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Simple Summary: Lung cancer remains a leading cause of cancer-related mortality globally, requiring
new diagnostic and therapeutic approaches. This research arises from the need to improve diagnostic
accuracy and treatment effectiveness for patients with non-small cell lung cancer. The authors aim
to systematically evaluate the potential of emerging biomarkers, including circulating tumor DNA,
microRNAs and mutational load of blood tumors and their relationship with different treatments.
The findings of this study could have a significant impact on the research community by providing a
basis for integrating these biomarkers into clinical practice, thereby improving personalized treatment
strategies and patient outcomes in non-small cell lung cancer.

Abstract: Non-small-cell lung cancer (NSCLC) comprises approximately 85% of all lung cancer
cases, often diagnosed at advanced stages, which diminishes the effective treatment options and
survival rates. This systematic review assesses the utility of emerging biomarkers—circulating tumor
DNA (ctDNA), microRNAs (miRNAs), and the blood tumor mutational burden (bTMB)—enhanced
by next-generation sequencing (NGS) to improve the diagnostic accuracy, prognostic evaluation,
and treatment strategies in NSCLC. Analyzing data from 37 studies involving 10,332 patients from
2020 to 2024, the review highlights how biomarkers like ctDNA and PD-L1 expression critically
inform the selection of personalized therapies, particularly beneficial in the advanced stages of
NSCLC. These biomarkers are critical for prognostic assessments and in dynamically adapting
treatment plans, where high PD-L1 expression and specific genetic mutations (e.g., ALK fusions,
EGFR mutations) significantly guide the use of targeted therapies and immunotherapies. The
findings recommend integrating these biomarkers into standardized clinical pathways to maximize
their potential in enhancing the treatment precision, ultimately fostering significant advancements
in oncology and improving patient outcomes and quality of life. This review substantiates the
prognostic and predictive value of these biomarkers and emphasizes the need for ongoing innovation
in biomarker research.

Keywords: biomarkers; early diagnosis; personalized treatments; immunotherapy; survival; tumor
genetics; non-small-cell lung cancer

1. Introduction

Non-small-cell lung cancer (NSCLC) represents approximately 85% of all lung cancer
cases and necessitates early detection to improve clinical outcomes [1–3]. Traditionally,
NSCLC management includes surgery, chemotherapy, and radiation therapy, the effective-
ness of which varies significantly based on the stage at diagnosis. Unfortunately, about
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60% of patients are diagnosed in advanced stages [4], reducing the likelihood of curative
treatment and increasing the mortality rate [5,6].

In 2020, lung cancer accounted for 2.2 million new cases and 1.8 million deaths globally,
constituting 11.4% and 18% of all cancer cases and deaths, respectively. Approximately
65.33% of male cases were diagnosed at advanced stages (III or IV), contributing to the high
mortality rates, particularly in regions with significant exposure to carcinogens like tobacco
smoke in Central Europe and air pollution in China [7,8]. Notably, China experienced
about 820,000 new cases and 715,000 deaths alone, indicating a rise in both incidence and
mortality since 2015. In contrast, the U.S. reported 57% of cases at the metastatic stage,
while the late-stage diagnosis rates were extraordinarily high in Mexico (98–99%), Brazil
(70%), and Peru (85.5%), highlighting the need for early detection programs [9]. Colombia,
dealing with environmental and occupational exposure, sees 6876 new cases yearly and
considers lung cancer as its sixth most prevalent cancer, although recent trends suggest
declining rates. Despite the common association with smoking, 12% of patients worldwide
have never smoked, underscoring the influence of other risks, such as environmental
pollutants [9].

NSCLC is a highly heterogeneous disease, exhibiting significant variability at both the
molecular and clinical levels. This heterogeneity, which encompasses genetic mutations,
histological subtypes, and tumor microenvironments, critically impacts treatment responses
and overall prognosis [10,11]. Adenocarcinomas (ADCs) and squamous cell carcinomas
(SCCs) are the predominant histological types of NSCLC, each associated with distinct
genetic profiles. ADCs frequently harbor mutations in genes such as KRAS, EGFR, and
ALK, while SCCs often exhibit alterations in DDR2, FGFR1, and the PI3K pathway [10–12].
The recognition of these genetic diversities has led to the development of targeted therapies,
although their effectiveness is often short-lived due to acquired resistance. Additionally, the
tumor microenvironment, comprising fibroblasts, immune cells, and extracellular matrix
components, further complicates the disease landscape by influencing tumor progression
and treatment responses [10,13–15]. The effective management of NSCLC requires well-
documented diagnostic comparisons to tailor treatment strategies. Incorporating advanced
biomarkers into diagnostic protocols, such as circulating tumor DNA (ctDNA), microRNAs
(miRNA), and the blood tumor mutational burden (bTMB), is essential in identifying
actionable mutations and predicting therapeutic responses [16,17].

ctDNA is crucial in detecting actionable mutations and monitoring tumor progression
non-invasively, serving as both a predictive and prognostic biomarker [18,19]. PD-L1 is
another relevant biomarker, as its expression in tumor cells can predict the response to
immunotherapies, such as checkpoint inhibitors, making it a key predictive biomarker [20].
miRNAs play a vital role in NSCLC by acting as key regulators in cancer progression and
as potential biomarkers for prognosis and treatment responses. Some, like miRNA-21,
have been shown to be important predictors of the response to immunotherapy [21–23].
Finally, bTMB can be an important predictive indicator of the response to immunother-
apies. Together, these biomarkers enable the more precise detection of NSCLC and the
personalization of treatments, thereby improving the clinical outcomes.

The clinical outcomes for lung cancer are closely related to the stage at which the cancer
is diagnosed. For example, patients diagnosed at stage I have a five-year survival rate of
68.4%, while those diagnosed at stage IV have a significantly lower survival rate of just
5.8% [24]. Unfortunately, most lung cancers are diagnosed at stage IV, associated with lower
survival rates and a higher symptom burden. Early screening and detection significantly
reduce lung cancer mortality [25]. The standard of care for NSCLC patients at stages I and
II, and some at stage IIIA, is surgical resection, followed by adjuvant systemic therapy if
needed. The introduction of osimertinib, a third-generation oral tyrosine kinase inhibitor,
for adjuvant therapy in completely resected NSCLC at stages II and III has shown promising
results [24]. Systemic treatment options for metastatic NSCLC include chemotherapy,
targeted therapy, and immunotherapy, with specific tests for driver mutations in non-
squamous tumors for more effective and less toxic treatment [24]. While the development
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and integration of osimertinib and other systemic treatments have marked a significant
improvement in the care for patients with early and metastatic NSCLC, the role of molecular
diagnostics has become increasingly central in the management of this disease [26].

Next-generation sequencing technologies have transformed NSCLC treatment by
providing a comprehensive genetic snapshot of individual tumors. This advanced genomic
profiling helps to identify actionable mutations and biomarkers, critical in customizing
patient care [27,28]. By pinpointing specific genetic alterations, clinicians can select targeted
therapies that are more likely to be effective, improving treatment outcomes and reducing
unnecessary side effects [29,30].

Identifying specific genetic alterations, such as epidermal growth factor receptor
(EGFR) mutations, NGS facilitates the development of targeted treatment strategies [31,32].
These strategies have significantly evolved to enhance the progression-free survival (PFS)
and overall survival (OS) rates, particularly for NSCLC patients with EGFR mutations.
EGFR mutations, primarily the exon 19 deletions (ex19del) and the L858R point mutation
in exon 21, represent 85–90% of all EGFR mutations and are highly sensitive to EGFR
tyrosine kinase inhibitors (EGFR-TKIs). However, the T790M mutation in exon 20, less
common at diagnosis, is associated with about half of the cases of resistance to first- and
second-generation EGFR-TKIs [31,33]. EGFR mutations, which occur in approximately
10% of cases in North America and Western Europe and between 30 and 50% in East Asia,
are predictive of a good response to EGFR-TKIs. Clinical trials have demonstrated a 54%
improvement in progression-free survival and a 6.8-month absolute benefit in overall
survival with this medication [9,34].

Genes such as ALK, ROS1, BRAFV600E, and NTRK have also been identified as
critical in developing targeted treatment strategies [35,36]. Immunotherapy with agents
such as nivolumab, pembrolizumab, and atezolizumab, which inhibit PD-1 and PD-L1,
has been shown to increase survival in NSCLC. However, resistance to these therapies
persists, prompting ongoing research to develop combinations of targeted therapies and
immunotherapies that address these resistance challenges [37,38].

ROS1 rearrangements, present in approximately 1–2% of NSCLC patients, are sensitive
to the ROS1/MET inhibitor crizotinib, which has shown a response rate of 72% [9,39].
Lorlatinib has been effective against acquired resistance to crizotinib in NSCLC positive
for ROS1, and entrectinib has been approved for these cases. KRAS mutations, the most
common type of driver mutation in lung cancer, often found in individuals with a history
of smoking, have recently been targeted by sotorasib, a new agent directed at KRAS G12C
mutations, showing a response rate of 32% in clinical trials [9].

These advancements underscore the importance of biomarkers in personalizing
NSCLC treatment, offering hope for significant improvements in patient outcomes through
more targeted therapies. This review systematically examines recent studies on the identi-
fication and application of emerging biomarkers in NSCLC treatment, focusing on their
utility in informing therapeutic decisions and improving survival outcomes. By contribut-
ing to the existing body of knowledge, this review emphasizes the impact of biomarkers on
personalizing oncological treatment and enhancing the clinical outcomes in NSCLC.

2. Materials and Methods
2.1. Study Protocol

This systematic review was conducted in accordance with the guidelines of the
Cochrane Collaboration Handbook and reported considering the recommendations for sys-
tematic reviews and meta-analyses of the PRISMA statement [40]. The research was formu-
lated considering the PICO strategy (Population, Intervention, Comparison, Outcomes) [1].

2.2. Research Question

In patients with non-small-cell lung cancer (NSCLC) (P), how have emerging biomark-
ers (I), compared to non-specific or previously established biomarkers (C), impacted the
diagnostic accuracy and prognostic value and informed treatment strategies, including
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predictive monitoring and treatment maintenance strategies, particularly in the context of
immunotherapy and palliative care, over the last five years, in terms of reducing symp-
tomatology or improving quality of life (O)?

2.3. Eligibility Criteria
2.3.1. Inclusion Criteria

The inclusion criteria were as follows:

• Manuscripts published between 2020 and 2024;
• Studies including predictive biomarkers;
• Studies including diagnostic biomarkers;
• Studies including monitoring biomarkers;
• Clinical follow-up studies with biomarkers for oncological treatments (predictive

biomarkers);
• Full-access articles;
• Articles in English;
• Clinical trials.

2.3.2. Exclusion Criteria

• Articles in pre-print mode or letters to the editor;
• Studies with biomarkers not specific to NSCLC;
• Studies published >5 years ago;
• Studies with inconclusive experimental designs;
• Studies of selected population analysis;
• Quality of life studies;
• Studies on treatment maintenance strategies and palliative care management.

2.4. Data Sources and Search Strategy

The search was conducted in the following databases: PubMed, Cochrane Clinical
Trials, SCOPUS, ScienceDirect, Biomed Central (BMC), Web of Science, Springer, and
the Virtual Health Library (VHL). No language filters were applied, and the date range
was set between 2020 and 2024. The search strategy was designed and executed from
November 2023 to January 2024 by two researchers independently (D.M. and J.-C.R.L.).
Terms (keywords) were combined using the Boolean operators AND and OR (see search
details in Appendix A). The references of relevant articles were reviewed, and additional
web searches were conducted to identify studies not evident through initial tracking. When
necessary to confirm the clinical trial or expand the information of a study, access to
ClinicalTrials.gov (https://clinicaltrials.gov/ (accessed on 18 September 2023)) was sought,
if applicable. Data were stored using Zotero version 6.0 (accessed on 23 November 2023).

