Soluble CD26: From Suggested Biomarker for Cancer Diagnosis to Plausible Marker for Dynamic Monitoring of Immunotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Basics of the Proteins CD26 and Soluble CD26 (sCD26)
3. CD26 in Solid Tumors and Why sCD26 Was Studied as a Cancer Diagnostic Biomarker
4. Expression of Cell Membrane CD26 on Leukocytes
5. sCD26 from Leukocytes in Relation to Specific Populations
6. Studies That Support Changes in sCD26 Levels as a Tool for Patient Monitoring
7. sCD26 Shedding and/or Secretion: Biochemistry of sCD26
8. CD26 Substrates and Inhibitors
9. ADA, a Clinical Biomarker Related to sCD26
10. sCD26 in Saliva
11. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hopsu-Havu, V.K.; Glenner, G.G. A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-beta-naphthylamide. Histochemie 1966, 7, 197–201. [Google Scholar] [CrossRef]
- Schrader, W.P.; Stacy, A.R. Purification and subunit structure of adenosine deaminase from human kidney. J. Biol. Chem. 1977, 252, 6409–6415. [Google Scholar] [CrossRef]
- Kojima, J.; Ueno, Y.; Kasugai, H.; Okuda, S.; Akedo, H. Glycylproline dipeptidyl aminopeptidase and gamma-glutamyl-transferase transpeptidase in human hepatic cancer and embryonal tissues. Clin. Chim. Acta 1987, 167, 285–291. [Google Scholar] [CrossRef]
- Hartel, S.; Gossrau, R.; Hanski, C.; Reutter, W. Dipeptidyl peptidase (DPP) IV in rat organs. Comparison of immunohistochemistry and activity histochemistry. Histochemistry 1988, 89, 151–161. [Google Scholar] [CrossRef]
- Lambeir, A.M.; Durinx, C.; Scharpé, S.; De Meester, I. Dipeptidyl-peptidase IV from bench to bedside: An update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit. Rev. Clin. Lab. Sci. 2003, 40, 209–294. [Google Scholar] [CrossRef]
- Boonacker, E.; Van Noorden, C.J.F. The multifunctional or moonlighting protein CD26/DPPIV. Eur. J. Cell. Biol. 2003, 82, 53–73. [Google Scholar] [CrossRef]
- Cordero, O.J. CD26 and Cancer. Cancers 2022, 14, 5194. [Google Scholar] [CrossRef]
- De Meester, I.; Korom, S.; Van Damme, J.; Scharpé, S. CD26, let it cut or cut it down. Immunol. Today 1999, 20, 367–375. [Google Scholar] [CrossRef]
- Proost, P.; Mahieu, F.; Schutyser, E.; Van Damme, J. Posttranslational processing of chemokines. Methods Mol. Biol. 2003, 239, 27–44. [Google Scholar]
- De Zutter, A.; Struyf, S.; Van Damme, J. The role of post-translational modifications of chemokines by CD26 in cancer. Cancers 2021, 13, 4247. [Google Scholar] [CrossRef] [PubMed]
- Cordero, O.J.; Salgado, F.J.; Nogueira, M. On the origin of serum CD26 and its altered concentration in cancer patients. Cancer Immunol. Immunother. 2009, 58, 1723–1747. [Google Scholar] [CrossRef]
- Klemann, C.; Wagner, L.; Stephan, M.; von Hörsten, S. Cut to the chase: A review of CD26/dipeptidyl peptidase-4’s (DPP4) entanglement in the immune system. Clin. Exp. Immunol. 2016, 185, 1–21. [Google Scholar] [CrossRef]
- Fox, D.A.; Hussey, R.E.; Fitzgerald, K.A.; Acuto, O.; Poole, C.; Palley, L.; Daley, J.F.; Schlossman, S.F.; Reinherz, E.L. Ta1, a novel 105 KD human T cell activation antigen defined by a monoclonal antibody. J. Immunol. 1984, 133, 1250–1256. [Google Scholar] [CrossRef] [PubMed]
- Morrison, M.E.; Vijayasaradhi, S.; Engelstein, D.; Albino, A.P.; Houghton, A.N. A marker for neoplastic progression of human melanocytes is a cell surface ectopeptidase. J. Exp. Med. 1993, 177, 1135–1143. [Google Scholar] [CrossRef]
- Kameoka, J.; Tanaka, T.; Nojima, Y.; Schlossman, S.F.; Morimoto, C. Direct association of adenosine deaminase with a T cell activation antigen, CD26. Science 1993, 261, 466–469. [Google Scholar] [CrossRef]
- Hegen, M.; Niedobitek, G.; Klein, C.E.; Stein, H.; Fleischer, B. The T cell triggering molecule Tp103 is associated with dipeptidyl aminopeptidase IV activity. J. Immunol. 1990, 144, 2908–2914. [Google Scholar] [CrossRef]
- Yamabe, T.; Takakura, K.; Sugie, K.; Kitaoka, Y.; Takeda, S.; Okubo, Y.; Teshigawara, K.; Yodoi, J.; Hori, T. Induction of the 2B9 antigen/dipeptidyl peptidase IV/CD26 on human natural killer cells by IL-2, IL-12 or IL-15. Immunology 1997, 91, 151–158. [Google Scholar] [CrossRef]
- Nagatsu, I.; Nagatsu, T.; Yamamoto, T. Hydrolysis of amino acid beta-naphthylamides by aminopeptidases in human parotid salva and human serum. Experientia 1968, 24, 347–348. [Google Scholar] [CrossRef]
