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Simple Summary: The complexity and diversity of tissue structures in histopathology present
significant challenges for accurately segmenting images, which is crucial for cancer diagnosis. Our
research introduces the Granular Box Prompt Segment Anything Model (GB-SAM), developed to
improve segmentation accuracy with less dependence on extensive annotated datasets. GB-SAM
aims to precisely segment glandular structures using granular box prompts, essential for accurate
cancer detection. In our experiments, GB-SAM consistently outperformed traditional models like
U-Net, achieving a Dice coefficient of 0.885 on the CRAG dataset with only 25% of the training data,
compared to U-Net’s 0.857. This advancement can significantly simplify diagnostic workflows in
digital pathology, offering a robust tool for researchers and clinicians and potentially transforming
clinical practices to improve patient outcomes.

Abstract: Recent advances in foundation models have revolutionized model development in digital
pathology, reducing dependence on extensive manual annotations required by traditional methods.
The ability of foundation models to generalize well with few-shot learning addresses critical barriers
in adapting models to diverse medical imaging tasks. This work presents the Granular Box Prompt
Segment Anything Model (GB-SAM), an improved version of the Segment Anything Model (SAM)
fine-tuned using granular box prompts with limited training data. The GB-SAM aims to reduce the
dependency on expert pathologist annotators by enhancing the efficiency of the automated annotation
process. Granular box prompts are small box regions derived from ground truth masks, conceived
to replace the conventional approach of using a single large box covering the entire H&E-stained
image patch. This method allows a localized and detailed analysis of gland morphology, enhancing
the segmentation accuracy of individual glands and reducing the ambiguity that larger boxes might
introduce in morphologically complex regions. We compared the performance of our GB-SAM
model against U-Net trained on different sizes of the CRAG dataset. We evaluated the models across
histopathological datasets, including CRAG, GlaS, and Camelyon16. GB-SAM consistently outper-
formed U-Net, with reduced training data, showing less segmentation performance degradation.
Specifically, on the CRAG dataset, GB-SAM achieved a Dice coefficient of 0.885 compared to U-Net’s
0.857 when trained on 25% of the data. Additionally, GB-SAM demonstrated segmentation stability on
the CRAG testing dataset and superior generalization across unseen datasets, including challenging
lymph node segmentation in Camelyon16, which achieved a Dice coefficient of 0.740 versus U-Net’s
0.491. Furthermore, compared to SAM-Path and Med-SAM, GB-SAM showed competitive perfor-
mance. GB-SAM achieved a Dice score of 0.900 on the CRAG dataset, while SAM-Path achieved 0.884.
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On the GlaS dataset, Med-SAM reported a Dice score of 0.956, whereas GB-SAM achieved 0.885 with
significantly less training data. These results highlight GB-SAM’s advanced segmentation capabilities
and reduced dependency on large datasets, indicating its potential for practical deployment in digital
pathology, particularly in settings with limited annotated datasets.

Keywords: digital pathology; pathology image; segmentation; foundation models; histopathology

1. Introduction

The latest advancements in digital pathology present significant practical benefits
compared to traditional manual diagnosis [1,2]. The exponential growth of medical imag-
ing technologies has resulted in an accumulation of high-resolution histological images,
necessitating automated annotation and diagnosis processes [3]. In this context, artificial
intelligence (AI) algorithms have emerged as promising tools in digital pathology, holding
immense potential for streamlining diagnostic workflows [4,5].

However, the diversity of biological tissue structures complicates the automated
analysis of histopathology slides [6,7]. This challenge is particularly pronounced in the
segmentation of tissue and substructures, such as glands and nodules, which are pivotal
in cancer diagnosis across various tissue types and cancer subtypes [8,9]. Disruptions
in glandular structures are often indicative of malignant cases [10], presenting irregular
shapes in contrast to the circular structures commonly observed in benign cases. This
distinction is crucial in diagnosing colorectal cancer, where the gland anatomy plays a vital
role [11,12]. Therefore, the precision and accuracy of tissue segmentation processes are
critical for advancing toward an AI-aided cancer detection pipeline.

The AI research community is currently experiencing a significant transformation,
driven by the development of large-scale models like DALL-E [13], GPT-4 [14], and
SAM [15]. These models provide frameworks for solving a wide range of problems.
SAM, in particular, emerges as a notable segmentation model capable of generalizing to
new objects and images without further training. This adaptability results from SAM’s
training on millions of images and masks, refined through iterative feedback and model
improvements. However, in order to apply SAM in the medial field, it is necessary to
fine-tune it for a given downstream task.

The contributions of our work are the following:

• Introducing a new strategy for fine-tuning the SAM model using granular box prompts
derived from ground truth masks, enhancing gland morphology segmentation accuracy.

• Demonstrating through experiments on CRAG, GlaS, and Camelyon16 datasets, our
training strategy improves SAM’s segmentation performance.