2.5. Selection and Data Extraction

The selection of potentially eligible studies was carried out independently by the two
researchers, initially examining the title, abstract, and subsequently the full text. Studies
whose relevance was unclear were discussed thoroughly, and the decision to include
them in the review was reached by consensus. Two reviewers (J-C.R.L. and Y.L.) extracted
information from the primary studies considering the details of the clinical trial (first author,
year of publication), country, type of design, biological sample, number of participants, age
of participants, sex of participants, biomarker evaluated, method of biomarker analysis,
cut-off value, sensitivity and specificity of biomarkers, predictive and prognostic value,
diagnostic performance, overall survival (OS) and progression-free survival (PFS), hazard
ratios (HR) and 95% confidence intervals (CI) for tumor size, TNM stage, survival rates,
treatment, statistical methods used for biomarker evaluation, fold change, p-value, and
conclusions. Subsequently, a third and fourth reviewer (A.P. and D.M.G.) verified the
integrity and accuracy of the recorded information.

https://clinicaltrials.gov/
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2.6. Risk of Bias Assessment

The risk of bias in the primary studies was assessed by independent reviewers utiliz-
ing standardized instruments attuned to the core design elements of clinical trials. Data
for this assessment were entered into Review Manager version 5.4® (RevMan, accessed
on 23 January 2024), considering the following criteria: generation of random sequences,
allocation concealment, blinding of participants and personnel, blinding of outcome as-
sessments, completeness of outcome data, and avoidance of selective reporting. The RCTs
were judged to have a low or high risk of bias based on their conformity to pre-established
guidelines.

For each domain, the risk was classified as “low”, “high”, or “unclear”, in line with
the evaluative scales provided by the Cochrane Risk of Bias tool (accessed on 9 June 2023)
for randomized trials and the ROBINS-I tool for non-randomized trials [41,42]. Any
discrepancies found during the risk of bias assessment were addressed and resolved
through discussions between the reviewers until a consensus was reached.

2.7. Ethical Considerations

During the development of this study, no interventions were made regarding the
demographic and physiological variables of the participants. Therefore, this research work
was considered of minimal risk according to Resolution No. 8430 of 1993 of the Colombian
legislation and the Declaration of Helsinki.

3. Results
3.1. Characteristics of the Included Studies

Following an extensive search across the referenced databases, a total of 625 articles
were initially retrieved from eight databases. Of these, 114 were identified as duplicates
and subsequently removed. The remaining articles underwent a title and abstract screening
process, resulting in 394 articles being assessed. This screening led to the exclusion of
247 articles, and a Cohen’s kappa coefficient of 0.92 was calculated at this stage, suggesting
a high level of agreement between the reviewers. Further evaluation was carried out on
the full texts of the remaining 147 articles to determine their eligibility for inclusion in
the review. During this phase, 31 articles were excluded due to their lack of relevance to
the review topic, 54 were discarded due to having insufficient data, 9 were identified as
additional duplicates within the dataset, and 14 were excluded as they did not match the
required study type, and a Cohen’s Kappa coefficient of 0.823 was obtained, evidencing
substantial agreement, slightly below that in the initial screening. Ultimately, 37 studies
satisfied all inclusion criteria and were included in the systematic review. The details of the
study selection process are depicted in the PRISMA [43] flowchart illustrated in Figure 1.
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Figure 1. PRISMA flow diagram with the search and study selection strategy. Cohen Kappa = 0.92 y
Cohen Kappa = 0.82 shows a high level of agreement between the reviewers, which gives reliability
and validity to the results.

3.2. Findings of the Studies

Table 1 summarizes the characteristics of the 37 studies reviewed, which included both
randomized clinical trials (RCTs) (29 studies) and non-randomized trials (eight studies).
These studies involved a total of 10,332 patients with NSCLC, examining a variety of
emerging biomarkers through the analysis of peripheral blood samples for ctDNA and
tumor biopsies. The studies predominantly focused on patients with advanced stages of
NSCLC (IIIB-IV), ranging in age from 18 to 91 years, with a median age of 59 ± 20 years.
The gender distribution was approximately 54.9% male and 45.1% female.

Most of the research focused on ctDNA as a biomarker, analyzing specific mutations
such as ALK fusions, EGFR exon 20 insertions, bTMB, PD-L1 expression, and other genomic
alterations, including mutations in EGFR, BRCA2, BRINP3, FBXW7, KIT, and RB1 and the
EGFR T790M mutation [44–47]. Biomarkers related to the immune response were also eval-
uated, including the responses of circulating immune cells and gene expression profiles.
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Table 1. Synthesis of studies included in systematic review.

Author and
Publication Year Country Type of Design Biological Sample Number of

Participants Age of Participants Sex of Participants Biomarker Evaluated

Ren et al., 2022
[48] China Randomized

Clinical Trial
Peripheral blood
ctDNA samples 389 18 to 75 years.

Men and women
participated, but most

patients were men
ctDNA dynamics

Yang et al., 2023
[49] China Randomized

Clinical Trial
Peripheral blood
ctDNA samples 248

Median age 54.0 years
(brigatinib group),

53.0 years (alectinib
group)

54% female (brigatinib), 55%
female (alectinib) ALK fusions in plasma ctDNA

Riess et al., 2021
[50] USA Randomized

Clinical Trial
Peripheral blood
ctDNA samples 11 60 (51–70) 27% male, 73% female EGFR exon 20 insertions

Lo Russo et al., 2022
[51] USA Randomized

Clinical Trial
Peripheral blood
ctDNA samples 65

Median age was
70.9 years (Q1–Q3:

63.7–77.1 years)

21 (32.3%) were female and
the rest were male

36 immunobiomarkers like
CD14, CD15, CD16, CD33,

CD56, CD19, CD3, HLA-DR

Garon et al., 2023
[52] USA, Japan Randomized

Clinical Trial
Peripheral blood
ctDNA samples 449 NS NS

The biomarkers evaluated were
EGFR and co-

occurring/treatment-emergent
(TE) genomic alterations in

ctDNA

Han et al., 2023
[53] China Non-Randomized

Clinical Trial
Peripheral blood
ctDNA samples 40 18 to 75 years NS bTMB through ctDNA profiling

Si et al., 2021
[54] USA Randomized

Clinical Trial
Peripheral blood
ctDNA samples 809 NS NS bTMB

Jiang et al., 2021
[55] China Randomized

Clinical Trial

Tumor biopsies for
whole-exome and

transcriptome
sequencing and

plasma samples for
ctDNA analysis

40 18 to 75 years old
Included both male (19,

47.5%) and female (21, 52.5%)
patients

PD-L1, TMB, CD8+ TIL density,
DSPP

Zhang et al., 2024
[56] China Randomized

Clinical Trial
Peripheral blood
ctDNA samples 47

Median age was
65 years (range:

52–76)

Mostly male (45/46, 97.8%);
females (1/46, 2.2%)

ctDNA dynamics, BRCA2,
BRINP3, FBXW7, KIT, RB1

Tan et al., 2024
[44] Australia Non-Randomized

Clinical Trial
Peripheral blood
ctDNA samples 47

Median age was
60 years (range:

32–86)
62% female, 38% male EGFR T790M, EGFR exon 19

deletion, L858R mutation
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Table 1. Cont.

Author and
Publication Year Country Type of Design Biological Sample Number of

Participants Age of Participants Sex of Participants Biomarker Evaluated

Kim et al., 2022
[57] USA Randomized

Clinical Trial
Peripheral blood
ctDNA samples 152 NS NS bTMB

Peters et al., 2022
[58] Multinational Randomized

Clinical Trial
Peripheral blood
ctDNA samples 471 NS NS bTMB

Chaft et al., 2022
[59] USA Non-Randomized

Clinical Trial Tumor samples 181
Median age of

65 years (range:
37–83)

93 females (51%)
Major pathological response

(MPR), PD-L1 tumor
proportion score (TPS)

Shi et al., 2022
[60] China Randomized

Clinical Trial
Peripheral blood
ctDNA samples 290 18 to 75 years Majority male (93.8%

sintilimab, 90.4% docetaxel)
PD-L1, OVOL2, CTCF via
tissue/blood sequencing

Papadimitrakopoulou
et al., 2020 [45] Multinational Randomized

Clinical Trial
Peripheral blood
ctDNA samples NS NS NS EGFR mutations

Sakai et al., 2021a
[46] Japan Randomized

Clinical Trial

Formalin-fixed
paraffin-embedded

tumor tissue
389 NS NS Tumor mutation burden (TMB)

Park et al., 2023
[61] South Korea Non-Randomized

Clinical Trial
Peripheral blood
ctDNA samples 100 NS 84 male, 16 female bTMB, cfDNA concentration,

hVAF, VAFSD

Park et al., 2021
[47] South Korea Randomized

Clinical Trial
Peripheral blood
ctDNA samples 19

Median age of
70 years (range:

32–84)

13 females (68%) and 6 males
(32%)

Activating EGFR mutations in
ctDNA and tumor DNA

Gu et al., 2023
[62] China Randomized

Clinical Trial
Peripheral blood
ctDNA samples 92 Median age 65 years 34% male and 66% female

EGFR mutations, ctDNA for
minimal residual disease

(MRD)

Han et al., 2022
[63] China Non-Randomized

Clinical Trial
Peripheral blood
ctDNA samples 33 Median age 56 years

(range: 31–71)
26 males (78.79%) and

7 females (21.21%)
ctDNA analysis with 448-gene
panel for short-term dynamics

Zhong et al., 2023
[64] China Randomized

Clinical Trial
Peripheral blood
ctDNA samples 69

Median age was
58 years (range:

33–76 years)

38 males (55.1%) and
31 females (44.9%)

EGFR mutation detection via
ctDNA

García-Pardo et al.,
2023 [65] Canada Non-Randomized

Clinical Trial
Peripheral blood
ctDNA samples 150

Median age at
diagnosis 68 years

(range: 33–91 years)

80 men (53%), 70 women
(47%) ctDNA genotyping
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Table 1. Cont.

Author and
Publication Year Country Type of Design Biological Sample Number of

Participants Age of Participants Sex of Participants Biomarker Evaluated

Nomura et al., 2020
[66] Japan Randomized

Clinical Trial
Peripheral blood
ctDNA samples 216 NS Both males and females (NS) ctDNA (Guardant360®

ancillary study)

Martini et al., 2022
[67] Italy Non-Randomized

Clinical Trial

Basal fecal samples
and peripheral blood
samples for ctDNA

analysis

14 NS NS
Gut microbiota species and

ctDNA RAS/BRAF WT MSS
disease

Provencio et al.,
2022 [68] Spain Non-Randomized

Clinical Trial

Peripheral blood
samples for ctDNA

analysis and
formalin-fixed

paraffin-embedded
tissue samples

46 Median age was
67.6 years Majority male (66.5%) ctDNA analysis for prognosis

and predictive value

West et al., 2022
[69]

Multinational
study

Randomized
Clinical Trial

Peripheral blood
ctDNA samples 920 NS

Both males and females
included, exact distribution

not provided

KRAS, STK11, KEAP1, TP53
mutations

Lo Russo et al., 2023
[70] Italy Randomized

Clinical Trial

Blood and stool
samples for

circulating immune
profiling and gut

bacterial taxonomic
abundance analysis

65
Median age was

70 years, with a range
of 47–87 years

44 men (68%) and 21 women
(32%)

Immune circulating cell subsets
and gene expression levels

Zhou et al., 2023
[71]

Multinational
study

Randomized
Clinical Trial

Formalin-fixed
paraffin-embedded

tumor tissue for
PD-L1 expression

assessment

NS NS
Both males and females
included, but the exact

distribution is not provided

PD-L1 expression on
tumor cells

Sakai et al., 2021b
[72] Japan Randomized

Clinical Trial
Peripheral blood
ctDNA samples 52 Median age 67 (range:

37–82 years)
17 male (32.7%), 35 female

(67.3%)
EGFR genomic alterations

including the T790M mutation

Redman et al., 2020
[73] USA Randomized

Clinical Trial

Formalin-fixed
paraffin-embedded

tumor specimens for
genomic DNA

extraction

1864 NS Both males and females
included

Multiple biomarkers defined
by the FoundationOne®

NGS assay
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Table 1. Cont.