- Nargis, T.; Chakrabarti, P. Significance of circulatory DPP4 activity in metabolic diseases. IUBMB Life 2018, 70, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Schrader, W.P.; Woodward, F.J.; Pollara, B. Purification of an adenosine deaminase complexing protein from human plasma. J. Biol. Chem. 1979, 254, 11964–11968. [Google Scholar] [CrossRef] [PubMed]
- Iwaki-Egawa, S.; Watanabe, Y.; Kikuya, Y.; Fujimoto, Y. Dipeptidyl peptidase IV from human serum: Purification, characterization, and N-terminal amino acid sequence. J. Biochem. 1998, 124, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Durinx, C.; Lambeir, A.M.; Bosmans, E.; Falmagne, J.B.; Berghmans, R.; Haemers, A.; Scharpé, S.; De Meester, I. Molecular characterization of dipeptidyl peptidase activity in serum: Soluble CD26/dipeptidyl peptidase IV is responsible for the release of X-Pro dipeptides. Eur. J. Biochem. 2000, 267, 5608–5613. [Google Scholar] [CrossRef]
- Cuchacovich, M.; Gatica, H.; Pizzo, S.V.; Gonzalez-Gronow, M. Characterization of human serum dipeptidyl peptidase IV (CD26) and analysis of its autoantibodies in patients with rheumatoid arthritis and other autoimmune diseases. Clin. Exp. Rheumatol. 2001, 19, 673–680. [Google Scholar]
- White, M.J.; Chinea, L.E.; Pilling, D.; Gomer, R.H. Protease activated-receptor 2 is necessary for neutrophil chemorepulsion induced by trypsin; tryptase; or dipeptidyl peptidase IV. J. Leukoc. Biol. 2017, 103, 119–128. [Google Scholar] [CrossRef]
- Ghorpade, D.S.; Ozcan, L.; Zheng, Z.; Nicoloro, S.M.; Shen, Y.; Chen, E.; Blüher, M.; Czech, M.P.; Tabas, I. Hepatocyte-secreted DPP4 in obesity promotes adipose inflammation and insulin resistance. Nature 2018, 555, 673–677. [Google Scholar] [CrossRef] [PubMed]
- Nishina, S.; Hino, K. CD26/DPP4 as a therapeutic target in hepatocellular carcinoma. Cancers 2022, 14, 454. [Google Scholar] [CrossRef]
- Clanchy, F.I.L.; Huang, Y.-S.; Ogbechi, J.; Darlington, L.G.; Williams, R.O.; Stone, T.W. Induction of IDO1 and Kynurenine by Serine Proteases Subtilisin; Prostate Specific Antigen; CD26 and HtrA: A New Form of Immunosuppression? Front. Immunol. 2022, 13, 832989. [Google Scholar] [CrossRef] [PubMed]
- Uehara, A.; Iwashiro, A.; Sato, T.; Yokota, S.; Takada, H. Antibodies to proteinase 3 prime human monocytic cells via protease activated receptor-2 and NF-kappaB for Toll-like receptor- and NOD-dependent activation. Mol. Immunol. 2007, 44, 3552–3562. [Google Scholar] [CrossRef]
- De Chiara, L.; Barcia-Castro, L.; Gallardo-Gómez, M.; Páez de la Cadena, M.; Martínez-Zorzano, V.S.; Rodríguez-Berrocal, F.J.; Bujanda, L.; Etxart, A.; Castells, A.; Balaguer, F.; et al. Evaluation of Blood Soluble CD26 as a Complementary Biomarker for Colorectal Cancer Screening Programs. Cancers 2022, 14, 4563. [Google Scholar] [CrossRef]
- Ng, L.; Wong, S.K.; Huang, Z.; Lam, C.S.; Chow, A.K.; Foo, D.C.; Lo, O.S.; Pang, R.W.; Law, W.L. CD26 Induces Colorectal Cancer Angiogenesis and Metastasis through CAV1/MMP1 Signaling. Int. J. Mol. Sci. 2022, 23, 1181. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, J.; Li, X.; Tian, R.; Shang, K.; Dong, X.; Cao, B. Angiogenesis is promoted by exosomal DPP4 derived from 5-fluorouracil-resistant colon cancer cells. Cancer Lett. 2021, 49, 190–201. [Google Scholar] [CrossRef]
- Yip, H.-K.; Lee, M.S.; Li, Y.-C.; Shao, P.-L.; Chiang, J.Y.; Sung, P.-H.; Yang, C.-H.; Chen, K.-H. Dipeptidyl Peptidase-4 deficiency effectively protects the brain and neurological function in rodent after acute Hemorrhagic Stroke. Int. J. Biol. Sci. 2020, 16, 3116–3132. [Google Scholar] [CrossRef]
- Manocha, E.; Bugatti, A.; Belleri, M.; Zani, A.; Marsico, S.; Caccuri, F.; Presta, M.; Caruso, A. Avian Reovirus P17 Suppresses Angiogenesis by Promoting DPP4 Secretion. Cells 2021, 10, 259. [Google Scholar] [CrossRef]
- Li, M.; Wang, Z.; Xia, H.; Yu, L.; Hu, Z. Vildagliptin and G-CSF Improved Angiogenesis and Survival after Acute Myocardial Infarction. Arch. Med. Res. 2019, 50, 133–141. [Google Scholar] [CrossRef]
- Gonzalez-Gronow, M.; Kaczowka, S.; Gawdi, G.; Pizzo, S.V. Dipeptidyl peptidase IV (DPP IV/CD26) is a cell-surface plasminogen receptor. Front. Biosci. 2008, 13, 1610–1618. [Google Scholar] [CrossRef]
- Trotta, P.P.; Balis, M.E. Characterization of adenosine deaminase from normal colon and colon tumors. Evidence for tumor specific variants. Biochemistry 1978, 77, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Kate, J.T.; van den Ingh, H.F.; Khan, P.M.; Bosman, F.T. Adenosine deaminase complexing protein (ADCP) immunoreactivity in colorectal adenocarcinoma. Int. J. Cancer 1986, 37, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Pan, K.; Ohnuma, K.; Morimoto, C.; Dang, N.H. CD26/Dipeptidyl Peptidase IV and Its Multiple Biological Functions. Cureus 2021, 13, e13495. [Google Scholar] [CrossRef] [PubMed]