• Showcasing SAM’s superior performance and adaptability in digital pathology is
particularly beneficial for cases with limited data availability.

• Highlighting SAM’s consistent performance and exceptional ability to generalize to
new and complex data types, such as lymph node segmentation.

This paper is organized as follows: In Section 2, we discuss related work in the field of
medical image segmentation using SAM. Section 3 describes the datasets and the method-
ology used, including the training procedures for GB-SAM. Section 4 presents our experi-
mental results and provides a comparative analysis with other models. Finally, Section 5
concludes the paper, summarizing our findings and discussing future research directions.

2. Related Work

The application of the Segment Anything Model (SAM) in the pathology field remains
relatively unexplored. SAM-Path improves SAM’s semantic segmentation in digital pathol-
ogy by introducing trainable class prompts. Experiments on the BCSS and CRAG datasets
show significant improvements over the standard SAM model, highlighting its enhanced
performance in pathology applications [16].
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Another study evaluated SAM’s zero-shot segmentation on whole slide imaging (WSI)
tasks, such as tumor, nontumor tissue, and cell nuclei segmentation. While SAM obtained
good results in segmenting large connected objects, it struggled with dense instance object
segmentation [17].

WSI-SAM focuses on precise object segmentation for histopathology images using
multiresolution patches. This variant maintains SAM’s zero-shot adaptability and intro-
duces a dual mask decoder to integrate features at multiple scales, demonstrating superior
performance on tasks like ductal carcinoma in situ (DCIS) and breast cancer metastasis
segmentation [18].

MedSAM, a foundation model for universal medical image segmentation, covers
various imaging modalities and cancer types. It outperforms modality-wise specialist
models in internal and external validation tasks, indicating its potential to revolutionize
diagnostic tools and treatment plans [19].

Another paper explores SAM’s application in medical imaging, particularly radiology
and pathology. Through fine-tuning, SAM significantly improves segmentation accuracy
and reliability, offering insights into its utility in healthcare [20].

Lastly, all-in-SAM, an SAM pipeline for the AI development workflow, has shown that
leveraging pixel-level annotations from weak prompts can enhance the SAM segmentation
model. This method surpasses state-of-the-art methods in nuclei segmentation and achieves
competitive performance with minimal annotations [21].

We summarize these works in Table 1.

Table 1. Summary of studies on SAM models in medical image segmentation.

Study Method Dataset(s) Key Findings Limitations

Zhang et al.
(2023) [16] SAM-Path BCSS, CRAG

Improvements in Dice score by 27.52%
and IOU by 71.63% compared to vanilla
SAM. Additional pathology foundation
model further improves Dice by
5.07–5.12% and IOU by 4.50–8.48%.

Dependent on quality of trainable
class prompts; complexity increases
with additional models and
fine-tuning.

Deng et al.
(2023) [17]

SAM
Zero-Shot WSI

Good results on large objects; struggles
with dense objects. Dice:
Tumor—58.71–74.98, Tissue—49.72–96.49,
Cell—1.95–88.30.

Ineffective for dense instance object
segmentation; requires many
prompts for better performance.

Liu et al.
(2024) [18] WSI-SAM Histopathology

images

Superior performance with
multiresolution patches (Dice of 57.37);
significant improvement in
segmentation tasks.

Complexity in dual mask decoding;
high computational
resources required.

Ma et al.
(2024) [19] MedSAM Multiple

modalities

Outperforms specialist models; Dice:
Various tasks—95.6% for colon gland
segmentation, 96.5% for Skin cancer.

Requires large and diverse training
datasets; high dependency on
training data availability.

Ranem et al.
(2024) [20]

SAM in
radiology

Radiology,
pathology

Improved segmentation accuracy; Dice for
radiology: 84.49%; pathology:
39.05–77.80%.

Limited to specific medical imaging
applications; need for robust
annotation strategies.

Cui et al.
(2024) [21] All-in-SAM Nuclei

segmentation

Enhances SAM with weak prompts;
competitive performance; Dice: 82.54%,
IOU: 69.74%.

Dependent on quality of weak
annotations; limited scalability for
large datasets.

3. Material and Methods
3.1. Datasets
3.1.1. CRAG for Training and Validation

The CRAG dataset [22] is our model’s internal training and validation foundation. It
consists of 213 H&E-stained histopathology images, specifically on colorectal adenocarci-
noma tissues. The dataset is divided into 173 images dedicated to training the model and
40 images for testing its accuracy. Each image is annotated at the pixel level to delineate
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the glandular structures precisely. This detailed annotation allows a robust evaluation of
the model’s gland segmentation capabilities. At the same time, the image resolution varies
within the dataset, typically around 20× magnification. Samples from the CRAG dataset
can be seen in Figure 1a.

Figure 1. Samples of histopathological images from (a) CRAG, (b) GlaS, and (c) Camelyon datasets.
These images show the diverse glandular structures and tissue types present in each dataset, which
are used for training (CRAG) and evaluating (GlaS and Camelyon) GB-SAM.