Author and
Publication Year Country Type of Design Biological Sample Number of

Participants Age of Participants Sex of Participants Biomarker Evaluated

Hirsch et al., 2022
[74] USA Randomized

Clinical Trial

Formalin-fixed
paraffin-embedded
tumor specimens

1313 NS Both males and females
included

EGFR copy number and
protein expression

Schuler et al., 2020
[75]

Multinational
study

Randomized
Clinical Trial Tumor samples 55 Median age was

60 years
Both males (60%) and

females (40%) MET dysregulation

Gadgeel et al., 2022
[76]

Multinational
study

Randomized
Clinical Trial Tumor samples 577 NS Both males and females

included PD-L1 expression

Ramalingam et al.,
2021 [77]

Multinational
study

Randomized
Clinical Trial

Formalin-fixed
paraffin-embedded

tumor samples
970 NS Both males (82%) and

females included
52-gene expression histology

classifier (LP52)

Song et al., 2022
[78] China Randomized

Clinical Trial
Peripheral blood
ctDNA samples 78 Median age 62 years Both male (47.4%) and female

(52.6%) participants HER2 mutations

Anagnostou et al.,
2023 [79]

Multinational
study

Randomized
Clinical Trial

Peripheral blood
ctDNA samples 50 NS Both males and females

included ctDNA dynamics

Park et al., 2021
[80] South Korea Randomized

Clinical Trial
Peripheral blood
ctDNA samples 21 Mean age of 68.5

years 17 females and 4 males EGFR exon 19 deletions, exon
21 point mutations (ctDNA)

ctDNA: Circulating Tumor DNA; ALK: Anaplastic Lymphoma Kinase; EGFR: Epidermal Growth Factor Receptor; bTMB: Blood Tumor Mutational Burden; TMB: Tumor Mutational
Burden; PD-L1: Programmed Death Ligand 1; MPR: Major Pathological Response; TPS: Tumor Proportion Score; MRD: Minimal Residual Disease; cfDNA: Circulating Free DNA;
hVAF: High Variant Allele Frequency; VAFSD: Variant Allele Frequency Standard Deviation; NGS: Next-Generation Sequencing; IHC: Immunohistochemistry; HR: Hazard Ratio;
CI: Confidence Interval; OS: Overall Survival; PFS: Progression-Free Survival; RECIST: Response Evaluation Criteria In Solid Tumors; ORR: Objective Response Rate; NSCLC: Non-Small-
Cell Lung Cancer; Mb: Megabase; BRCA2: Breast Cancer 2, Early Onset; DSPP: Dentin Sialophosphoprotein; CTCF: CCCTC-Binding Factor; OVOL2: Ovo-Like Transcriptional Repressor
2; FFPE: Formalin-Fixed Paraffin-Embedded; KRAS: Kirsten Rat Sarcoma Viral Oncogene Homolog; ABCP: Atezolizumab, Bevacizumab, Carboplatin, Paclitaxel; BCP: Bevacizumab,
Carboplatin, Paclitaxel; KEAP1: Kelch-Like ECH-Associated Protein 1; STK11: Serine/Threonine Kinase 11; TP53: Tumor Protein p53; LASSO: Least Absolute Shrinkage and Selection
Operator; ddPCR: Droplet Digital Polymerase Chain Reaction; miR: MicroRNA; LP52: 52-Gene Expression Histology Classifier; Mo: Month. NS: Not Specified.
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The methodologies of these studies varied widely (see Table 2), employing techniques
such as NGS, IHC, digital PCR, and specific assays like GuardantOMNI ctDNA and
Foundation Medicine bTMB, reflecting a comprehensive approach to biomarker assessment
through genetic and immunological analysis [37,54,56,61,74]. The differentiation between
residual and non-residual ctDNA, along with the interpretation of PD-L1 expression and the
density of infiltrating CD8+ T lymphocytes, highlights the importance of integrating genetic
and immunological findings into NSCLC treatment [55,59,60]. Specifying the mutations
per megabase to distinguish between high and low bTMB evidences the precision needed
to assess the tumor’s mutational load, enhancing the predictive and prognostic value of
these biomarkers [54,81].

Basal activating alterations in EGFR, associated with shorter median PFS, served as
prognostic markers; however, treatment with ramucirumab plus erlotinib improved the
outcomes regardless of these alterations, indicating their predictive value. The reduction
in bTMB was established as a predictive biomarker for treatment with sintilimab plus
docetaxel, while a high bTMB indicated a clinical benefit with durvalumab plus tremeli-
mumab compared to chemotherapy [52]. The DSPP mutation was identified as a predictive
biomarker of longer PFS, as was the clearance of ctDNA, which was associated with more
durable outcomes [55]. The decrease in and elimination of EGFRm and T790M in post-
treatment ctDNA were linked to longer progression-free survival and overall survival,
highlighting the efficacy of sequential therapies [44]. High levels of PD-L1 expression were
related to a greater pathological response, and the levels of expression of OVOL2 and CTCF
were associated with PFS outcomes, highlighting their potential as prognostic markers [60].

In the study conducted by Ren et al., in 2021 [48], it was observed that the combined
treatment of camrelizumab and chemotherapy significantly extended the OS and PFS
compared to a placebo combined with chemotherapy. The results indicated median PFS
of 8.5 months versus 4.9 months, and median OS not reached versus 14.5 months, for the
groups treated with camrelizumab–chemotherapy and placebo–chemotherapy, respectively.
Similar findings were reported for treatments with brigatinib and alectinib, both with
a median PFS of approximately 19 months [49]. Additionally, patients who presented
detectable alterations of monoclonal antibody against epidermal growth factor (aEGFR)
had a median PFS of 12.7 months, contrasting with the 22.0 months for those without these
alterations, although specific OS data were not provided [52].

This systematic review also identified variations in PFS and OS associated with differ-
ent molecular biomarkers, such as CD14, CD16, HLA-DR, CD3, CD56, and NKT, evidencing
their impact on treatment outcomes. It was noted that different combinations of these
markers were related to significant variations in OS and PFS [51].

In Han et al.’s 2022 [53] study, various therapies were compared, noting significant
improvements in the median OS and PFS with sintilimab over docetaxel. Notably, for
patients with mKRAS mutations and squamous cell carcinoma, targeted treatment regimens
and the addition of cetuximab, respectively, showed significant enhancements in survival
rates, regardless of the KRAS mutation status [69,74].

The analysis of the HR and 95% CI shed light on the OS and PFS across different
scenarios. An HR of 0.55 for OS suggested a 45% reduction in mortality risk, while the HR
for PFS of 0.97 between brigatinib and alectinib indicated no significant difference in disease
progression between these treatments [49]. Detectable alterations of aEGFR with an HR of
1.87 suggested faster disease progression. Meanwhile, a positive molecular pathological
response (MPR) status indicated a favorable prognosis, with the HRs showing significant
improvements in disease-free survival (DFS) and OS [52]. A high tumor mutational burden
(TMB) and low or undetectable levels of ctDNA following neoadjuvant treatment were
associated with significant improvements in PFS and OS, highlighting their prognostic
value [82,83].
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Table 2. Synthesis of studies included in systematic review by biomarker evaluated.

Author and
Publication

Year

Biomarker
Evaluated

Method
of Biomarker

Analysis
Cut-Off-Value Predictive and

Prognostic Value

Overall Survival
(OS) and

Progression-Free
Survival (PFS)

Hazard Ratios
(HRs) and 95%

Confidence
Intervals (CIs) for

Tumor Size

Treatment

Statistical
Methods Used for

Biomarker
Evaluation

Conclusions

Ren et al.,
2022 [48]

ctDNA
dynamics

Dynamic
monitoring

ctDNA clearance
after two cycles

Predicts
camrelizumab

plus
chemotherapy

efficacy

Prolonged OS and
PFS OS HR = 0.55

Camrelizumab +
carboplatin and

paclitaxel

Kaplan–Meier,
Cox models

ctDNA dynamics
useful in predicting
treatment efficacy in
advanced squamous

NSCLC

Yang et al.,
2023
[49]

ALK fusions in
ctDNA

NGS of plasma
ctDNA NS

ALK fusion
detectability

related to
prognosis

PFS similar for
brigatinib

(19.3 mo) and
alectinib (19.2 mo)

PFS HR = 0.97
(95% CI: 0.66–1.42)

Brigatinib vs.
alectinib

Kaplan–Meier,
Cox regression

No superiority of
brigatinib over

alectinib in
ALK-positive NSCLC

previously treated
with crizotinib

Riess et al.,
2021
[50]

EGFR exon 20
insertions

Next-generation
sequencing (NGS) NS Not predictive PFS: 5.4 months NS Erlotinib and

onalespib

Standard 3 + 3
dose escalation,

RECIST 1.1

Limited activity of
erlotinib and

onalespib in EGFR
exon 20 insertion

NSCLC

Lo Russo
et al., 2022

[51]

36 immuno-
biomarkers like

CD14, CD16

Multiparametric
flow cytometry NS Improved PFS and

OS

CD14 = 0.018 OS
significant

improvements
NS Pembrolizumab

Orthogonal
component
clustering,

multivariable Cox
regression

Predictive outcomes in
PD-L1-low NSCLC

with pembrolizumab

Garon et al.,
2023
[52]

EGFR, TE genomic
alterations in

ctDNA
NGS of ctDNA NS

Baseline EGFR
alterations

indicate shorter
PFS

Median PFS:
12.7 mo (with

aEGFR), 22 mo
(without)

HR for PFS = 1.87
(95% CI: 1.42–2.51)

Ramucirumab +
erlotinib Kaplan–Meier

Baseline EGFR
mutations linked to

shorter PFS, predictive
of ramucirumab +
erlotinib efficacy

Han et al.,
2023
[53]

bTMB NGS with 448
gene panel

≥1.72
mutations/Mb

Predictive of
sintilimab +

docetaxel efficacy

Median PFS:
5.8 mo; Median

OS: 12.6 mo
NS Docetaxel +

sintilimab
Kaplan–Meier,

Clopper–Pearson

Sintilimab + docetaxel
improves PFS, OS in

advanced NSCLC

Si et al., 2021
[54] bTMB GuardantOMNI

ctDNA assay
≥20

mutations/Mb

Predictive of
benefit with

durvalumab +
tremelimumab vs.

chemotherapy

NS NS
Durvalumab ±

tremelimumab or
chemotherapy

Cox models,
minimal p-value
cross-validation

High bTMB predicts
clinical benefit with

durvalumab +
tremelimumab vs.

chemotherapy

Jiang et al.,
2021
[55]

PD-L1, TMB,
CD8+ TIL density,

DSPP mutation

IHC and
whole-exome

sequencing

PD-L1 ≥ 1%
expression

DSPP mutation
associated with

longer PFS

Median PFS:
7.0 mo; Median

OS: 23.5 mo
NS

Toripalimab +
carboplatin and

pemetrexed
Kaplan–Meier

DSPP mutation
suggested as potential

biomarker for
toripalimab efficacy in
second-line treatment
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Table 2. Cont.