- Werb, Z. ECM and cell surface proteolysis: Regulating cellular ecology. Cell 1997, 91, 439–442. [Google Scholar] [CrossRef]
- Iwata, S.; Morimoto, C. CD26/dipeptidyl peptidase IV in context. The different roles of a multifunctional ectoenzyme in malignant transformation. J. Exp. Med. 1999, 190, 301–306. [Google Scholar] [CrossRef]
- Chen, W.-T.; Kelly, T. Seprase complexes in cellular invasiveness. Cancer Metastasis Rev. 2003, 22, 259–269. [Google Scholar] [CrossRef]
- Thompson, M.A.; Ohnuma, K.; Abe, M.; Morimoto, C.; Dang, N.H. CD26/dipeptidyl peptidase IV as a novel therapeutic target for cancer and immune disorders. Mini Rev. Med. Chem. 2007, 7, 253–273. [Google Scholar] [CrossRef]
- Kojima, K.; Mihara, R.; Sakai, T.; Togari, A.; Matsui, T.; Shinpo, K.; Fujita, K.; Fukasawa, K.; Harada, M.; Nagatsu, T. Serum risk for significant colorectal neoplasms and having normal quantitative faecal occult blood test postpone elective colonoscopy? Aliment. Pharmacol. Ther. 2010, 31, 523–533. [Google Scholar]
- de la Haba-Rodríguez, J.; Macho, A.; Calzado, M.A.; Blázquez, M.V.; Gómez, M.A.; Muñoz, E.E.; Aranda, E. Soluble dipeptidyl peptidase IV (CD-26) in serum of patients with colorectal carcinoma. Neoplasma 2002, 49, 307–311. [Google Scholar] [PubMed]
- Cordero, O.J.; Ayude, D.; Nogueira, M.; Rodriguez-Berrocal, F.J.; de la Cadena, M.P. Preoperative serum CD26 levels: Diagnostic efficiency and predictive value for colorectal cancer. Br. J. Cancer 2000, 83, 1139–1146. [Google Scholar] [CrossRef] [PubMed]
- Cordero, O.J.; Imbernon, M.; Chiara, L.D.; Martinez-Zorzano, V.S.; Ayude, D.; de la Cadena, M.P.; Rodriguez-Berrocal, F.J. Potential of soluble CD26 as a serum marker for colorectal cancer detection. World. J. Clin. Oncol. 2011, 2, 245–261. [Google Scholar]
- Pang, R.; Law, W.L.; Chu, A.C.; Poon, J.T.; Lam, C.S.; Chow, A.K.; Ng, L.; Cheung, L.W.; Lan, X.R.; Lan, H.Y.; et al. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell. Stem Cell 2010, 6, 603–615. [Google Scholar] [CrossRef] [PubMed]
- Varela-Calviño, R.; Rodríguez-Quiroga, M.; Dias-Carvalho, P.; Martins, F.D.; Serra-Roma, A.; Vázquez-Iglesias, L.; de la Cadena, M.P.P.; Velho, S.; Cordero, O.J. The mechanism of sitagliptin inhibition of colorectal cancer cell lines’ metastatic functionalities. IUBMB Life 2021, 73, 761–773. [Google Scholar] [CrossRef]
- Sicuranza, A.; Raspadori, D.; Bocchia, M. CD26/DPP-4 in Chronic Myeloid Leukemia. Cancers 2022, 14, 891. [Google Scholar] [CrossRef]
- Komiya, E.; Ohnuma, K.; Yamazaki, H.; Hatano, R.; Iwata, S.; Okamoto, T.; Dang, N.H.; Yamada, T.; Morimoto, C. CD26-mediated regulation of periostin expression contributes to migration and invasion of malignant pleural mesothelioma cells. Biochem. Biophys. Res. Commun. 2014, 447, 609–615. [Google Scholar] [CrossRef]
- Wang, L.; Wang, E.; Prado Balcazar, J.; Wu, Z.; Xiang, K.; Wang, Y.; Huang, Q.; Negrete, M.; Chen, K.Y.; Li, W.; et al. Chromatin Remodeling of Colorectal Cancer Liver Metastasis is Mediated by an HGF-PU.1-DPP4 Axis. Adv. Sci. 2021, 8, e2004673. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhu, S.; Song, X.; Sun, X.; Fan, Y.; Liu, J.; Zhong, M.; Yuan, H.; Zhang, L.; Billiar, T.R.; et al. The Tumor Suppressor p53 Limits Ferroptosis by Blocking DPP4 Activity. Cell Rep. 2017, 20, 1692–1704. [Google Scholar] [CrossRef] [PubMed]
- Jussila, A.R.; Zhang, B.; Caves, E.; Kirti, S.; Steele, M.; Hamburg-Shields, E.; Lydon, J.; Ying, Y.; Lafyatis, R.; Rajagopalan, S.; et al. Skin Fibrosis and Recovery Is Dependent on Wnt Activation via DPP4. J. Investig. Dermatol. 2022, 142, 1597–1606.e9. [Google Scholar] [CrossRef] [PubMed]
- Ropa, J.; Broxmeyer, H.E. An expanded role for dipeptidyl peptidase 4 in cell regulation. Curr. Opin. Hematol. 2020, 27, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Davoodi, J.; Kelly, J.; Gendron, N.H.; MacKenzie, A.E. The Simpson-Golabi-Behmel syndrome causative glypican-3, binds to and inhibits the dipeptidyl peptidase activity of CD26. Proteomics 2007, 7, 2300–2310. [Google Scholar] [CrossRef] [PubMed]
- De Chiara, L.; de la Cadena, M.P.; Rodríguez-Berrocal, J.; Alvarez-Pardiñas, M.C.; Pardiñas-Añón, M.C.; Varela-Calviño, R.; Cordero, O.J. CD26-Related Serum Biomarkers: sCD26 Protein; DPP4 Activity, and Anti-CD26 Isotype Levels in a Colorectal Cancer-Screening Context. Dis. Markers 2020, 2020, 4347936. [Google Scholar] [CrossRef] [PubMed]