3.1.2. External Testing Datasets

We selected the GlaS and Camelyon16 datasets to evaluate GB-SAM trained on CRAG.
GlaS Dataset: The GlaS dataset [23], an external testing benchmark, enhances the

generalizability of our model’s performance beyond the training data. It offers 165 H&E-
stained images derived from colon tissue sections, providing a broader range of histological
features compared to CRAG. The dataset is divided into 85 training images and 80 testing
images. Like CRAG, images are meticulously annotated at the pixel level to identify glan-
dular structures. The GlaS dataset is a popular choice for evaluating gland segmentation
algorithms due to the exceptional quality of its annotations and the inclusion of images with
diverse gland morphologies, reflecting the variations observed across different histological
grades. This variety ensures that the model encounters broader challenges during testing.
Samples from the GlaS dataset can be seen in Figure 1b.

Camelyon16 Dataset: The Camelyon16 dataset [24] is important in assessing our
model’s ability to detect lymph node metastasis in breast cancer patients. It includes
a collection of 400 whole-slide images (WSIs) obtained from sentinel lymph nodes, the
first lymph nodes to receive drainage from a tumor site. The dataset is further split into
270 training slides and 130 testing slides. Each WSI is annotated to mark the exact regions
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containing metastatic cancer cells. Samples from the Camelyon dataset can be seen in
Figure 1c.

3.1.3. Datasets Representation

Let D = {d1, d2, . . . , dn} represent a dataset, where each di is a data item. Each di
includes an image Ii and a set of objects Oi = {oi1, oi2, . . . , oij} associated with the image.
Each object oij is accompanied by annotations, including bounding boxes (B) and ground
truth masks (M).

3.2. Granular Box Prompts SAM
3.2.1. Segment Anything Model

In our approach to fine-tuning GB-SAM, we chose the SAM-ViT-Huge version as our
starting point. This version delivers high-quality segmentation but incurs higher running
time and memory usage due to its large ViT architecture [25]. However, we aimed to
customize GB-SAM for our specific segmentation tasks, which required high precision and
segmentation quality.

To meet our fine-tuning goals, we disabled gradient computation for both the vision
encoder and prompt encoder components (See Figure 2). This step is crucial to keep the
weights of these components unchanged during the fine-tuning process, thus maintaining
the integrity of SAM’s pre-trained capabilities.

Figure 2. Pipeline for fine-tuning GB-SAM using granular box prompts.

Subsequently, the fine-tuning process unfolds through a sequence of steps, including
loss function minimization, parameter optimization, adaptive learning rate adjustment,
and performance evaluation.
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3.2.2. Object Selection and Bounding Box Prompt

We employ a strategy that uses granular small box prompts derived from ground
truth masks instead of a single large box prompt covering the entire H&E-stained image
patch (see Figure 2). This approach allows a more localized and detailed understand-
ing of gland morphology, aligning closely with biological tissues’ inherent heterogeneity
and irregularity.

This technique also supplies GB-SAM with highly granular data, enhancing the seg-
mentation accuracy of individual glands by mitigating the ambiguity a larger box might
introduce, especially in morphologically complex regions.

Moreover, smaller boxes enable the model to concentrate on specific gland features,
supporting a more robust learning process and potentially boosting the model’s ability to
generalize across diverse histopathological patterns in H&E-stained images.

To facilitate this, we define f (j) as the recursive function for retrieving an object O from
an image mask m at the random index j, where j ranges from 0 to n − 1, and n represents
the total number of objects in the image mask.

f (j) =



getObject(j) if getObject(j) ̸= None

f (j + 1) if getObject(j) = None

and j + 1 < n
f (j − 1) if getObject(j) = None

and j + 1 ≥ n

The retrieval process involves using the function getObject(j) to directly access objects
in the image mask and perform augmentations operations. If no valid objects are found,
the function selects a new random object from the valid ones and adjusts its mask.

Finally, for each selected object oij, a bounding box prompt B is generated based on
oij’s bounding box, with additional random adjustments, thus generating processing inputs
for GB-SAM.

3.2.3. Training Procedures
Image Preprocessing and Augmentation

We applied a comprehensive image augmentation strategy to enhance the robust-
ness of our GB-SAM model against variations in H&E-stained images. This approach,
formulated through probabilistically selected transformations, aims to simulate a diverse
array of histopathological image conditions. Our augmentation process can be represented
as follows:

Let T = {T1, T2, . . . , Tk} be a set of transformation functions, where each Ti corre-
sponds to a specific image augmentation technique. Each transformation Ti is selected with
a probability pi = 0.5. Then, the probabilistic selection is denoted by Tselected = Select(Ti, pi).

The augmentation transformations include noise addition and blur, spatial transfor-
mations (flipping, shifting, scaling, and rotating), and morphological distortions (elastic,
grid, and optical). Additionally, adjustments to color channels (Trgb) and brightness and
contrast levels (Tbc) are consistently applied to each object.