Author and
Publication

Year

Biomarker
Evaluated

Method
of Biomarker

Analysis
Cut-Off-Value Predictive and

Prognostic Value

Overall Survival
(OS) and

Progression-Free
Survival (PFS)

Hazard Ratios
(HRs) and 95%

Confidence
Intervals (CIs) for

Tumor Size

Treatment

Statistical
Methods Used for

Biomarker
Evaluation

Conclusions

Zhang et al.,
2024
[56]

ctDNA dynamics,
BRCA2, BRINP3,
FBXW7, KIT, RB1

Comprehensive
NGS ctDNA

profiling

Clearance after
2 cycles

BRCA2, others
shorten PFS;

clearance
associated with

longer PFS

Median PFS:
11.4 months, OS:

27.2 months
NS

Sintilimab,
nab-paclitaxel,

carboplatin

Kaplan–Meier,
hazard ratios

Effective first-line
treatment with

promising PFS; genetic
markers as predictive

values

Tan et al., 2024
[44]

EGFR T790M,
EGFRm

Droplet digital
PCR, targeted

sequencing
NS

Decrease
in/clearance of

EGFRm and
T790M predicts
longer PFS/OS

Median PFS:
9.4 months, OS:

26 months
NS

Alternating
osimertinib and

gefitinib

Kaplan–Meier,
Cox regression

Feasible therapy with
profound impact on

clonal dynamics,
though primary
endpoint unmet

Kim et al.,
2022
[57]

bTMB
Foundation

Medicine bTMB
assay

≥16
mutations/Mb

Higher ORR,
possibly longer OS

for bTMB ≥ 16

Longer OS for
bTMB ≥ 16, PFS

and OS not
significant at

cut-off

NS
First-line

atezolizumab
monotherapy

Kaplan–Meier,
log-rank, Cox

model

bTMB ≥ 16 linked to
higher ORR; further
studies needed for

bTMB as a standalone
predictive marker

Peters et al.,
2022
[58]

bTMB
Foundation

Medicine bTMB
CTA

≥16 for analysis

bTMB ≥ 16 did
not meet primary
endpoint for PFS

benefit

No significant
difference in PFS

or OS

HR: 0.77 (95% CI:
0.59–1.00,
p = 0.053)

Atezolizumab vs.
chemotherapy

Kaplan–Meier,
Cox model

bTMB ≥ 16 not
supported as

standalone predictive
marker; potential for

optimization

Chaft et al.,
2022
[59]

MPR, PD-L1 TPS
Blood im-

munophenotype,
exome sequencing

MPR ≤ 10% viable
cells, PD-L1 high

TPS

High PD-L1 TPS
predicts MPR

3-year DFS: 72%,
OS: 80%

DFS HR = 0.373,
OS HR = 0.273

Neoadjuvant
atezolizumab
monotherapy

Kaplan–Meier

Neoadjuvant
atezolizumab met

primary endpoint of
MPR; further

validation needed

Shi et al., 2022.
[60]

PD-L1, OVOL2,
CTCF Deep sequencing NS

OVOL2 high =
better PFS, CTCF
high = worse PFS

Median OS
significantly

longer in
sintilimab arm

NS Sintilimab vs.
docetaxel Cox regression

Sintilimab improved
survival, response

rates; potential new
treatment option for
advanced NSCLC

Papadimitrakopoulou
et al., 2020

[45]

EGFR T790M,
EGFRm

Cobas, ddPCR,
NGS

T790M-negative
predicts longer

PFS

T790M status
predictive

Median PFS: 12.5
vs. 8.3 months
(osimertinib)

NS
Osimertinib,

platinum-
pemetrexed

Kaplan–Meier
T790M-negative

plasma predicts longer
PFS

Sakai et al.,
2021a
[46]

TMB Targeted deep
sequencing ≥12–16 mut/Mb High TMB

predicts better RFS

TMB ≥ 12
mut/Mb:

improved RFS
HR = 0.477

Pemetrexed/cisplatin
vs. vinorel-

bine/cisplatin

Kaplan–Meier,
Cox model

High TMB beneficial
for

pemetrexed/cisplatin
in NS-NSCLC
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Table 2. Cont.

Author and
Publication

Year

Biomarker
Evaluated

Method
of Biomarker

Analysis
Cut-Off-Value Predictive and

Prognostic Value

Overall Survival
(OS) and

Progression-Free
Survival (PFS)

Hazard Ratios
(HRs) and 95%

Confidence
Intervals (CIs) for

Tumor Size

Treatment

Statistical
Methods Used for

Biomarker
Evaluation

Conclusions

Park et al.,
2023
[61]

bTMB, cfDNA,
hVAF, VAFSD

CT-ULTRA,
targeted NGS

bTMB ≥ 11.5
mut/Mb at

baseline

cfDNA, bTMB
dynamics
predictive

Median OS:
13.1 months, PFS:

2.1 months
NS

1200 mg of
atezolizumab

every three weeks

Kaplan–Meier,
Cox model

Baseline biomarkers
predict atezolizumab

efficacy

Park et al.,
2021
[47]

Activating EGFR
mutations in

ctDNA and DNA

Mutyper and
Cobas v2 assays NS

ctDNA sensitivity
for EGFR
mutations

Median PFS:
11.1 months NS Osimertinib 80 mg

daily Kaplan–Meier
ctDNA assays

effective in detecting
EGFR mutations

Gu et al., 2023
[62]

EGFR mutations,
ctDNA MRD NGS NS

MRD predicts
therapeutic

efficacy

PFS longer with
TKI + pemetrexed

in altered genes
NS

EGFR-TKI
monotherapy or
combined with

pemetrexed

Kaplan–Meier,
log-rank tests

ctDNA MRD as a
biomarker for therapy

efficacy in NSCLC

Han et al.,
2022
[63]

ctDNA dynamics NGS with
448-gene panel

≥2 mutations
positive, ≤1

mutation negative

ctDNA clearance
at 6 weeks
predictive

NS NS

Sintilimab +
docetaxel,

maintenance with
sintilimab

Kaplan–Meier,
Cox regression

ctDNA dynamics
predict sintilimab

efficacy

Zhong et al.,
2023
[64]

EGFR mutations,
ctDNA mutation

detection

NGS targeting
425 genes

Positive ctDNA at
baseline predicts

shorter PFS

ctDNA as a
predictive
biomarker

NS NS
Tislelizumab +

carboplatin and
nab-paclitaxel

Kaplan–Meier,
Cox regression

ctDNA predicts
progression in

tislelizumab therapy

García-Pardo
et al., 2023

[65]

ctDNA
genotyping

Plasma ctDNA
testing with NGS
before diagnosis

NS

Early ctDNA
testing accelerates

treatment
initiation

NS NS
Advanced

nonsquamous
NSCLC treatments

Standard
genotyping
comparison

Early ctDNA
genotyping shortens
treatment initiation

Nomura et al.,
2020 [66]

ctDNA
(Guardant360®) Guardant360® NS

Non-inferiority of
discontinuing

PD-1 inhibitors
NS NS

Continue or
discontinue PD-1

inhibitors

Kaplan–Meier,
Cox model,

non-inferiority test

Study supports
possible

discontinuation of
PD-1 inhibitors

without affecting
survival

Martini et al.,
2022
[67]

Gut microbiota,
ctDNA

RAS/BRAF WT
MSS

16S rRNA
sequencing,

targeted NGS
NS

Certain gut
bacteria species
linked to longer

PFS

NS NS

Cetuximab +
avelumab

combination
therapy

Kendall Tau-b,
Kaplan–Meier,

log-rank

Gut microbiota as
potential biomarker

for cetuximab +
avelumab efficacy

Provencio
et al., 2022

[68]

ctDNA for
prognosis and

predictive value

NGS of FFPE and
plasma samples

MAF ≥ 1% at
baseline

Low ctDNA levels
associated with
better survival

outcomes

3-year OS: 81.9%
(ITT), 91.0% (per

protocol)

HR for PFS: 0.20,
OS: 0.07

Neoadjuvant
paclitaxel,

carboplatin, and
nivolumab

Kaplan–Meier,
Cox regression,
competing risk

ctDNA levels predict
success in chemoim-

munotherapy
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Table 2. Cont.

Author and
Publication

Year

Biomarker
Evaluated

Method
of Biomarker

Analysis
Cut-Off-Value Predictive and

Prognostic Value

Overall Survival
(OS) and

Progression-Free
Survival (PFS)

Hazard Ratios
(HRs) and 95%

Confidence
Intervals (CIs) for

Tumor Size

Treatment

Statistical
Methods Used for

Biomarker
Evaluation

Conclusions

West et al.,
2022
[69]

KRAS, STK11,
KEAP1, TP53

mutations

Blood-based
ctDNA

sequencing
NS

KRAS, STK11,
KEAP1 mutations

affect treatment
efficacy

mKRAS:
improved OS and
PFS with ABCP vs.

BCP

OS: HR = 0.50
(0.34–0.72); PFS:

HR = 0.42
(0.29–0.61)

Atezolizumab,
bevacizumab,
carboplatin,
paclitaxel

Kaplan–Meier,
Cox model

Improved outcomes in
mKRAS with ABCP;
ctDNA levels after
treatment correlate
with PFS and OS

Lo Russo
et al., 2023

[70]

Immune cell
subsets, gene

expression levels

Flow cytometry,
gene expression,

metagenomic
sequencing

NS Immune profiles
correlate with PFS

Median PFS:
2.9 months NS Pembrolizumab as

first-line treatment

Sequential Cox
regression,
Benjamini–

Hochberg, LASSO

Multiomic markers
predict PFS; NK cells

at baseline may
determine

pembrolizumab
benefit

Zhou et al.,
2023
[71]

PD-L1 on tumor
cells

SP263 and 22C3
assays NS

High concordance
between SP263

and 22C3 assays
NS NS

Adjuvant
atezolizumab vs.
supportive care

Concordance
assessment,

survival
evaluation

SP263 and 22C3 assays
effectively predict

adjuvant atezolizumab
benefit in early-stage

NSCLC

Sakai et al.,
2021b
[72]

EGFR T790M
mutation

Cobas v2, ddPCR,
deep sequencing NS

Monitors EGFR
T790M for
treatment
response

NS NS Osimertinib
administration

Univariate
regression, Cox

model

Effective monitoring
of EGFR T790M with

ctDNA enhances
osimertinib treatment

decisions

Redman et al.,
2020 [73]

Multiple
biomarkers

FoundationOne®

NGS assay NS

Multiple
biomarkers
assessed for

targeted therapies

Median OS varied
by treatment arm,
no PFS provided

NS
Targeted therapies,
immunotherapies

in sqNSCLC

Kaplan–Meier,
Cox regression,
other methods

The study validates
the use of molecularly
targeted therapies in
genomically defined
sqNSCLC subgroups

Hirsch et al.,
2022
[74]

EGFR copy
number, protein

expression
EGFR FISH, IHC

TC ≥ 50% or
IC ≥ 10% for

SP142 and
TPS ≥ 50% for

22C3

High EGFR copy
number and

protein expression
predictive

Improved OS in
SCC with
cetuximab

addition (12.6 vs.
4.6 months)

HR: 0.32
(0.18–0.59),
p = 0.0002

Chemotherapy
with or without

cetuximab

Cox model for OS
and PFS

EGFR FISH and IHC
are predictive of

cetuximab benefit in
SCC, independently of

KRAS status

Schuler et al.,
2020
[75]

MET
dysregulation

Immunohistochemistry,
FISH, NGS NS

Capmatinib’s
antitumor activity

based on MET
dysregulation

NS NS Capmatinib
administration

Safety and activity
assessment

Capmatinib shows
promise in NSCLC

with MET dependency,
particularly with high

MET GCN or
METex14 mutations
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Table 2. Cont.