- Varela-Calviño, R.; Imbernón, M.; Vázquez-Iglesias, L.; Páez de la Cadena, M.; Bande- Rodríguez, M.; Piñeiro, A.; Pardo, M.; Cordero, O.J. Serum dipeptidyl peptidase IV activity and sCD26 concentration in patients with choroidal nevus or uveal melanoma. Clin. Chim. Acta 2015, 448, 193–194. [Google Scholar] [CrossRef] [PubMed]
- Matić, I.Z.; Đorđević, M.; Đorđić, M.; Grozdanić, N.; Damjanović, A.; Kolundžija, B.; Vidović, A.; Bila, J.; Ristić, S.; Mihaljević, B.; et al. Dipeptidyl peptidase IV: Serum activity and expression on lymphocytes in different hematological malignancies. Leuk. Lymphoma 2013, 54, 2701–2706. [Google Scholar] [CrossRef] [PubMed]
- Matić, I.Z.; Ðorđić, M.; Grozdanić, N.; Damjanović, A.; Kolundžija, B.; Erić-Nikolić, A.; Džodić, R.; Šašić, M.; Nikolić, S.; Dobrosavljević, D.; et al. Serum activity of DPPIV and its expression on lymphocytes in patients with melanoma and in people with vitiligo. BMC Immunol. 2012, 13, 48. [Google Scholar] [CrossRef] [PubMed]
- Erić-Nikolić, A.; Matić, I.Z.; Dorđević, M.; Milovanović, Z.; Marković, I.; Džodić, R.; Inić, M.; Srdić-Rajić, T.; Jevrić, M.; Gavrilović, D.; et al. Serum DPPIV activity and CD26 expression on lymphocytes in patients with benign or malignant breast tumors. Immunobiology 2011, 216, 942–946. [Google Scholar] [CrossRef]
- Amlot, P.L.; Tahami, F.; Chinn, D.; Rawlings, E. Activation antigen expression on human T cells. I. Analysis by two-colour flow cytometry of umbilical cord blood, adult blood and lymphoid tissue. Clin. Exp. Immunol. 1996, 105, 176–182. [Google Scholar] [CrossRef]
- Morimoto, C.; Torimoto, Y.; Levinson, G.; Rudd, C.E.; Schrieber, M.; Dang, N.H.; Letvin, N.L.; Schlossman, S.F. 1F7, a novel cell surface molecule, involved in helper function of CD4 cells. J. Immunol. 1989, 143, 3430–3439. [Google Scholar] [CrossRef]
- Dang, N.H.; Torimoto, Y.; Shimamura, K.; Tanaka, T.; Daley, J.F.; Schlossman, S.F.; Morimoto, C. 1F7 (CD26): A marker of thymic maturation involved in the differential regulation of the CD3 and CD2 pathways of human thymocyte activation. J. Immunol. 1991, 147, 2825–2832. [Google Scholar] [CrossRef] [PubMed]
- Bengsch, B.; Seigel, B.; Flecken, T.; Wolanski, J.; Blum, H.E.; Thimme, R. Human Th17 Cells Express High Levels of Enzymatically Active Dipeptidylpeptidase IV (CD26). J. Immunol. 2012, 188, 5438–5447. [Google Scholar] [CrossRef]
- Cordero, O.J.; Rafael-Vidal, C.; Varela-Calviño, R.; Calviño-Sampedro, C.; Malvar-Fernández, B.; García, S.; Viñuela, J.E.; Pego-Reigosa, J.M. Distinctive CD26 Expression on CD4 T-Cell Subsets. Biomolecules 2021, 11, 1446. [Google Scholar] [CrossRef]
- Cordero, O.J.; Yang, C.P.; Bell, E.B. On the role of CD26 in CD4 memory T cells. Immunobiology 2007, 212, 85–94. [Google Scholar] [CrossRef]
- Cordero, O.J.; Salgado, F.J.; Viñuela, J.E.; Nogueira, M. Interleukin-12 enhances CD26 expression and dipeptidyl peptidase IV function on human activated lymphocytes. Immunobiology 1997, 197, 522–533. [Google Scholar] [CrossRef]
- Cordero, O.J.; Varela-Calviño, R.; López-González, T. CD26 Expression on T Helper Populations and sCD26 Serum Levels in Patients with Rheumatoid Arthritis. PLoS ONE 2015, 10, e0139535. [Google Scholar]
- Ibegbu, C.C.; Xu, Y.X.; Fillos, D.; Radziewicz, H.; Grakoui, A.; Kourtis, A.P. Differential expression of CD26 on virus-specific CD8(+) T cells during active, latent and resolved infection. Immunology 2009, 126, 346–353. [Google Scholar] [CrossRef]
- Tejera-Alhambra, M.; Casrouge, A.; de Andrés, C. Low DPP4 expression and activity in multiple sclerosis. Clin. Immunol. 2014, 150, 170–183. [Google Scholar] [CrossRef]
- Ma, Y.; Visser, L.; Blokzijl, T.; Harms, G.; Atayar, Ç.; Poppema, S.; Berg, A.V.D. The CD4+CD26− T-cell population in classical Hodgkin’s lymphoma displays a distinctive regulatory T-cell profile. Lab. Investig. 2008, 88, 482–490. [Google Scholar] [CrossRef]
- Huang, J.; Liu, X.; Wei, Y.; Li, X.; Gao, S.; Dong, L.; Rao, X.; Zhong, J. Emerging Role of Dipeptidyl Peptidase-4 in Autoimmune Disease. Front Immunol. 2022, 13, 830863. [Google Scholar] [CrossRef]
- Schütz, F.; Hackstein, H. Identification of novel dendritic cell subset markers in human blood. Biochem. Biophys. Res. Commun. 2014, 443, 453–457. [Google Scholar] [CrossRef]
- Swarbrick, G.M.; Gela, A.; Cansler, M.E.; Null, M.D.; Duncan, R.B.; Nemes, E.; Shey, M.; Nsereko, M.; Mayanja-Kizza, H.; Kiguli, S.; et al. Postnatal Expansion, Maturation, and Functionality of MR1T Cells in Humans. Front. Immunol. 2020, 11, 556695. [Google Scholar] [CrossRef]
