the appropriate KM values of the pyruvate junction enzymes—the above considerations
provide a rather simple solution for a phenomenon that was regarded unsolved for decades
of cancer research. Such a simple solution for a rather complex problem may appear
counter-intuitive at first sight. However, the solution of a problem can be surprisingly
more simple than it may be expected in relation to the importance of the problem [162].
For example, the complex task of regulating the blood glucose level in the body can be
basically attributed to a simple property of a single enzyme, the KM value of glucokinase
expressed in the pancreatic β-cells and hepatocytes [26,163]. In a similar way, the KM
values of the enzymes at the pyruvate junction are appropriate to rescue the cytosolic redox
balance in the cell, even under the rough conditions of rather unbalanced gene expression
deregulation in cancer cells. Under such conditions, insufficient electron discharge in
the respiratory chain can be compensated by disposing of cytosolic overflow electrons
towards pyruvate, thereby taking the “emergency exit” by secreting lactate. However,
pyruvate must also be available for other reactions, in particular pyruvate dehydrogenase
and pyruvate carboxylase; therefore, the threshold for electron disposal using pyruvate
should not be too low.

Accordingly, the first priority for the use of pyruvate in growing cancer cells is the
efficient generation of ATP by the TCA cycle and OXPHOS—reflected by the very low KM
of PDH for pyruvate (KM = 0.02 mM). The second priority is the maintenance of the redox
balance in the cell by LDH (KM = 0.1–0.29 mM). Equally importantly, pyruvate carboxylase
(KM = 0.265 mM) needs to refill the depleted TCA cycle metabolites. The production of
alanine from pyruvate by ALT (KM = 2.8 mM) is only the third priority. These enzymatic
properties of the key enzymes at the pyruvate junction are in full accordance with lactate
secretion from tumor cells being a consequent and required measure for maintaining the
cytosolic redox balance by disposing the overflow electrons via lactate secretion.

According to the important role of lactate in tumor metabolism, the inhibition of LDHs
and MCTs is considered an option in cancer therapy and is already used in preclinical
and clinical trials [164,165]. Likely due to the important role of LDH-5 (LDH-A) in raising
the intracellular pyruvate concentration in cancer cells by its higher KM value (see above),
LDH-5 expression correlates with a decrease in patient survival [166]. While the deletion
of LDH-5 can partially inhibit carcinoma development [167], lactate secretion from cancer
cells can be completely prevented only by the double knockout of LDH-A and LDH-
B [158,159,166]. However, even the double knockout does not kill the cancer cells but just
switches them to an aerobic phenotype with efficient ATP production via the TCA cycle
and OXPHOS [158,159,166]. Therefore, the pharmacological inhibition of LDHs and MCTs
may contribute to the limitation of cancer cell growth, but it appears unlikely that it will
generally kill tumor cells.

In addition, the potential clinical use of LDH or MCT inhibitors may be considered
with some caution not only because of known adverse effects [165], but also because of
the role of lactate in the metabolism of many body tissues. As discussed above, lactate is
produced as well as consumed by many tissues [61]. In the heart muscle, such inhibitors
may cause critical states under conditions of fasting, oxygen limitation or exercise. In
erythrocytes, such inhibitors may interfere with the obligatory disposal of electrons, and
in the liver with the removal of erythrocytes’ lactate from the blood. Therefore, treatment
with LDH or MCT inhibitors may be suspected to cause severe side effects.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cancers16132290/s1, Table S1: Experimentally determined
substrate concentrations (related to Table 1); Table S2: Experimentally determined KM values of
pyruvate kinase (PK) (related to Table 2); Table S3: Experimentally determined KM values of pyruvate
dehydrogenase (PDH) and pyruvate carboxylase (PC) (related to Table 2); Table S4: Experimentally
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determined KM values of glutamate-pyruvate transaminase (GPT) (alanine transaminase, ALT)
(related to Table 2); Table S5: Experimentally determined KM values of lactate dehydrogenase (LDH)
(related to Table 2).
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