Author and
Publication

Year

Biomarker
Evaluated

Method
of Biomarker

Analysis
Cut-Off-Value Predictive and

Prognostic Value

Overall Survival
(OS) and

Progression-Free
Survival (PFS)

Hazard Ratios
(HRs) and 95%

Confidence
Intervals (CIs) for

Tumor Size

Treatment

Statistical
Methods Used for

Biomarker
Evaluation

Conclusions

Gadgeel et al.,
2022 [76] PD-L1 expression SP142 and 22C3

IHC assays

TC ≥ 50% or
IC ≥ 10% for

SP142 and
TPS ≥ 50% for

22C3

Atezolizumab
improves survival

over docetaxel

Atezolizumab
benefits across all
PD-L1 subgroups,

especially high
PD-L1

OS and PFS: HR
varied by assay,
greater in high
PD-L1 groups

Atezolizumab or
docetaxel

Analysis in PD-L1
subgroups, assay

selection

SP142 and 22C3 assays
effectively predict

atezolizumab efficacy
in metastatic NSCLC

across PD-L1
thresholds

Ramalingam
et al., 2021

[77]

LP52 gene
expression

Whole-
transcriptome

sequencing
NS Veliparib’s efficacy

in sqNSCLC

No significant OS
benefit in smokers;

slight benefit in
general

population

OS: HR = 0.853
(0.747 to 0.974),

PFS not different

Veliparib or
placebo with

carboplatin and
paclitaxel

Kaplan–Meier,
log-rank test,

biomarker
analysis

Veliparib shows a
marginal OS benefit;

LP52 may help to
identify responsive

patients

Song et al.,
2022
[78]

HER2 mutations NGS NS

Pyrotinib’s
efficacy based on
HER2 mutation

types

6-month PFS rate:
49.5%, median

PFS: 5.6 months,
OS: 10.5 months

NS Pyrotinib
treatment

Kaplan–Meier,
Cox regression,

Fisher’s exact test

Pyrotinib effective in
HER2-mutant NSCLC;
potential for ctDNA to

aid in disease
monitoring

Anagnostou
et al., 2023

[79]
ctDNA dynamics

Serial quantitative
ctDNA

assessments

Maximal mutant
allele fraction

clearance at cycle
3

ctDNA clearance
after two cycles

predictive

Median PFS
significantly
longer with
molecular

response, OS not
reached vs.

7.23 months

NS Pembrolizumab
treatment

Kaplan–Meier,
exploratory
biomarker
analyses

ctDNA dynamics
correlate with

pembrolizumab
efficacy, guiding

treatment adjustments

Park et al.,
2021
[80]

Activating
EGFRm

EGFRm ctDNA
analysis using
PANA Mutype

NS

Efficacy of afatinib
in

EGFRm-positive
lung cancer

Median PFS:
12.0 months, OS
data immature

NS Afatinib 40 mg
daily

Mann–Whitney U,
Pearson’s χ2,
Fisher’s exact,
Kaplan–Meier

Afatinib shows
favorable ORR and

PFS in treatment-naïve
patients with

detectable EGFRm in
ctDNA

ctDNA: Circulating Tumor DNA; ALK: Anaplastic Lymphoma Kinase; EGFR: Epidermal Growth Factor Receptor; bTMB: Blood Tumor Mutational Burden; TMB: Tumor Mutational
Burden; PD-L1: Programmed Death Ligand 1; MPR: Major Pathological Response; TPS: Tumor Proportion Score; MRD: Minimal Residual Disease; cfDNA: Circulating Free DNA;
hVAF: High Variant Allele Frequency; VAFSD: Variant Allele Frequency Standard Deviation; NGS: Next-Generation Sequencing; IHC: Immunohistochemistry; HR: Hazard Ratio;
CI: Confidence Interval; OS: Overall Survival; PFS: Progression-Free Survival; RECIST: Response Evaluation Criteria In Solid Tumors; ORR: Objective Response Rate; NSCLC: Non-Small-
Cell Lung Cancer; Mb: Megabase; BRCA2: Breast Cancer 2, Early Onset; DSPP: Dentin Sialophosphoprotein; CTCF: CCCTC-Binding Factor; OVOL2: Ovo-Like Transcriptional Repressor
2; FFPE: Formalin-Fixed Paraffin-Embedded; KRAS: Kirsten Rat Sarcoma Viral Oncogene Homolog; ABCP: Atezolizumab, Bevacizumab, Carboplatin, Paclitaxel; BCP: Bevacizumab,
Carboplatin, Paclitaxel; KEAP1: Kelch-Like ECH-Associated Protein 1; STK11: Serine/Threonine Kinase 11; TP53: Tumor Protein p53; LASSO: Least Absolute Shrinkage and Selection
Operator; ddPCR: Droplet Digital Polymerase Chain Reaction; miR: MicroRNA; LP52: 52-Gene Expression Histology Classifier; Mo: Month. NS: Not Specified.
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For patients with a TMB of 12 mutations per megabase or higher, an HR of 0.477 for
improved recurrence-free survival (RFS) underscores the TMB’s potential as a predictive
biomarker for the treatment response [57]. The pre-treatment levels of ctDNA were found to
be significant, with low levels correlating with improved PFS and OS outcomes, suggesting
ctDNA’s prognostic importance after therapy [59].

The assessment of the biomarker-based treatment efficacy has unveiled a range of
therapeutic approaches. These include monotherapy with immune checkpoint inhibitors
(ICIs) such as pembrolizumab, as well as targeted therapy combinations with chemotherapy.
The treatment regimens have spanned from specific targeted therapies, like ALK and EGFR
inhibitors, to immunotherapies and their integration with chemotherapy [49,59,70].

The Kaplan–Meier methodology and the Cox proportional hazards model have been
extensively used to analyze the OS and PFS across studies, comparing treatments such as
camrelizumab with carboplatin and paclitaxel, brigatinib versus alectinib, and durvalumab
with or without tremelimumab versus chemotherapy. These methods provide precise esti-
mates of the survival time and assess the relative risks of events such as disease progression
or death [46–48,62,67].

The Clopper–Pearson method for the estimation of objective response rates and dis-
ease control, and the use of two-sided tests at the 0.05 significance level, as in the study of
docetaxel plus sintilimab, highlight the rigor in comparing treatments’ efficacy [63]. Fur-
thermore, advanced techniques like cross-validation for the determination of the optimal
cut-off for the bTMB and the minimum p-value approach reflect the ongoing evolution of
statistical methods in oncological research [54].

In addition to these statistical analyses, some studies have incorporated innovative
approaches such as multivariable Cox regression, competitive risk analysis, and corrections
for multiple comparisons, showcasing the complexity and need for precision in interpreting
data on survival and treatment responses [54,68].

In the context of immunotherapy, the studies by G. Lo Russo et al. (2022) [51] and
Chaft et al. (2022) [59] suggest that the circulating immune biomarkers and innate immune
cells in the peripheral blood before treatment can predict the pathological response follow-
ing neoadjuvant atezolizumab, indicating a need for further validation studies.

Meanwhile, the research by Yang et al. (2023) [49] found that brigatinib did not show
superiority over alectinib for PFS in patients with ALK-positive NSCLC previously treated
with crizotinib, highlighting the consistent safety profiles of both drugs and reaffirming
their positions as standard treatments post-crizotinib.

In 2022, Martini et al. [67] conducted a pivotal study exploring the impact of the gut
microbiota on the antitumor efficacy of cetuximab and avelumab treatments in NSCLC
and mCRC patients. Utilizing 16S rRNA sequencing, the research analyzed fecal sam-
ples to identify microbial compositions, particularly highlighting two butyrate-producing
bacteria, Agathobacter M104/1 and Blautia SR1/5. Their findings revealed a significant
correlation between the presence of these bacteria and extended PFS, suggesting these
microbial species as promising biomarkers for the prediction of treatment success. The
study illuminated the potential mechanism of action, where butyrate production by these
bacteria modulates the immune response, thereby potentially enhancing the antitumor
activity of the immunotherapy regimen.

In Table 3, the summarized findings are presented along with their clinical implications,
the treatment response, the heterogeneity in NSCLC, and their clinical and demographic
characteristics. For example, in the case of ctDNA, it is identified as a biomarker with
detection correlated to the tumor burden and disease progression. A reduction in levels
during treatment is indicative of better PFS and OS. Its clinical implication is highlighted
as a non-invasive biomarker for the monitoring of the response and the adjustment of
therapeutic strategies. The predictive response to treatment is noted, with ctDNA being
predictive of the response to camrelizumab, carboplatin, paclitaxel, osimertinib, sintilimab,
nab-paclitaxel, and gefitinib. The studies evaluated show that its heterogeneity varies with
the mutation type (EGFR, ALK), tumor stage, distribution of histological subtypes, and
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frequency of co-alterations. The patient demographic is predominantly men with a history
of heavy smoking, ECOG 1 status, and stage IV disease.

Table 3. Summary of biomarker findings with heterogeneity in NSCLC.

Biomarker Role of
Biomarker Main Findings Clinical

Implications Authors Treatment
Response

Heterogeneity
in NSCLC

Clinical and
Demographic
Characteristics

ctDNA
Tumor burden

and disease
progression

- Detection
correlated with
tumor burden

and disease
progression.

- Reduction in
levels during

treatment
indicative of

better PFS and
OS.

Non-invasive
biomarker for
monitoring of
response and
adjustment of

therapeutic
strategies.

Ren et al., 2022
[48]; Yang

et al., 2023 [49];
Garon et al.,

2023 [52];
Zhang et al.,

2024 [56]; Tan
et al., 2024 [44]

Predictive of
response to

camrelizumab,
carboplatin,
paclitaxel,

osimertinib,
sintilimab,

nab-paclitaxel,
gefitinib

Varies with
mutation type
(EGFR, ALK),
tumor stage,

distribution of
histological

subtypes, and
frequency of

co-alterations.

Predominantly
men, history of
heavy smoking,

ECOG 1, stage IV
disease.

PD-L1
Tumor

progression
and prognosis

High levels
associated with
better response

to ICIs and
longer survival.

Crucial in
selecting

patients for im-
munotherapy.

Jiang et al.,
2021 [55]; Zhou
et al., 2023 [71];
Gadgeel et al.,

2022 [76]

Predictive of
response to

atezolizumab,
pem-

brolizumab,
toripalimab

Varies with
expression

levels, tumor
microenviron-

ment,
distribution of

histological
subtypes, and
frequency of

co-alterations.

Predominantly
men, history of
heavy smoking,

ECOG 1, stage IV
disease.

miRNA *

Response to
immunother-

apy and
survival

outcomes

miRNA-21 and
miRNA-155

correlated with
response to

immunotherapy
and survival

outcomes.
Plasma miR-32

levels correlated
with

chemotherapy
response and

prognosis.

Patient
stratification

and treatment
personaliza-

tion based on
molecular
profiles.

Xu et al., 2019
[84]

Predictive of
chemotherapy

efficacy and
prognosis with

platinum-
based

chemotherapy

Varies with
miRNA type,

interaction
with other
molecular

pathways, and
frequency of

co-alterations.

Patients aged
45–78,

predominantly
men, 81.4%

smokers, ECOG
1–2, stage II–IV

disease.

bTMB
Tumor

progression
and prognosis

High bTMB
associated with
better outcomes

in combined
immunotherapy

and
chemotherapy.

Accurate
measurement
predicts im-

munotherapy
efficacy and

guides
treatment
selection.

Han et al., 2023
[53];

Si et al., 2021
[54];

Kim et al., 2022
[57];

Peters et al.,
2022 [58]

Predictive of
response to
sintilimab +
docetaxel,

durvalumab +
tremelimumab,
atezolizumab

Varies with
mutation
burden,

specific gene
mutations,

distribution of
histological

subtypes, and
frequency of

co-alterations.

Predominantly
men, history of
heavy smoking,

ECOG 1, stage IV
disease.

* Currently, no specific miRNA studies are included in the provided data. Xu et al., 2019 [84], a cohort study, was
added for the comparison of biomarkers in NSCLC.

PD-L1 is identified as a biomarker for tumor progression and prognosis. High levels
are associated with better responses to ICIs and longer survival. Its clinical implication is
its importance in selecting patients for immunotherapy. Regarding the treatment response,
PD-L1 is predictive of the response to atezolizumab, pembrolizumab, and toripalimab. The
heterogeneity of PD-L1 varies with the expression levels, tumor microenvironment, distri-
bution of histological subtypes, and frequency of co-alterations. The patient demographic is
predominantly men with a history of heavy smoking, ECOG 1 status, and stage IV disease.

miRNA is related to the response to immunotherapy and survival outcomes. miRNA-21
and miRNA-155 are correlated with the responses to immunotherapy and survival out-
comes. Additionally, the plasma miR-32 levels correlate with the chemotherapy response
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and prognosis. The clinical implications of miRNA include patient stratification and
treatment personalization based on molecular profiles. Xu et al., 2019 shows that it is
predictive of the chemotherapy efficacy and prognosis with platinum-based chemother-
apy. The heterogeneity of miRNA varies with the miRNA type, interaction with other
molecular pathways, and frequency of co-alterations. The patient demographic includes
those aged 45–78, predominantly men and 81.4% smokers, with ECOG 1–2 status and
stage II–IV disease.