- Yang, J.; Chang, T.; Tang, L.; Deng, H.; Chen, D.; Luo, J.; Wu, H.; Tang, T.; Zhang, C.; Li, Z.; et al. Increased Expression of Tim-3 Is Associated with Depletion of NKT Cells In SARS-CoV-2 Infection. Front. Immunol. 2022, 13, 796682. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.R.; Nelson, M.H.; Majchrzak-Kuligowska, K.; Bowers, J.; Wyatt, M.M.; Smith, A.S.; Neal, L.R.; Shirai, K.; Carpenito, C.; June, C.H.; et al. Human CD26high T cells elicit tumor immunity against multiple malignancies via enhanced migration and persistence. Nat. Commun. 2017, 8, 1961. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.H.; Knochelmann, H.M.; Bailey, S.R.; Huff, L.W.; Bowers, J.S.; Majchrzak-Kuligowska, K.; Wyatt, M.M.; Rubinstein, M.P.; Mehrotra, S.; Nishimura, M.I.; et al. Identification of human CD4+ T cell populations with distinct antitumor activity. Sci. Adv. 2020, 6, eaba7443. [Google Scholar] [CrossRef]
- Yawalkar, N.; Hunger, R.E.; Pichler, W.J.; Braathen, L.R.; Brand, C.U. Human afferent lymph from normal skin contains an increased number of mainly memory/effector CD4(+) T cells expressing activation, adhesion and co-stimulatory molecules. Eur. J. Immunol. 2000, 30, 491–497. [Google Scholar] [CrossRef]
- Boonacker, E.P.; Wierenga, E.A.; Smits, H.H.; Van Noorden, C.J. CD26/DPPIV Signal Transduction Function, but Not Proteolytic Activity, Is Directly Related to Its Expression Level on Human Th1 and Th2 Cell Lines as Detected with Living Cell Cytochemistry. J. Histochem. Cytochem. 2002, 50, 1169–1177. [Google Scholar] [CrossRef]
- Krakauer, M.; Sorensen, P.S.; Sellebjerg, F. CD4+ memory T cells with high CD26 surface expression are enriched for Th1 markers and correlate with clinical severity of multiple sclerosis. J. Neuroimmunol. 2006, 181, 157–164. [Google Scholar] [CrossRef]
- Galati, D.; Zanotta, S.; Capone, M.; Madonna, G.; Mallardo, D.; Romanelli, M.; Simeone, E.; Festino, L.; Sparano, F.; Azzaro, R.; et al. Potential clinical implications of CD4+CD26high T cells for nivolumab treated melanoma patients. J. Transl. Med. 2023, 21, 318. [Google Scholar] [CrossRef] [PubMed]
- Manjarrez-Orduno, N.; Menard, L.C.; Kansal, S.; Fischer, P.; Kakrecha, B.; Jiang, C.; Cunningham, M.; Greenawalt, D.; Patel, V.; Yang, M.; et al. Circulating T cell subpopulations correlate with immune responses at the tumor site and clinical response to PD1 inhibition in non-small cell lung cancer. Front. Immunol. 2018, 9, 1613. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, Y.; Tanemura, A.; Tada, Y.; Katayama, I.; Kumanogoh, A.; Nishikawa, H. Clinical response to PD-1 blockade correlates with a sub-fraction of peripheral central memory CD4+ T cells in patients with malignant melanoma. Int. Immunol. 2018, 30, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Krieg, C.; Nowicka, M.; Guglietta, S.; Schindler, S.; Hartmann, F.J.; Weber, L.M.; Dummer, R.; Robinson, M.D.; Levesque, M.P.; Becher, B. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat. Med. 2018, 24, 144–153. [Google Scholar] [CrossRef]
- Subrahmanyam, P.B.; Dong, Z.; Gusenleitner, D.; Giobbie-Hurder, A.; Severgnini, M.; Zhou, J.; Manos, M.; Eastman, L.M.; Maecker, H.T.; Hodi, F.S. Distinct predictive biomarker candidates for response to anti-CTLA-4 and anti-PD-1 immunotherapy in melanoma patients. J. Immunother. Cancer. 2018, 6, 18. [Google Scholar] [CrossRef]
- Ginés, S.; Mariño, M.; Mallol, J.; Canela, E.I.; Morimoto, C.; Callebaut, C.; Hovanessian, A.; Casadó, V.; Lluis, C.; Franco, R. Regulation of Epithelial and Lymphocyte Cell Adhesion by Adenosine Deaminase-CD26 Interaction. Biochem. J. 2002, 361, 203–209. [Google Scholar] [CrossRef]
- Morimoto, C.; Schlossman, S.F. The structure and function of CD26 in the T-cell immune response. Immunol. Rev. 1998, 161, 55–70. [Google Scholar] [CrossRef] [PubMed]
- López-Cortés, G.I.; Díaz-Alvarez, L.; Ortega, E. Leukocyte Membrane Enzymes Play the Cell Adhesion Game. Front. Immunol. 2021, 12, 742292. [Google Scholar] [CrossRef]
- Meng, Q.; Chen, C.; Yang, N.; Gololobova, O.; Shi, C.; Dunn, C.A.; Rossi, M.; Martindale, J.L.; Basisty, N.; Ding, J.; et al. Surfaceome analysis of extracellular vesicles from senescent cells uncovers uptake repressor DPP4. Proc. Natl. Acad. Sci. USA 2023, 120, e2219801120. [Google Scholar] [CrossRef]
- Zhou, H.; Jia, B.; Annageldiyev, C.; Minagawa, K.; Zhao, C.; Mineishi, S.; Ehmann, W.C.; Naik, S.G.; Cioccio, J.; Wirk, B.; et al. CD26low/PD-1+ CD8 T cells are terminally exhausted and associated with leukemia progression in acute myeloid leukemia. Front. Immunol. 2023, 14, 1169144. [Google Scholar]