Hence, the comprehensive augmentation function encompassing all specific transfor-
mations applied to an object O is represented as

A(O) = (Trgb ⊕ Tbc ⊕
k⊕

i=1

Tselected)(O)

Model Optimizations

Loss Function Minimization
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At the core of our training methodology is the objective to minimize a composite loss
function, L(⊆), which combines the Dice loss [26] and cross-entropy loss [27], defined as
follows:

L(θ) = (1 − Dice(M, M∗)) + λ · CE(M, M∗)

where:

• Dice(M, M∗) = 2·|M∩M∗ |
|M|+|M∗ | measures the overlap between the predicted and ground

truth masks.
• CE(M, M∗) = −∑i M∗

i log(Mi) + (1 − M∗
i ) log(1 − Mi) represents the cross-entropy

loss, penalizing the pixel-wise differences between the predicted mask M and the
ground truth M∗.

• λ is a balancing coefficient.

The balancing coefficient, λ, is essential for modulating the influence of each loss
component, ensuring a balanced optimization focus that addresses global shape alignment
and local pixel accuracy. Furthermore, we have configured the loss function to use sig-
moid activation and squared predictions, averaged across the batch, to facilitate a refined
approach to minimizing prediction errors.

Learning Rate Adjustment
We incorporated the ReduceLROnPlateau strategic learning rate adjustment mecha-

nism [28] into our training process, which is defined as

αt+1 =

{
αt · η if ∆Lval ≤ ε for patience epochs
αt otherwise

where

• η < 1 is the reduction factor.
• ∆Lval measures the change in validation loss.
• ε is a threshold for determining if the change in loss is significant.

In general, this mechanism adjusts the learning rate α, depending on the performance
of GB-SAM on the validation set. We set the reduction factor η at 0.001, which reduces the
learning rate after a nonimprovement period of 10 epochs and ϵ was set to 0.0001.

Early Stopping
Incorporating an early stopping mechanism addresses the critical concern of overfit-

ting by monitoring the validation loss Lval. Training is halted if GB-SAM stops to show
significant improvement over a set number of epochs.

if ∆Lval ≤ ε for patience epochs, stop training.

This decision is grounded in the observation that continued training beyond this point
does not yield substantial gains in validation performance and may, in fact, weaken the
GB-SAM generalization capability due to overfitting to the training data.

3.3. Comparison and Evaluation
3.3.1. Compared Methods: U-Net, Path-SAM, Med-SAM
U-Net Model

To compare the performance of GB-SAM against a well-established segmentation
model, we developed and trained a U-Net model. We utilized the U-Net model with a
ResNet34 backbone [29], pretrained on the ImageNet dataset [30]. During preprocessing,
images were resized to the dimensions of 1024 × 1024 and subjected to augmentation
techniques, including noise addition, flipping, rotation, and distortion. Subsequently, each
image underwent self-normalization using Z-score normalization. For optimization, we
employed the AdamW optimizer with a consistent learning rate of 0.0001 and weight decay
of 0.005 for the CRAG dataset. The loss function used was cross-entropy loss. Model
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training consisted of 60 epochs, with additional parameters including a batch size of 4 and
4 num_workers.

SAM-Path

We use the reported results of SAM-Path—a model that employs trainable class
prompts alongside a specialized pathology encoder—to compare the performance of our
GB-SAM version. SAM-Path enhances the original SAM model’s proficiency in executing
semantic segmentation tasks without requiring manual input prompts [16].

MedSAM: Segment Anything in Medical Images

In our work, we leveraged the scores obtained and reported from MedSAM for gland
segmentation—a foundational model designed for universal medical image segmentation—as
a benchmark to evaluate the performance of our GB-SAM model. MedSAM aims for
universal segmentation across various tasks and utilizes a large dataset that covers multiple
imaging modalities and cancer types [19].

Evaluation Metrics

To evaluate the performance of GB-SAM on gland-like segmentation in H&E images,
we employ three key metrics: intersection over union (IoU), Dice similarity coefficient
(DSC), and mean average precision (mAP). These metrics collectively assess the accuracy
of gland boundary delineation and the reliability of gland segmentation.

3.3.2. Intersection over Union (IoU)

The IoU metric quantifies the overlap between the predicted and ground-truth seg-
mentation masks. This metric directly evaluates segmentation accuracy, highlighting both
correct and incorrect predictions. However, it may not fully detail the performance in
segmenting very small or intricately shaped glands, where precise shape correspondence
is crucial.

IoU =
|M ∩ M∗|
|M ∪ M∗|

where M is the ground truth mask and M∗ is the predicted mask.

3.3.3. Dice Similarity Coefficient (DSC)

DSC assesses the similarity between predicted and ground truth masks, focusing on
the accuracy of size and shape. This emphasis makes DSC especially valuable for medical
segmentation tasks, where precise delineation of structures is critical. Due to its sensitivity
to size matching, DSC is often preferred for segmenting small objects.