Finally, the bTMB is identified as a biomarker associated with tumor progression and
prognosis. A high bTMB is associated with better outcomes in combined immunotherapy
and chemotherapy. Accurate measurement predicts the immunotherapy efficacy and guides
treatment selection. The studies by Han et al., 2023 [53] and Si et al., 2021 [54] highlight that
it is predictive of the response to sintilimab + docetaxel and durvalumab + tremelimumab.
The heterogeneity of the bTMB varies with the mutation burden, specific gene mutations,
distribution of histological subtypes, and frequency of co-alterations. The patient demo-
graphic is predominantly men with a history of heavy smoking, ECOG 1 status, and
stage IV disease.

3.3. Risk of Bias Assessment

Using the risk of bias graph created with RevMan 5.4® (accessed on 20 February 2024),
the risk of bias assessment for the included studies is outlined as follows.

The assessment of the risk of bias in these studies was carried out using several
criteria, as illustrated in Figure 2. Most of the studies, including those by Ren et al., 2021;
Yang et al., 2023; G. Lo Russo et al., 2022; Garon et al., 2023; Si et al., 2021; Jiang et al., 2021;
Zhang et al., 2024; Kim et al., 2022; Peters et al., 2022; Shi et al., 2022; Papadimitrakopoulou
et al., 2020; Park et al., 2021; Gu et al., 2023; Zhong et al., 2023; Nomura et al., 2020;
West et al., 2022; Lo Russo et al., 2023; Zhou et al., 2023; Sakai et al., 2020a; Redman et al.,
2020; Hirsch et al., 2022; Schuler et al., 2020; Gadgeel et al., 2022; Ramalingam et al.,
2022; Song et al., 2022; Anagnostou et al., 2023; and Park et al., 2020, were evaluated as
having a low risk for random sequence generation (selection bias), suggesting thorough
and well-documented randomization procedures [45,47–49,51,52,54,62,64,66,69,70,73–79].

Allocation concealment (selection bias) was primarily rated as low risk, indicating that
the allocation process was sufficiently concealed to reduce selection bias in most studies.
However, some studies, such as G. Lo Russo et al., 2022 [51], presented an unclear risk,
indicating the need for more explicit documentation or reporting.

Regarding the blinding of participants and personnel (performance bias), many studies
were evaluated as having a high risk due to the open nature of many clinical trials, which
exposes them to possible performance bias. This includes the studies by Garon et al., 2023;
Jiang et al., 2021; Kim et al., 2022; Peters et al., 2022; Shi et al., 2022; Papadimitrakopoulou
et al., 2020; Park et al., 2021; Gu et al., 2023; Zhong et al., 2023; Nomura et al., 2020; West
et al., 2022; Lo Russo et al., 2023; Zhou et al., 2023; Sakai et al., 2020b; Schuler et al., 2020;
Gadgeel et al., 2022; Ramalingam et al., 2022; Song et al., 2022; Anagnostou et al., 2023; and
Park et al., 2020 [45,47–49,51,52,54,62,64,66,69,70,73–79]. The concern around unblinding in
open clinical trials underscores a significant issue, as both the researchers and participants
are aware of the assigned treatments, potentially influencing the outcomes and adherence
to treatment.

The blinding of the outcome assessment (detection bias) was mainly classified as low
risk, suggesting that the outcome assessors were likely unaware of the intervention groups,
thereby reducing the detection bias. This practice was consistent across most studies,
reflecting a standard in the objective evaluation of clinical outcomes.

However, the domain concerning incomplete outcome data (attrition bias) exhibited
a range of risks—low, unclear, and high—across the studies. A low risk indicates the
transparent reporting of participant dropouts and proper handling of missing data. Con-
versely, studies with an unclear risk lacked detailed reporting, while a high risk indicated
insufficient transparency, potentially undermining the study’s validity.
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Selective reporting (reporting bias) varied, with most studies classified as low risk,
implying that all predefined outcomes were likely reported and the study protocol was
registered. However, some studies had an unclear risk due to insufficient information
regarding the reporting of all expected outcomes.

Overall, the studies demonstrated a predominantly low risk of bias across most do-
mains, indicating high methodological quality. Nevertheless, the variability in incomplete
outcome data and selective reporting call for the cautious interpretation of the findings.

Figure 3 illustrates the bias risk analysis of the non-randomized clinical studies using
the ROBINS-I tool (ROBINS-I tool | Cochrane Methods, accessed 18 September 2023) The
results revealed that a significant proportion of the studies demonstrated high method-
ological quality. However, the studies by Han et al., 2022b [63]; Martini et al., 2022 [67];
Park et al., 2023 [61]; and Provencio et al., 2023 [68] showed an uncertain risk in domains
5 and 7 (bias due to missing data and bias in the selection of the reported result). This
uncertainty underscores the need for the cautious interpretation of the findings. Although
the general prevalence of a low risk reinforces the confidence in the accumulated evidence,
the lack of transparency in these domains could influence the robustness of the final conclu-
sions. Therefore, detailed assessment in future research is recommended to ensure robust
clinical results.
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4. Discussion
4.1. Most Significant Findings

In this study, a systematic review was conducted focusing on the identification and
application of emerging biomarkers for the treatment of NSCLC. The most significant
findings include the identification of ctDNA, bTMB, miRNAs, and PD-L1 as valuable tools
for early diagnosis, treatment response prediction, and disease monitoring.

It has been demonstrated that ctDNA, due to its non-invasive nature and high sen-
sitivity, can accurately detect genetic alterations, providing an effective biomarker for
early intervention and personalized treatment [44,48,49,52,56]. miRNAs, despite facing
specificity challenges, have shown potential as independent prognostic factors [84]. The
bTMB has emerged as a key predictor of the response to immunotherapy, although its
utility depends on the standardization and cost of sequencing technologies [53,54,57,58].
Additionally, PD-L1 has been identified as essential in predicting the efficacy of immune
checkpoint inhibitors, facilitating the selection of patients who may benefit most from
immunotherapy [55,71,76].

The economic impact and accessibility of these biomarkers are crucial factors that
greatly affect their use in clinical practice, particularly when evaluating their cost-effectiveness
in various healthcare environments. Implementing widespread ctDNA screening, for exam-
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ple, involves assessing not only the direct costs associated with the screening technologies
themselves but also the potential healthcare savings from early detection and personalized
treatment strategies [85–87]. These savings can be substantial, as early intervention typically
leads to better patient outcomes and reduced treatment costs over time. A comprehensive
analysis of the cost-effectiveness of these biomarkers is essential. By understanding the
economic benefits and constraints associated with ctDNA, bTMB, and miRNA technologies,
healthcare providers can make informed decisions about incorporating these tools into
practice. This not only optimizes health outcomes but also ensures that the benefits of
precision medicine are accessible to a broader range of patients, thereby reducing disparities
in care and advancing public health goals [88–90].

Table 4 provides a comparative analysis of these biomarkers in NSCLC. ctDNA,
known for its non-invasiveness and high sensitivity, is proposed as an effective tool for
early diagnosis and treatment monitoring. However, its high cost and the complexity of
interpretation limit its widespread use. The study by Postel et al., 2017 [91] highlighted the
significant role of ddPCR and optimized NGS in the detection and monitoring of ctDNA.
It elucidates how these advanced methodologies have markedly enhanced the ability to
identify ctDNA with high sensitivity and specificity.

Table 4. Comparative analysis of biomarkers in NSCLC.

Variable ctDNA
[91–93]

miRNA
[94–96]

bTMB
[54,81,97,98]

Immunological
Markers [20,99,100]

Type of Biomarker Genetic (circulating
DNA)

Genetic (non-coding
RNA)

Genetic (mutational
burden)

Protein (immune
proteins)

Detection Method NGS, digital PCR Real-time PCR,
microarrays NGS, digital PCR IHC, flow cytometry

Clinical Utility Diagnosis, prognosis,
monitoring Prognosis, monitoring Prognostic, predictive Diagnostic, predictive

Prognostic and
Predictive Aspects

High sensitivity for
early detection

Correlates with
immunotherapy

response

Predicts response to
specific

immunotherapies

Expression correlated
with survival and

response

Variability Factors
Influenced by tumor

burden, detection
techniques

Influenced by sample
conditions

Requires
standardization in

measurement

Sensitive to detection
methods and immune

status

Advantages Non-invasive, high
sensitivity

Non-invasive, easily
quantifiable

Information on tumor
heterogeneity

Directly related to
mechanisms of action

of therapies

Limitations Cost, need for
sequencing

Inter- and
intra-individual

variability

Influenced by technical
and biological factors

Requires validation for
specific interpretation

Cost-Effectiveness Moderate–high Low–moderate High due to sequencing
technologies

Moderate, depends on
the marker and method

Usage
Recommendations

Widely recommended
in clinical guidelines

In research, some
clinical applications

Recommended in
specific contexts

Emerging use,
supported by recent

studies

Recent Innovations Advances in digital
PCR technology

New miRNAs
associated with NSCLC

Improvements in
accuracy and cost

of NGS

New predictive
markers of response to

PD-1/PD-L1

Ren et al., 2021 [48] showed that the dynamics of ctDNA during treatment could
predict the efficacy of camrelizumab combined with chemotherapy in advanced squamous
NSCLC, significantly improving the PFS and OS. Yang et al., 2023 [49] found that the
detectability of ALK fusions in ctDNA was associated with the prognosis, with specific
variants like EML4-ALK linked to poorer PFS. Garon et al., 2023 [52] reported that base-
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line alterations in ctDNA were prognostic indicators in patients with metastatic NSCLC
harboring active EGFR mutations, with improvements in PFS observed when treated with
ramucirumab plus erlotinib. Zhang et al., 2024 [56] highlighted that ctDNA clearance
after two cycles of treatment was associated with longer PFS, emphasizing the predictive
value of ctDNA in the combined treatment of sintilimab with nab-paclitaxel/carboplatin.
Tan et al., 2024 [44] demonstrated that the reduction and clearance of ctDNA mutations, in-
cluding EGFR and T790M, post-therapy were linked to longer PFS and OS in the alternating
treatment of osimertinib and gefitinib. The studies by Goh et al., 2023 [101] and Cao et al.,
2023 [102] have consistently demonstrated that reductions in ctDNA levels post-treatment
are indicative of better PFS and OS. Tostes et al., 2023 [103] emphasized ctDNA as a dynamic
biomarker reflecting changes in tumor burden and predicting therapy responses. Cao et al.,
2023 [102] advocated for a multi-biomarker strategy, validated by the systematic review’s
findings, where the integration of ctDNA with other biomarkers like the bTMB provided a
more reliable prediction model for treatment responses. Comprehensive profiling aids in
customizing therapy, as exemplified by Martini et al. (2022) [67], who found that specific
gut microbiota species identified through ctDNA analysis were associated with longer PFS.

The significance of genetic mutations within ctDNA, particularly those in the EGFR or
ALK genes, has been highlighted for their impact on clinical outcomes. Goh et al., 2023 [101]
noted these mutations as crucial prognostic markers, a finding supported by Garon et al.,
2023 [52], who observed that activating EGFR mutations correlated with shorter PFS.

These findings illustrate that ctDNA serves as a non-invasive biomarker for the moni-
toring of treatment responses and adjustment of therapeutic strategies in real time. It can
also act as a predictive indicator of the treatment efficacy, particularly in targeted therapies
and combinations of chemotherapy and immunotherapy [44,72,104].

The predictive efficacy of ctDNA varies according to the mutation type (e.g., EGFR,
ALK), tumor stage, and histological subtype distribution. Additionally, the presence of co-
alterations in genes and the clinical contexts of patients, such as their smoking history and
ECOG performance status, can influence the outcomes. Elevated levels of ctDNA in serum
are associated with a lower probability of a response to immunotherapy and generally
poorer survival outcomes compared to patients with lower ctDNA levels, suggesting the
potential of ctDNA as both a predictive and prognostic biomarker in treatment, including
immunotherapy [18,105].