- Bozorgmehr, N.; Hnatiuk, M.; Peters, A.C.; Elahi, S. Depletion of polyfunctional CD26high/CD8+ T cells repertoire in chronic lymphocytic leukemia. Exp. Hematol. Oncol. 2023, 12, 13. [Google Scholar] [CrossRef] [PubMed]
- Veldman, J.; Rodrigues Plaça, J.; Chong, L.; Terpstra, M.M.; Mastik, M.; van Kempen, L.C.; Kok, K.; Aoki, T.; Steidl, C.; van den Berg, A.; et al. CD4+ T cells in classical Hodgkin lymphoma express exhaustion associated transcription factors TOX and TOX2: Characterizing CD4+ T cells in Hodgkin lymphoma. Oncoimmunology 2022, 11, 2033433. [Google Scholar] [CrossRef] [PubMed]
- Hino, M.; Nagatsu, T.; Kakumu, S.; Okuyama, S.; Yoshii, Y.; Nagatsu, I. Glycylprolyl beta-naphthylamidase activity in human serum. Clin. Chim. Acta 1975, 62, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Kate, J.T.; Wijnen, J.T.; van der Goes, R.G.; Quadt, R.; Griffioen, G.; Bosman, F.T.; Khan, P.M. Quantitative changes in adenosine deaminase isoenzymes in human colorectal adenocarcinomas. Cancer Res. 1984, 44, 4688–4692. [Google Scholar] [PubMed]
- Gorrell, M.D.; Gysbers, V.; McCaughan, G.W. CD26: A multifunctional integral membrane and secreted protein of activated lymphocytes. Scand. J. Immunol. 2001, 54, 249–264. [Google Scholar] [CrossRef] [PubMed]
- Kate, J.T.; Wijnen, J.T.; Boldewijn, J.; Khan, P.M.; Bosman, F.T. Immunohistochemical localization of adenosine deaminase complexing protein in intestinal mucosa and in colorectal adenocarcinoma as a marker for tumour cell heterogeneity. Histochem. J. 1985, 17, 23–31. [Google Scholar] [CrossRef]
- Kojima, J.; Kanatani, M.; Kato, M.; Tojoh, F.; Nakamura, N. Serum glycylproline dipeptidyl aminopeptidase activity in human hepatic cancer. Clin. Chim. Acta 1979, 93, 181–187. [Google Scholar]
- Perner, F.; Gyuris, T.; Rákóczy, G.; Sárváry, E.; Görög, D.; Szalay, F.; Kunos, I.; Szönyi, L.; Péterfy, M.; Takács, L. Dipeptidyl peptidase activity of CD26 in serum and urine as a marker of cholestasis: Experimental and clinical evidence. J. Lab. Clin. Med. 1999, 134, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Bartles, J.R.; Zhang, L.Q.; Verheyen, E.M.; Hospodar, K.S.; Nehme, C.L.; Fayos, B.E. Decreases in the relative concentrations of specific hepatocyte plasma membrane proteins during liver regeneration: Down-regulation or dilution? Dev. Biol. 1991, 143, 258–270. [Google Scholar] [CrossRef]
- Bartles, J.R.; Rao, M.S.; Zhang, L.Q.; Fayos, B.E.; Nehme, C.L.; Reddy, J.K. Expression and compartmentalization of integral plasma membrane proteins by hepatocytes and their progenitors in the rat pancreas. J. Cell. Sci. 1991, 98, 45–54. [Google Scholar] [CrossRef]
- Sahara, N.; Fukasawa, K.; Harada, M.; Suzuki, K. Immunohistochemical localization of dipeptidyl peptidase IV in rat digestive organs. Acta Histochem. Cytochem. 1983, 16, 494–501. [Google Scholar] [CrossRef]
- Lakatos, P.L.; Firneisz, G.; Rákóczy, G.; Selmeci, L.; Szalay, F. Elevated serum dipeptidyl peptidase IV (CD26, EC 3.4.14.5) activity in patients with primary biliary cirrhosis. J. Hepatol. 1999, 30, 740. [Google Scholar] [CrossRef] [PubMed]
- Andrieu, T.; Thibault, V.; Malet, I.; Laporte, J.; Bauvois, B.; Agut, H.; Cahour, A. Similar increased serum dipeptidyl peptidase IV activity in chronic hepatitis C and other viral infections. J. Clin. Virol. 2003, 27, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, Y.; Leroux-Roels, G.; Nakamura, R.; Chisari, F. Glycylprolyl-diaminopeptidase in human leukocytes: Selective occurrence in T lymphocytes and influence on the total serum enzyme activity. Clin. Chim. Acta 1984, 139, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Ward, P.E. Immunoelectrophoretic analysis of vascular, membrane-bound angiotensin I converting enzyme, aminopeptidase M, and dipeptidyl(amino)peptidase IV. Biochem. Pharmacol. 1984, 33, 3183–3193. [Google Scholar] [CrossRef] [PubMed]
- Busso, N.; Wagtmann, N.; Herling, C.; Chobaz-Péclat, V.; Bischof-Delaloye, A.; So, A.; Grouzmann, E. Circulating CD26 is negatively associated with inflammation in human and experimental arthritis. Am. J. Pathol. 2005, 166, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Narducci, M.G.; Scala, E.; Bresin, A.; Caprini, E.; Picchio, M.C.; Remotti, D.; Ragone, G.; Nasorri, F.; Frontani, M.; Arcelli, D.; et al. Skin homing of Sézary cells involves SDF-1-CXCR4 signaling and down-regulation of CD26/dipeptidylpeptidase IV. Blood 2006, 107, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Schönermarck, U.; Csernok, E.; Trabandt, A.; Hansen, H.; Gross, W.L. Circulating cytokines and soluble CD23, CD26 and CD30 in ANCA-associated vasculitides. Clin. Exp. Rheumatol. 2000, 18, 457–463. [Google Scholar]