DSC =
2 × |M∗ ∩ M|
|M∗|+ |M|

where M is the ground truth mask and M∗ is the predicted mask.

3.3.4. Mean Average Precision (mAP)

mAP measures the model’s capability to detect and accurately segment distinct objects
or classes, calculating the mean of average precision (AP) scores across classes or instances.
mAP provides an overview of a model’s detection and segmentation precision, including
its success in accurately identifying and outlining objects. This metric is important for mul-
ticlass segmentation tasks, as it evaluates detection accuracy and precision across varying
confidence levels, unlike IoU and DSC, which focus on geometric overlap and similarity.

mAP =
1
N

N

∑
i=1

APi

where N is the number of classes, and APi is the average precision for class i.
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4. Results and Discussion

In this section, we present the experiments conducted to evaluate the segmentation
performance of our GB-SAM model and compare its results with those of the U-Net model.
Both models were initially fine-tuned using the CRAG dataset, followed by testing on
the CRAG testing dataset, GlaS, and Camelyon16 datasets. Additionally, we explore the
impact of reduced training dataset sizes. Further details on our experiments and results are
provided in the following sections.

4.1. Impact of Dataset Size on Tuning GB-SAM and U-Net Models with CRAG

We selected 100%, 50%, and 25% of the CRAG training dataset for our training. We
then trained our GB-SAM and U-Net on these subsets and compared the models to the
CRAG testing (validation) dataset.

4.1.1. Comparative Results

Analyzing the results obtained from both models, it is noticeable that distinct differ-
ences exist in their sensitivity to reductions in training dataset size, as shown in Table 2. The
U-Net model exhibits a pronounced decrease in all evaluated performance metrics (Dice,
IoU, mAP) as the dataset size decreases, with Dice scores dropping from 0.937 at full dataset
size to 0.857 at 25%, IoU scores from 0.883 to 0.758, and mAP scores from 0.904 to 0.765.
This trend underscores U-Net’s significant dependency on larger amounts of training data
for optimal performance, as highlighted by the standard deviations in performance metrics
(Dice: 0.041, IoU: 0.064, mAP: 0.075), indicating variability with changes in dataset size.

Table 2. Performance metrics of U-Net vs. GB-SAM at CRAG varying training dataset sizes, with
superior results highlighted in green.

Dice IoU mAP

Training Size GB-SAM U-NET GB-SAM U-NET GB-SAM U-NET

100% 0.900 0.937 0.813 0.883 0.814 0.904

50% 0.876 0.914 0.781 0.845 0.778 0.883

25% 0.885 0.857 0.793 0.758 0.788 0.765

SD 0.012 0.041 0.016 0.064 0.019 0.075

In contrast, the GB-SAM model demonstrates a less consistent pattern of performance
degradation across the same metrics. Notably, specific metrics (Dice, IoU) even show
improvement when the dataset size is reduced to 25%, with Dice scores slightly decreasing
from 0.900 at the entire dataset to 0.885 at 25% of the dataset and IoU scores decreasing
from 0.813 to 0.793. The average mAP score experiences a modest decline from 0.814 at
full dataset size to 0.788 at 25%, demonstrating a less pronounced drop than U-Net. These
results suggest that GB-SAM has superior capabilities in generalizing from limited data or
experiencing less performance loss due to overfitting on smaller datasets. The low standard
deviations for GB-SAM (Dice: 0.012, IoU: 0.016, mAP: 0.019) underscore its consistent
performance across varying dataset sizes, in contrast to U-Net’s performance.

Notably, the performance degradation from 100% to 25% dataset sizes was more acute
for the U-Net model, especially in mAP scores, indicating a sharper decline in model
precision (↓ 0.139) compared to the GB-SAM model (↓ 0.026).

It is important to note that while U-Net outperformed GB-SAM when trained on 100%
and 50% of the CRAG training dataset, GB-SAM’s results are characterized by more excel-
lent stability, outperforming U-Net when using only 25% of the training data (see Table 2).

4.1.2. Segmentation Performance

Upon analyzing the performance metrics of the GB-SAM and U-Net models across
varying training dataset sizes, we identified H&E patch images that exhibited the lowest
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scores for each training size (Table 3), offering a detailed view of each model’s segmenta-
tion capability.

A recurring observation in Table 3 is the challenge presented by the image test_23
to the GB-SAM model, which faces difficulties across all metrics (Dice, IoU, mAP) and
dataset sizes. As demonstrated in Figure 3d, GB-SAM’s segmentation is noticeably noisy,
showing a tendency toward higher false positives and reduced accuracy, as evidenced by
its over-segmentation and unnecessary noise alongside actual features.

In contrast, U-Net’s segmentation more closely matches the ground truth but lacks
finer details, missing smaller features and resulting in smoother edges. This indicates
U-Net’s better performance in capturing the overall structure in this image, though it
struggles to capture detailed aspects (Figure 3c).