Regarding PD-L1, this biomarker is crucial in predicting the efficacy of checkpoint
inhibitors such as anti-PD-1 and anti-PD-L1 antibodies. Studies have shown that patients
with high PD-L1 expression generally respond better to these treatments, leading to higher
survival rates. This marker aids in the selection of patients who are likely to benefit most
from immunotherapy, thus personalizing the therapeutic options and improving the clinical
outcomes [20,106].

Several key studies illustrate the clinical utility of PD-L1. Jiang et al., 2021 [55]
found that PD-L1 expression was not predictive of PFS in treatment with toripalimab
plus chemotherapy in EGFR-mutant NSCLC. Zhou et al., 2023 [71] observed high concor-
dance between the SP263 and 22C3 assays for PD-L1 expression, with both predicting the
efficacy of adjuvant atezolizumab in early NSCLC. Gadgeel et al., 2022 [76] reported that
atezolizumab showed better survival compared to docetaxel, regardless of the PD-L1 status,
with a greater benefit observed in patients with high PD-L1 expression.

PD-L1 is crucial in selecting patients for immunotherapy, helping to identify those
who may benefit most from ICIs. The accurate measurement of PD-L1 can guide ther-
apeutic decisions and optimize clinical outcomes. However, the PD-L1 expression and
its association with the treatment response vary with the tumor microenvironment and
histological subtype distribution, influencing the treatment response and survival. The
expression of PD-L1 as a predictive biomarker for immunotherapy is complicated by issues
such as variable detection antibodies and differing immunohistochemistry (IHC) cut-offs.
While PD-L1 protein detection by IHC can enrich the response to anti-PD-L1 blockade, it is
not absolute [107–109].
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Studies have shown that patients with NSCLC who overexpress PD-L1 tend to respond
more favorably to immunotherapy and demonstrate higher survival rates compared to
those whose tumors do not express or have low expression of PD-L1. This underscores the
importance of evaluating PD-L1 expression as a predictive biomarker for the selection of
candidates for immunotherapy [71,83,110]. However, its sensitivity varies depending on
the dynamics of the immune and tumor microenvironments, which can change over time
and with treatment. Despite its high specificity in identifying patients likely to respond to
ICIs, PD-L1 expression alone is not always indicative of treatment success [103,110].

miRNAs have emerged as significant biomarkers in NSCLC. Particular miRNAs, like
miRNA-21 and miRNA-155, are notable predictors of the response to immunotherapy and
survival. Xu et al., 2019 [84] found that the plasma levels of miR-32 correlated with the
chemotherapy response and prognosis in NSCLC patients treated with platinum-based
chemotherapy. Similarly, Ren et al., 2021 [48] observed correlations between miRNA-21 and
miRNA-155 and the immunotherapy response and survival outcomes. Li et al., 2017 [96]
found that miR-21-5p and miR-30d-5p were independent prognostic factors for overall
survival in NSCLC, while Liu et al., 2012 [94] indicated that elevated levels of serum miR-21
and tumor miR-200c were associated with a poor prognosis in NSCLC patients. Wu et al.,
2014 [95] demonstrated that high miR-19b and low miR-146a expression in NSCLC tissue
correlated with a higher TNM stage, lymph node metastasis, and decreased survival rates.

Their assessment provides valuable information for patient stratification and the
optimization of treatment regimens based on specific molecular profiles. Consequently,
miRNAs have the potential to serve as non-invasive and useful markers for the stratification
of patients and prediction of outcomes in the context of immunotherapy [22,104,111,112].
However, the quantification of miRNAs presents challenges due to their low abundance
and high susceptibility to degradation. This complexity is further compounded by the need
to normalize their levels against stable reference miRNAs and the significant discrepancies
caused by the different detection platforms, such as qRT-PCR and microarrays. Standard-
izing the protocols for the selection of reference miRNAs based on the tissue origin and
pathological conditions is crucial to increase the reliability of these analyses [21,111,113,114].

The interaction between the microbiota, particularly the gut microbiota, and the
patient’s immune system plays a critical role in modulating the responses to treatments
such as immunotherapy [115,116]. Recent research has highlighted that the composition
and diversity of the microbiota can directly influence therapeutic outcomes, affecting both
the efficacy and toxicity of the administered treatments in patients with NSCLC [117,118].
In the analysis of the gut microbiome, miRNAs, and their interaction with NSCLC, an
interesting perspective emerges on the potential of these biological entities as biomarkers
and their modulatory effects on the treatment efficacy, especially in targeted therapies and
immunotherapies [119,120].

For instance, Martini et al., 2022 [67] demonstrated that certain intestinal bacteria, such
as butyrate producers (Agathobacter and Blautia), were associated with improved PFS in
NSCLC patients treated with combined therapies including cetuximab and avelumab. This
relationship suggests that the microbiota not only affects carcinogenesis but also modulates
the immune response, which can enhance or inhibit the efficacy of treatments based on
ICIs. Comparatively, Shah and Ng, 2023 [121] emphasize how the gut microbiota influences
the response to ICIs in NSCLC, associating microbiota diversity with greater treatment
efficacy. These findings support the notion that modifying the microbiota could increase
the sensitivity of patients who are initially resistant to ICIs, thus opening new avenues for
personalized therapies.

Additionally, the role of miRNAs in this microbiota–NSCLC dynamic is crucial. miR-
NAs play a significant role in modulating immunity, inflammation, and cellular stress
responses—all processes that are dysregulated in NSCLC. Casciaro et al., 2020 [122] suggest
that miRNAs can influence the composition of the microbiota and vice versa, where changes
in the microbiota might alter the expression of host cell miRNAs, affecting cancer progres-
sion and treatment responses. For example, alterations in specific miRNAs could result in
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changes in intestinal permeability and antigen presentation capacity, directly influencing
the efficacy of immunotherapy in NSCLC patients, as discussed by Martini et al., 2022 [67]
and supported by Chrysostomou et al., 2023 [123], who explore how miRNAs derived from
the microbiota can be crucial in regulating the immune response and tumor progression.

Understanding the interaction between miRNA, the microbiota, and NSCLC offers
considerable potential to improve outcomes in NSCLC, particularly in personalized ther-
apies. The use of probiotics, prebiotics, or dietary changes to alter the microbiota, along
with interventions that modify the expression of specific miRNAs, could not only enhance
the response to immunotherapy but also reduce the toxicity associated with conventional
treatments [123,124]. The individual variability in the microbiota composition and miRNA
profiles suggests that personalized treatments could be developed around these differences,
as the same intervention might have varied effects on different patients [21,125]. To develop
effective and personalized interventions, a deeper understanding of the interactions among
the microbiota, miRNAs, and NSCLC is essential.

Casciaro et al., 2020 [122] and Shah and Ng, 2023 [121] recommend that future studies
focus on identifying combined signatures of miRNAs and the microbial composition that
could serve as predictive biomarkers and guides for personalized therapies. Allegra
et al., 2020 [126] explore how the microbiota can impact miRNA expression (miR-21,
miR-155, miR-146a, miR-223), which, in turn, regulates gene expression, which affects
cancer progression and the response to treatment. The study highlights that miR-21 and
miR-155 are often associated with promoting inflammation and cancer progression, making
them targets for therapies aimed at reducing their expression to suppress tumor growth.
Meanwhile, miR-146a and miR-223 typically act as tumor suppressors by regulating genes
involved in inflammatory processes; thus, enhancing their activity could be beneficial in
controlling NSCLC’s progression. Allegra et al. suggest that antagomirs (anti-miRNA
oligonucleotides) could specifically inhibit these dysregulated miRNAs, providing a direct
method to enhance the treatment responses, particularly in personalizing therapy based on
individual microbiota and miRNA profiles.

Finally, the bTMB has emerged as a significant biomarker in predicting the efficacy
of immunotherapy combined with chemotherapy in NSCLC. Several key studies have
highlighted its clinical utility. Han et al., 2022 [63] found that a reduction in the bTMB
at six weeks could serve as a potential predictive biomarker for the regimen of sintil-
imab plus docetaxel in advanced NSCLC. Si et al., 2021 [54] reported that a high bTMB
(≥20 mutations/Mb) predicted clinical benefits with durvalumab plus tremelimumab com-
pared to chemotherapy. Kim et al., 2022 [57] showed that a bTMB ≥ 16 was associated
with a higher objective response rate (ORR) and, in exploratory analyses, greater overall
survival (OS) compared to a bTMB < 16. Conversely, Peters et al., 2022 [58] noted that a
primary endpoint benefit in PFS was not achieved with a bTMB ≥ 16 for atezolizumab
versus chemotherapy.

The bTMB can predict the efficacy of combined immunotherapy and chemotherapy,
aiding in the selection of patients for specific treatments [52]. However, the mutational
burden and its impact on the treatment response vary depending on the mutation type, the
frequency of co-alterations, and the histological subtype distribution. This heterogeneity in
the bTMB can influence treatment response prediction and clinical outcomes. In patients
treated with specific therapies, such as sintilimab plus docetaxel and durvalumab plus
tremelimumab, the bTMB has been identified as a predictive and prognostic indicator. A
high bTMB indicates a clinical benefit with durvalumab plus tremelimumab compared
to conventional chemotherapy. Recent studies have highlighted the need for precision
in measuring the bTMB, influenced by technical and sample factors, underlining the
importance of standardizing and validating the assessment methods to ensure their clinical
utility [53,54,63,81].

The precision of TMB assessment is crucial in predicting and prognosticating tumor
behavior. Nie et al., 2020 [81] found that a low bTMB was associated with a survival
advantage in NSCLC patients treated with docetaxel, indicating the potential of the bTMB
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as a prognostic and predictive biomarker. Si et al., 2020 [54] further validated this by
identifying a bTMB cut-off of ≥20 mutations per megabase as predictive of a clinical
benefit with durvalumab plus tremelimumab in first-line metastatic NSCLC treatment.
Schuurbiers et al., 2022 [97] highlighted the challenges in assessing the bTMB, including the
need for a minimally sized bTMB panel and the influence of technical and sample-related
factors. Raiber-Moreau et al., 2023 [98] emphasized the importance of developing and
validating bTMB reference standards to ensure the accuracy and reproducibility of bTMB
measurement. These studies collectively underscore the need for precision in assessing the
bTMB to enhance the predictive and prognostic value of this biomarker.

Harmonizing the gene panels used for the sequencing of the bTMB by standardizing
the size and the genes included is suggested to decrease the results’ variability and refine
the classification of mutations as either drivers or passengers.

4.2. Quality of Evidence

The quality of the evidence obtained from these studies was critical in validating the
reliability of the biomarkers in a clinical setting. Most RCTs showed a low risk of bias
in the generation of random sequences and concealment of allocation, indicating robust
randomization processes that minimized selection bias. However, the risk of performance
bias was significantly high due to the open nature of many trials, where the participants
and investigators knew the treatment assignments, which could influence the outcomes.
Although most studies ensured a low probability of bias in the outcome assessment,
inconsistencies in terms of incomplete outcome data and selective reporting underline the
need for more transparent reporting practices and rigorous methodologies to ensure the
applicability and accuracy of these biomarkers in medical practice. This includes a strong
focus on the validation of microRNAs and other emerging biomarkers, such as those related
to the gut microbiota, which could offer new perspectives in the personalized treatment
of NSCLC.

A critical issue is the inconsistency of biomarkers as measurable indicators used to
distinguish precisely and objectively between a normal biological state, pathological condi-
tion, and response to a specific therapeutic intervention. The development of biomarkers
presents a significant challenge in cancer due to its complexity, sensitivity, and therapy
resistance. The complex interplay of molecular pathways makes it necessary to use multiple
markers to create sensitive and specific biomarkers that can represent a type of cancer
pathogenesis and predict treatment responses and outcomes [127].