- Yang, S.S.; Fu, L.S.; Chang, C.S.; Yeh, H.Z.; Chen, G.H.; Kao, J.H. Changes of soluble CD26 and CD30 levels correlate with response to interferon plus ribavirin therapy in patients with chronic hepatitis C. J. Gastroenterol. Hepatol. 2006, 21, 1789–1793. [Google Scholar] [CrossRef]
- Ajdary, S.; Jafari-Shakib, R.; Riazi-Rad, F.; Khamesipour, A. Soluble CD26 and CD30 levels in patients with anthroponotic cutaneous leishmaniasis. J. Infect. 2007, 55, 75–78. [Google Scholar] [CrossRef]
- Remes, S.T.; Delezuch, W.; Pulkki, K.; Pekkanen, J.; Korppi, M.; Matinlauri, I.H. Association of serum-soluble CD26 and CD30 levels with asthma, lung function and bronchial hyper-responsiveness at school age. Acta Paediatr. 2011, 100, e106–e111. [Google Scholar] [CrossRef]
- Casrouge, A.; Sauer, A.; Da Silva, R.B.; Tejera-Alhambra, M.; Sánchez-Ramón, S.; ICAReB.; Cancrini, C.; Ingersoll, M.; Aiuti, A.; Albert, M. Lymphocytes are a major source of circulating soluble dipeptidyl peptidase 4. Clin. Exp. Immunol. 2018, 194, 166–179. [Google Scholar] [CrossRef]
- Grondin, G.; Hooper, N.M.; LeBel, D. Specific localization of membrane dipeptidase and dipeptidyl peptidase IV in secretion granules of two different pancreatic islet cells. J. Histochem. Cytochem. 1999, 47, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, M.D.; Hansen, G.H.; Dabelsteen, E.; Høyer, P.E.; Norén, O.; Sjöström, H. Dipeptidyl peptidase IV is sorted to the secretory granules in pancreatic islet A-cells. J. Histochem. Cytochem. 1993, 41, 81–88. [Google Scholar] [CrossRef]
- Macnair, D.C.; Kenny, A.J. Proteins of the kidney microvillar membrane. The amphipathic form of dipeptidyl peptidase IV. Biochem. J. 1979, 179, 379–395. [Google Scholar] [CrossRef]
- Lettau, M.; Dietz, M.; Vollmers, S.; Armbrust, F.; Peters, C.; Dang, T.M.; Chitadze, G.; Kabelitz, D.; Janssen, O. Degranulation of human cytotoxic lymphocytes is a major source of proteolytically active soluble CD26/DPP4. Cell. Mol. Life Sci. 2019, 77, 751–764. [Google Scholar] [CrossRef]
- De Chiara, L.; Rodríguez-Piñeiro, A.M.; Cordero, O.J.; Vázquez-Tuñas, L.; Ayude, D.; Rodríguez-Berrocal, F.J.; de la Cadena, M.P. Postoperative serum levels of sCD26 for surveillance in colorectal cancer patients. PLoS ONE 2014, 9, e107470. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Lopes, P.; Afonso, J.; Pinto-Lopes, R.; Rocha, C.; Lago, P.; Gonçalves, R.; Tavares De Sousa, H.; Macedo, G.; Camila Dias, C.; Magro, F. Serum Dipeptidyl Peptidase 4: A Predictor of Disease Activity and Prognosis in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2020, 26, 1707–1719. [Google Scholar] [CrossRef]
- Faramand, R.G.; Lee, S.B.; Jain, M.D.; Cao, B.; Wang, X.; Rejeski, K.; Subklewe, M.; Fahrmann, J.F.; Saini, N.Y.; Hanash, S.M.; et al. Baseline serum inflammatory proteins predict poor CAR T outcomes in diffuse large B-cell lymphoma. Blood Cancer Discov. 2024, 5, 106–113. [Google Scholar] [CrossRef]
- Kaneko, Y.; Hatano, R.; Hirota, N.; Isambert, N.; Trillet-Lenoir, V.; You, B.; Alexandre, J.; Zalcman, G.; Valleix, F.; Podoll, T.; et al. Serum soluble CD26/DPP4 titer variation is a potential prognostic biomarker in cancer therapy with a humanized anti-CD26 antibody. Biomark. Res. 2021, 9, 21. [Google Scholar] [CrossRef]
- Rau, M.; Schmitt, J.; Berg, T.; Kremer, A.E.; Stieger, B.; Spanaus, K.; Bengsch, B.; Romero, M.R.; Marin, J.J.; Keitel, V.; et al. Serum IP-10 levels and increased DPPIV activity are linked to circulating CXCR3+ T cells in cholestatic HCV patients. PLoS ONE 2018, 13, e0208225. [Google Scholar] [CrossRef] [PubMed]
- Mattern, T.; Reich, C.; Duchrow, M.; Ansorge, S.; Ulmer, A.J.; Flad, H.D. Antibody-induced modulation of CD26 surface expression. Immunology 1995, 84, 595–600. [Google Scholar] [PubMed]
- Lettau, M.; Janssen, O. Intra- and Extracellular Effector Vesicles from Human T And NK Cells: Same-Same, but Different? Front. Immunol. 2021, 12, 804895. [Google Scholar] [CrossRef]
- Nargis, T.; Kumar, K.; Ghosh, A.R.; Sharma, A.; Rudra, D.; Sen, D.; Chakrabarti, S.; Mukhopadhyay, S.; Ganguly, D.; Chakrabarti, P. KLK5 induces shedding of DPP4 from circulatory Th17 cells in type 2 diabetes. Mol. Metab. 2017, 6, 1529–1539. [Google Scholar] [CrossRef]