Table 3. Performance minimal extremes for GB-SAM and U-Net models across different CRAG
training dataset sizes.

Metric Model Train Size Min. Score Image

GB-SAM

Dice
100% 0.629 test_23
50% 0.648 test_23
25% 0.640 test_23

IoU
100% 0.489 test_23
50% 0.450 test_23
25% 0.491 test_23

mAP
100% 0.577 test_23
50% 0.470 test_23
25% 0.567 test_23

U-Net

Dice
100% 0.840 test_39
50% 0.759 test_15
25% 0.624 test_18

IoU
100% 0.724 test_39
50% 0.612 test_15
25% 0.453 test_18

mAP
100% 0.720 test_39
50% 0.662 test_15
25% 0.452 test_18

Figure 3. Cont.
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Figure 3. Segmentation results using GB-SAM and U-Net for image test_23 of the CRAG dataset:
(a) H&E patch image, (b) ground truth mask, (c) U-Net predicted mask, (d) GB-SAM predicted mask.

In our analysis, we computed the differences between the ground truth and the
predicted masks. The segmentation results for GB-SAM and U-Net on image test_23, as
shown in Figures 4 and 5, reveal several key observations. The color-coded segmentation,
with red indicating underpredictions (where the predicted mask has a pixel as 0 and the
true mask has it as 1) and green highlighting overpredictions (where the predicted mask
has a pixel as 1 and the true mask has it as 0), allows for a visual comparison of model
performance across different training dataset sizes. GB-SAM consistently balances over-
and underpredictions, regardless of the training dataset size. This consistency shows that
GB-SAM maintains stable segmentation performance, which indicates its robustness and
ability to generalize from the available data.

On the other hand, U-Net tends to increase overpredictions as the size of the training
dataset decreases. This pattern points to a potential overfitting issue with U-Net when
trained on smaller datasets, where the model might compensate for the lack of data by
overestimating the presence of features. It also reflects U-Net’s sensitivity to training
dataset size, suggesting that its performance and accuracy in segmenting specific features
become less reliable with reduced data availability.

Figure 4. Segmentation results of GB-SAM on image test_23 of the CRAG dataset: red indicates
underpredictions, and green indicates overpredictions relative to the ground truth mask.
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Figure 5. Segmentation results of U-Net on image test_23 of the CRAG dataset: red indicates
underpredictions, and green indicates overpredictions relative to the ground truth mask.

For added context and based on Table 3, U-Net struggles with several images (test_39,
test_15, test_18) across various training sizes. Notably, U-Net tends to produce gland
structures hallucinations, as illustrated in Figure 6, and incorrectly segments scanner
artifacts as glandular tissue, as demonstrated in Figure 7.

Our findings show the importance of dataset size in training segmentation models
and reveal distinct characteristics of GB-SAM and U-Net in managing data scarcity. In our
case, GB-SAM’s stable performance across varying dataset sizes offers an advantage in
applications with limited annotated data, such as in the digital pathology field.

Figure 6. Segmentation results of U-Net on image test_15 of the CRAG dataset showing gland
hallucinations. Red indicates underpredictions, and green indicates overpredictions relative to the
ground truth mask.
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Figure 7. U-Net segmentation on image test_18 of the CRAG dataset: misclassification of digitization
defects (purple square). Red indicates underpredictions, and green indicates overpredictions relative
to the ground truth mask.

4.2. Assessing Model Generalizability across Diverse Datasets

After fine-tuning and evaluating the performance of the GB-SAM and U-Net models
using 100% of the training data from the CRAIG dataset, we explored their ability to
generalize to unseen data. The following section presents and discusses our findings,
analyzing how effectively each model applies its learned segmentation capabilities to new
images. Our analysis aims to highlight the strengths and weaknesses of GB-SAM and
U-Net in terms of model generalization, offering insights into their practical utility and
flexibility in digital pathology applications.

4.2.1. Evaluating on GlaS

The GlaS test dataset consists of 37 benign and 43 malignant samples. In this section,
we aim to evaluate the segmentation performance of the GB-SAM and U-Net models,
trained on the CRAG dataset, across these categories.

Based on Table 4, we found that for benign areas, GB-SAM performs better in terms of
the Dice coefficient and IoU, with average scores of 0.901 and 0.820, respectively. These
metrics indicate that GB-SAM is highly effective in accurately identifying benign tumor
areas, ensuring a strong match between the predicted segmentation and the ground truth.
On the other hand, while still performing well, U-Net is slightly behind GB-SAM, with
Dice and IoU scores of 0.878 and 0.797, respectively. However, it is noteworthy that U-Net
outperforms GB-SAM in the mAP metric with an average score of 0.873, compared to
GB-SAM’s 0.840. While U-Net may not match GB-SAM in segmentation precision and
overlap, it has a small advantage in detecting relevant areas within benign contexts.