Despite the potential of ctDNA to effectively monitor therapeutic responses and
disease progression, many studies, like those in phase II clinical trials by Han et al., 2022 [63],
are not yet concluded. These studies suggest that the state of ctDNA and the elimination of
ctDNA mutations serve as predictive biomarkers for treatments combining sintilimab with
docetaxel in patients with advanced, pre-treated NSCLC [60].

The heterogeneity of the study designs and evaluation methods, as seen in the research
by Goh et al., 2023 [101], indicates that the responses are highly variable and influenced
by individual tumor characteristics, such as PD-L1 expression (also known as the tumor
proportion score; TPS), the tumor mutational burden (TMB), tumor-infiltrating lymphocytes
(TIL), the host’s immune system, and molecular signatures [124]. Similarly, the studies by
Cao et al., 2023 [102] found that patients with resected NSCLC and high levels of PD-L1
exhibited lower survival rates compared to those with low levels. Conversely, inhibitors
of PD-L1 or PD-1 can substantially increase patient survival, and detectable perioperative
ctDNA is also correlated with poorer survival outcomes. Elevated CEA levels in circulation
before and after surgery predicted significantly reduced survival outcomes [102].

This diversity in the evaluation methods underscores the need for a more standardized
approach in research. Defining and standardizing the key parameters of the most promising
biomarkers is essential to enable all stakeholders to make meaningful observations and
inferences about the efficacy of seemingly similar agents and combinations in various
settings. Several studies have demonstrated that a higher TMB is associated with better
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outcomes in various types of tumors, including NSCLC, colorectal cancer, bladder cancer,
and melanoma [128].

Predicting the response to immunotherapy is crucial to identify patients who are likely
to benefit from costly therapy and to avoid subjecting those who do not benefit from ICIs to
unnecessary adverse effects. However, the FDA has not approved any circulating biomarker
to predict the response to immunotherapy. Patients with high sPD-L1, low PD1+ CD8+,
and low NK cell counts were significantly associated with poorer PFS [101].

Researchers must strive for transparency and thoroughness in reporting their method-
ologies. Standard practices should include detailed descriptions of the randomization
processes and blinding methods and the complete reporting of outcome data. Integrat-
ing these biomarkers into standard clinical pathways could maximize their potential in
enhancing the treatment precision, thereby fostering significant advances in oncology and
improving patient outcomes and quality of life.

4.3. Future Directions and Clinical Implications

Advances in biomarker research are fundamental in enhancing diagnostic procedures
and treatment protocols in oncology, particularly for complex conditions such as NSCLC.
Future research should focus on establishing standardized protocols for the use of biomark-
ers and their integration into clinical pathways, which promises to significantly elevate the
accuracy of diagnostics and the personalization of treatment strategies, thereby improving
patient outcomes [129].

These studies must encompass all stages of biomarker use, from detection methods
and machine calibration to data interpretation and report formatting. Technologies such
as digital PCR and NGS offer profound insights into genetic and epigenetic modifica-
tions; however, their results are only as reliable as the standards used to calibrate them.
Developing universal calibration standards that are uniformly applied across different
platforms and laboratories can minimize the variability and enhance the reproducibility of
the results [129,130].

Moreover, integrating biomarkers into clinical pathways also requires the exploration
of their systemic implications. For instance, understanding how the early detection of
mutations through ctDNA impacts long-term survival rates and quality of life requires
longitudinal studies that track these outcomes over extended periods. Future research
should focus on standardizing analytical methods and evaluating ctDNA in various clinical
contexts and treatment types to validate its utility as a universal biomarker [131]. Simi-
larly, personalizing chemotherapy and immunotherapy regimens based on the bTMB and
microRNA profiles could revolutionize treatment paradigms [97,112]. Additional studies
are needed to refine the cut-off points for the bTMB and evaluate its predictive efficacy
in different treatment combinations, with an emphasis on genetic heterogeneity and the
impact on treatment responses [132,133]. Future research on miRNAs should focus on
identifying specific profiles associated with the treatment response and disease progres-
sion, as well as developing targeted therapies that modulate miRNA levels to enhance the
treatment efficacy [134,135]. Regarding PD-L1, further research is needed to understand
the heterogeneity in PD-L1 expression and its impact on the treatment response, exploring
therapeutic combinations that can overcome resistance in specific subgroups [99,110].

The incorporation of nanotechnology, biotechnology, and AI further enhances the
potential of biomarkers in NSCLC. Nanotechnology can improve drug delivery systems,
making them more effective by targeting specific cells and reducing side effects. For
instance, nanoparticles can be designed to release drugs in response to specific biological
signals or environmental conditions, thus improving the precision of drug delivery at tumor
sites [129,136–138]. Meanwhile, biotechnology plays a crucial role in the development of
biomarkers and therapeutic targets. Techniques like CRISPR and gene editing allow for the
manipulation of genetic material in cells, aiding in the creation of more effective models
for the study of cancer and development of targeted therapies. For example, gene editing
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could be used to modify immune cells to enhance their ability to recognize and destroy
cancer cells, a method currently being explored with CAR-T cell therapies [139–141].

AI complements these technologies by providing advanced data analysis capabilities
that can predict treatment outcomes, optimize treatment plans, and even identify new
potential biomarkers from vast datasets [129]. AI algorithms are capable of analyzing
complex patterns in data that would be impossible to efficiently process by humans. For
instance, AI can analyze imaging data to distinguish between benign and malignant lesions
with high precision or predict which patients are more likely to respond to certain therapies
based on historical data [129,142].

These technologies not only refine but also expand the current landscape of NSCLC
treatment by facilitating the development of new targets and therapeutic strategies. This
harmonious integration of biomarkers with cutting-edge technologies promises to rev-
olutionize oncological practice by improving the precision and personalization of care.
Eventually, this will lead to more effective treatments, the better management of treatment
side effects, and improved survival rates for patients. By combining detailed genetic, molec-
ular, and imaging data with innovative treatment methods, clinicians can provide more
targeted, efficient, and patient-friendly cancer care. This approach underscores the potential
of modern oncology to transform the nature of cancer treatment, ensuring that patients
receive the most effective interventions specifically tailored to their unique disease profiles.

5. Conclusions

This systematic review emphasizes the transformative role of ctDNA and other
biomarkers in the management of NSCLC, integrating the findings from 37 diverse studies
to substantiate their effectiveness in personalized medicine. It highlights ctDNA’s utility
in prognostic evaluations and real-time therapy monitoring, allowing for adaptive treat-
ment strategies, particularly with immunotherapies and targeted therapies, where PD-L1
expression and specific genetic alterations such as ALK fusions and EGFR mutations are
pivotal. The review also points to emerging biomarkers like microRNA profiles and the
gut microbiota, which broaden the scope of immunotherapy’s efficacy. Collectively, these
biomarkers not only refine the diagnostic and therapeutic protocols but also underscore
the necessity for their standardized integration into clinical practice to optimize outcomes
and reduce therapeutic redundancies. This synthesis confirms their prognostic and predic-
tive value, advocating for ongoing innovation in biomarker research to improve NSCLC
management, patient survival, and quality of life.
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Abbreviations

NSCLC Non-Small-Cell Lung Cancer
SCLC Small Cell Lung Cancer
ctDNA Circulating Tumor DNA
miRNA microRNA
bTMB Blood Tumor Mutational Burden
NGS Next-Generation Sequencing
EGFR Epidermal Growth Factor Receptor
ALK Anaplastic Lymphoma Kinase
ROS1 ROS Proto-Oncogene 1, Receptor Tyrosine Kinase
KRAS Kirsten Rat Sarcoma Viral Oncogene Homolog
PD-1 Programmed Death-1
PD-L1 Programmed Death Ligand 1
CT Computed Tomography
MRI Magnetic Resonance Imaging
PET Positron Emission Tomography
FISH Fluorescence In Situ Hybridization
PCR Polymerase Chain Reaction
IHC Immunohistochemistry
TKIs Tyrosine Kinase Inhibitors
EMT Epithelial–Mesenchymal Transition
MET Mesenchymal Epithelial Transition
HER2 Human Epidermal Growth Factor Receptor 2
VEGF Vascular Endothelial Growth Factor
FDA U.S. Food and Drug Administration
NIH National Institutes of Health
ICBs Immune Checkpoint Inhibitors
NTRK Neurotrophic Tyrosine Kinase Receptor
TNM Tumor, Node, Metastasis
TME Tumor Microenvironment
CEA Carcinoembryonic Antigen
CA125 Carbohydrate Antigen 125
STK11 Serine/Threonine Kinase 11
DDR2 Discoidin Domain Receptor 2
RET Rearranged during Transfection
JAK-STAT Janus Kinase Signal Transducer and Activator of Transcription
RAS/MAPK Rat Sarcoma/Mitogen-Activated Protein Kinase
PI3K/AKT/mTOR Phosphoinositide 3-Kinase/Protein Kinase B/Mammalian Target of Rapamycin

MEK/ERK
Mitogen-Activated Protein Kinase Kinase/Extracellular Signal-Regulated
Kinase

BRAF B-Raf Proto-Oncogene, Serine/Threonine Kinase
TUBB3 Tubulin Beta-3
TGF-β Transforming Growth Factor Beta
LAG-3 Lymphocyte Activation Gene-3
MDS Multidimensional Scaling
UMAP Uniform Manifold Approximation and Projection
GEO Gene Expression Omnibus
TCGA The Cancer Genome Atlas
AMP Association for Molecular Pathology
CAP College of American Pathologists
IASLC International Association for the Study of Lung Cancer
ASCO American Society of Clinical Oncology
ESMO European Society for Medical Oncology
NCCN National Comprehensive Cancer Network
FGFR1 Fibroblast Growth Factor Receptor 1
TIM-3 T-Cell Immunoglobulin and Mucin Domain Containing-3
TMB Tumor Mutational Burden
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OPN Osteopontin
DNA Deoxyribonucleic Acid
SNPs Single-Nucleotide Polymorphisms
FDA-NIH FDA-NIH Biomarker Working Group
NKX2-1 Thyroid Transcription Factor-1
TTF-1 Thyroid Transcription Factor-1
NAPSA Napsin A
CYFRA 21-1 Cytokeratin 19 Fragment
SCCA Squamous Cell Carcinoma Antigen
m6A N6-Methyladenine
SFTA2 Surfactant Protein A2
KIAA1522 KIAA1522 Protein
PFS Progression-Free Survival
NLR Neutrophil-to-Lymphocyte Ratio
RCTs Randomized Clinical Trials
MPR Major Pathological Response
TPS Tumor Proportion Score
MDR Minimal Residual Disease
hVAF High Variant Allele Frequency
VAFSD Variant Allele Frequency Standard Deviation
RECIST Response Evaluation Criteria In Solid Tumors
ORR Objective Response Rate
BRCA2 Breast Cancer 2, Early Onset
DSPP Dentin Sialophosphoprotein
CTCF CCCTC-Binding Factor
OVOL2 Ovo-Like Transcriptional Repressor 2
FFPE Formalin-Fixed Paraffin-Embedded
ABCP Atezolizumab Bevacizumab Carboplatin Paclitaxel
BCP Bevacizumab Carboplatin Paclitaxel
KEAP1 Kelch-Like ECH-Associated Protein
TP53 Tumor Protein p53
LASSO Least Absolute Shrinkage and Selection Operator
ddPCR Droplet Digital Polymerase Chain Reaction
LP52 52-Gene Expression Histology Classifier
BRAFV600E BRAF Gene Mutation V600E
ASOs Antisense Oligonucleotides
siRNAs Small Interfering RNAs

Appendix A
Reference search algorithms:
(Non small cell lung cancer) AND (Biomarker); ((Biomarker) AND (Predictive)) AND (Non

small cell lung cancer); Non small cell lung cancer biomarker monitoring; ((Non small cell lung
cancer) AND (biomarker)) AND (monitoring); (((non small cell lung cancer) AND (biomarkers))
AND (immunotherapy)) AND (chemotherapy).
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