Now, when analyzing the performance on malignant tumors, the gap between GB-SAM
and U-Net widens, particularly in the Dice and IoU metrics. GB-SAM maintains a lead
with Dice and IoU scores of 0.871 and 0.781, respectively, versus U-Net’s 0.831 (Dice) and
0.745 (IoU). This indicates a consistent trend where GB-SAM outperforms U-Net in delineat-
ing tumor boundaries with greater precision, especially crucial in malignant tumors where
accurate segmentation can significantly impact clinical outcomes. Interestingly, in the mAP
metric for malignant tumors, U-Net (0.821) closes the gap with GB-SAM (0.796), suggesting
that U-Net may be more adept at recognizing malignant features across a dataset, despite
having lower overall segmentation accuracy. Visual segmentation results are shown in
Figures 8 and 9.
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Both GB-SAM and U-Net exhibit strengths that make them valuable tools in the digital
pathology domain. However, GB-SAM’s consistent accuracy and robustness across tumor
types highlight its potential benefits for improved tumor segmentation and classification in
clinical settings.

Table 4. Performance for GB-SAM and U-Net Models on GlaS dataset. Higher scores are highlighted
in yellow.

Model Grade Metric Average

GB-SAM

Benign

Dice 0.901
IoU 0.820

mAP 0.840

U-Net
Dice 0.878
IoU 0.797

mAP 0.873

GB-SAM

Malignant

Dice 0.871
IoU 0.781

mAP 0.796

U-Net
Dice 0.831
IoU 0.745

mAP 0.821

Figure 8. Segmentation results of GB-SAM and U-Net on a benign area in an image from the
GlaS dataset: (a) H&E-stained patch image, (b) ground truth mask, (c) U-Net predicted mask, and
(d) GB-SAM predicted mask.
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Figure 9. Segmentation results of GB-SAM and U-Net on a malignant area in an image from the
GlaS dataset: (a) H&E-stained patch image, (b) ground truth mask, (c) predicted mask by U-Net, and
(d) predicted mask by GB-SAM.

4.2.2. Evaluating on Camelyon16

Lymph nodes present significant segmentation challenges, primarily due to often
indistinct boundaries and the complexity of surrounding structures. In this context, an-
alyzing the performance of GB-SAM and U-Net models, trained on the CRAG dataset,
in segmenting lymph nodes within a subset of the Camelyon16 dataset offers valuable
insights into their utility for complex pathological analyses.

Table 5 shows that GB-SAM outperforms U-Net across all metrics. Specifically, GB-SAM
achieves a Dice score of 0.740, indicating a significantly higher degree of overlap between
the predicted segmentation and the ground truth, in contrast to U-Net’s score of 0.491. This
disparity suggests that SAM more effectively identifies lymph node boundaries within WSIs.

Similarly, GB-SAM’s IoU score of 0.612 exceeds U-Net’s 0.366, demonstrating that
GB-SAM’s predictions more closely match the actual lymph node areas. Regarding mAP,
GB-SAM leads with a score of 0.632 compared to U-Net’s 0.565. Although the gap in mAP
between the two models is less pronounced than in Dice and IoU, GB-SAM’s higher score
underlines its superior reliability in recognizing lymph nodes. Figure 10 shows a visual
segmentation result.

Table 5. Performance for GB-SAM and U-Net models on Camelyon16 dataset. Higher performance is
highlighted in yellow.

Model Metric Average

GB-SAM
Dice 0.740

IoU 0.612

mAP 0.632

U-Net
Dice 0.491

IoU 0.366

mAP 0.565
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Figure 10. Segmentation Results of GB-SAM and U-Net on lymph node tumor in an image from
the Camelyon dataset: (a) H&E-stained patch image, (b) ground truth mask, (c) predicted mask by
U-Net, and (d) predicted mask by GB-SAM.

Furthermore, even when trained on gland data from the CRAG dataset, GB-SAM’s
excellent performance showcases its remarkable capacity for generalization to lymph
node segmentation. This flexibility highlights GB-SAM’s robust and adaptable modeling
approach, which can be used for different yet histologically related tissue types. In contrast,
despite achieving high scores in segmenting gland structures, U-Net exhibits constraints in
extending its applicability to other tissue types.

4.2.3. Comparative Analysis: GB-SAM, SAM-Path, and Med-SAM

We summarize the results in Table 6. Despite a moderately lower IoU score of 0.813
compared to SAM-Path’s 0.883, GB-SAM obtained a higher Dice score of 0.900, which is
essential for medical segmentation tasks. Notably, GB-SAM achieved a Dice score of 0.885
on the CRAG test dataset, surpassing SAM-Path’s 0.883, even though it used only 25% of
the CRAG training data (see Table 2). This efficiency highlights GB-SAM’s capability to
achieve high performance with limited training data, making it particularly suitable for
scenarios with constrained data availability.

Compared to Med-SAM, which achieved a Dice score of 0.956 with a large training
dataset, GB-SAM’s Dice score of 0.885 demonstrates a nominal difference. Despite the
considerably smaller training dataset, this moderately high performance underscores
GB-SAM’s effectiveness in generalizing from limited data to unseen cases. This ability to
perform well with less data is critical for practical clinical deployment, where extensive
annotated datasets may only sometimes be available.

Moreover, while we found no existing studies that use SAM for lymph node segmen-
tation, GB-SAM’s performance in this task is noteworthy. Despite not being explicitly
trained on lymph node data, GB-SAM’s acceptable segmentation performance indicates
its potential to serve as a reliable tool across a diverse range of pathological tissues. This
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adaptability suggests that GB-SAM could be a valuable tool in clinical settings, offering
robust segmentation capabilities across various medical images.

Table 6. Performance comparison between GB-SAM, SAM-Path, and Med-SAM. Higher performance
highlighted in yellow.

Model Metric CRAG GlaS Camelyon16

GB-SAM (Our model)
Dice 0.900 0.885 0.740

IoU 0.813 0.799 0.612

mAP 0.814 0.816 0.632

SAM-Path
Dice 0.884 - -

IoU 0.883 - -

mAP - - -

Med-SAM
Dice - 0.956 -

IoU - - -

mAP - - -

It is important to note that we did not run the experiments for SAM-Path and Med-
SAM ourselves. Although their code is available on GitHub, replicating their experiments
requires substantial computational resources. Therefore, we reported the statistics pub-
lished in the original papers for comparison. This approach ensures that we provide a fair
and accurate comparison based on the reported performance metrics of these models.

5. Conclusions

In this study, we adopted a new strategy of employing granular box prompts based
on ground truth masks for fine-tuning our GB-SAM model, which is based on SAM.
This approach aims to achieve more precise gland morphology segmentation, moving
away from the traditional single-large box approach used in other works. This technique
notably enhanced GB-SAM’s gland segmentation accuracy by supplying detailed data and
mitigating ambiguity in regions with complex morphology.

Our experiments across the CRAG, GlaS, and Camelyon16 datasets showed that
granular box prompts enable GB-SAM to focus on specific gland features, thus improv-
ing learning and generalization across various histopathological patterns. This method
highlighted GB-SAM’s outstanding segmentation performance and adaptability, which is
particularly helpful in digital pathology cases with limited data availability.

GB-SAM’s consistent performance and capability to generalize to new data, like lymph
node segmentation, emphasize its potential for clinical applications. Although both GB-
SAM and U-Net contribute valuable tools to digital pathology, GB-SAM’s robustness and
success in extending beyond gland segmentation establish it as a strong option for tumor
segmentation within the field of digital pathology.

Despite its promising performance, GB-SAM has some limitations. The Camelyon16
dataset is particularly challenging for segmentation due to the unclear boundaries and
surrounding tissue structures in WSIs. As discussed in Section 4.2.2, the complexity of
accurately detecting and segmenting lymph node metastases in Camelyon16 highlights the
difficulty of handling images with complex details. Additionally, while we implemented
early stopping based on validation loss to mitigate overfitting, maintaining state-of-the-art
generalization capabilities across different datasets remains challenging. The variability in
the complexity of tissue structures can impact GB-SAM’s performance, especially when
segmenting highly complex or rare tissue structures.

To overcome these limitations, our future work will focus on enhancing the preprocess-
ing pipeline to better standardize images and exploring advanced training strategies such
as transfer learning and domain adaptation. We aim to ensure that GB-SAM can effectively
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generalize to a broader range of histopathological images, offering a promising path for its
future development.

Addressing ethical and practical considerations is crucial for the responsible deploy-
ment of the GB-SAM model in clinical settings. This study represents the first phase of our
project, focusing on testing the GB-SAM model’s segmentation capabilities. In the next
phase, we will thoroughly address these considerations.

Future work will also include developing an interactive tool for pathologists and
promoting the integration of GB-SAM into clinical workflows. This tool will enable medical
professionals to interact with the model’s segmentation results, provide feedback, and
validate its real-time performance.

While our study demonstrates GB-SAM’s robustness and generalization capabilities
with reduced data, further evaluation on more diverse and extensive datasets is essential
to capture its full performance for real-world applications. In future work, we plan to
include additional datasets containing a more comprehensive range of histopathological
variations and larger sample sizes to validate the generalizability of GB-SAM. This approach
will help us confirm that our model is well suited for practical deployment in diverse
clinical environments.

Moreover, while GB-SAM was explicitly trained for 2D segmentation tasks, we ac-
knowledge the need to address the challenges associated with 3D medical imaging. Future
work will focus on extending our approach to 3D data, exploring methods to process
volumetric data efficiently, and ensuring consistency across slices.

GB-SAM shows great promise in digital pathology. Addressing its current limitations
and expanding its validation to a wider range of datasets will be critical steps in its
development. We look forward to enhancing GB-SAM’s capabilities and ensuring its robust
performance in diverse clinical applications.
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