- Chitadze, G.; Wehkamp, U.; Janssen, O.; Brüggemann, M.; Lettau, M. The Serine Protease CD26/DPP4 in Non-Transformed and Malignant T Cells. Cancers 2021, 13, 5947. [Google Scholar] [CrossRef]
- Bernard, A.M.; Mattei, M.G.; Pierres, M.; Marguet, D. Structure of the mouse dipeptidyl peptidase IV (CD26) gene. Biochemistry. 1994, 33, 15204–15214. [Google Scholar] [CrossRef]
- Salgado, F.J.; Vela, E.; Martín, M.; Franco, R.; Nogueira, M.; Cordero, O.J. Mechanisms of CD26/dipeptidyl peptidase IV cytokine-dependent regulation on human activated lymphocytes. Cytokine 2000, 12, 1136–1141. [Google Scholar] [CrossRef]
- Wen, Y.C.; Lin, C.Y.; Hsiao, C.H.; Wang, S.S.; Huang, H.C.; Lin, Y.W.; Ho, K.H.; Chang, L.C.; Yang, S.F.; Chien, M.H. Genetic variants of dipeptidyl peptidase IV are linked to the clinicopathologic development of prostate cancer. J. Cell. Mol. Med. 2023, 27, 2507–2516. [Google Scholar] [CrossRef]
- Dang, D.T.; Chun, S.Y.; Burkitt, K.; Abe, M.; Chen, S.; Havre, P.; Mabjeesh, N.J.; Heath, E.I.; Vogelzang, N.J.; Cruz-Correa, M.; et al. Hypoxia-inducible factor-1 target genes as indicators of tumor vessel response to vascular endothelial growth factor inhibition. Cancer Res. 2008, 68, 1872–1880. [Google Scholar] [CrossRef]
- Röhrborn, D.; Eckel, J.; Sell, H. Shedding of dipeptidyl peptidase 4 is mediated by metalloproteases and up-regulated by hypoxia in human adipocytes and smooth muscle cells. FEBS Lett. 2014, 588, 3870–3877. [Google Scholar] [CrossRef]
- Chowdhury, H.H.; Velebit, J.; Radic, N.; Francic, V.; Kreft, M.; Zorec, R. Hypoxia Alters the Expression of Dipeptidyl Peptidase 4 and Induces Developmental Remodeling of Human Preadipocytes. J. Diabetes Res. 2016, 2016, 7481470. [Google Scholar] [CrossRef] [PubMed]
- Moffitt, L.R.; Bilandzic, M.; Wilson, A.L.; Chen, Y.; Gorrell, M.D.; Oehler, M.K.; Plebanski, M.; Stephens, A.N. Hypoxia Regulates DPP4 Expression, Proteolytic Inactivation, and Shedding from Ovarian Cancer Cells. Int. J. Mol. Sci. 2020, 21, 8110. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.E.; Talhouk, J.W.; Brown, E.E.; Edgar, S.E. The significance of hypersialylation of dipeptidyl peptidase IV (CD26) in the inhibition of its activity by Tat and other cationic peptides. CD26: A subverted adhesion molecule for HIV peptide binding. AIDS Res. Hum. Retroviruses 1998, 14, 851–868. [Google Scholar] [CrossRef] [PubMed]
- Christopherson, K.W.; Hangoc, G.; Mantel, C.R.; Broxmeyer, H.E. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 2004, 305, 1000–1003. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Iglesias, L.; Barcia-Castro, L.; Rodríguez-Quiroga, M.; Páez de la Cadena, M.; Rodríguez-Berrocal, J.; Cordero, O.J. Surface expression marker profile in colon cancer cell lines and sphere-derived cells suggests complexity in CD26+ cancer stem cells subsets. Biol Open. 2019, 8, bio041673. [Google Scholar] [CrossRef] [PubMed]
- Drucker, D.J.; Nauck, M.A. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006, 368, 1696–1705. [Google Scholar] [CrossRef]
- Wilson, A.L.; Moffitt, L.R.; Wilson, K.L.; Bilandzic, M.; Wright, M.D.; Gorrell, M.D.; Oehler, M.K.; Plebanski, M.; Stephens, A.N. DPP4 Inhibitor Sitagliptin Enhances Lymphocyte Recruitment and Prolongs Survival in a Syngeneic Ovarian Cancer Mouse Model. Cancers 2021, 13, 487. [Google Scholar] [CrossRef]
- Henderson, J.M.; Xiang, M.S.W.; Huang, J.C.; Wetzel, S.; Jiang, L.; Lai, J.H.; Wu, W.; Kench, J.G.; Bachovchin, W.W.; Roediger, B.; et al. Dipeptidyl Peptidase Inhibition Enhances CD8 T Cell Recruitment and Activates Intrahepatic Inflammasome in a Murine Model of Hepatocellular Carcinoma. Cancers 2021, 13, 5495. [Google Scholar] [CrossRef]
- Stephens, A.N.; Hobbs, S.J.; Kang, S.W.; Bilandzic, M.; Rainczuk, A.; Oehler, M.K.; Jobling, T.W.; Plebanski, M.; Allman, R. A Novel Predictive Multi-Marker Test for the Pre-Surgical Identification of Ovarian Cancer. Cancers 2023, 15, 5267. [Google Scholar] [CrossRef]
- Kang, S.W.; Rainczuk, A.; Oehler, M.K.; Jobling, T.W.; Plebanski, M.; Stephens, A.N. Active Ratio Test (ART) as a Novel Diagnostic for Ovarian Cancer. Diagnostics 2021, 11, 1048. [Google Scholar] [CrossRef]
- Chen, L.; Alabdullah, M.; Mahnke, K. Adenosine; bridging chronic inflammation and tumor growth. Front. Immunol. 2023, 14, 1258637. [Google Scholar] [CrossRef] [PubMed]
- Cordero, O.J.; Salgado, F.J.; Fernández-Alonso, C.M.; Herrera, C.; Lluis, C.; Franco, R.; Nogueira, M. Cytokines regulate membrane adenosine deaminase on human activated lymphocytes. J. Leukoc. Biol. 2001, 70, 920–930. [Google Scholar] [CrossRef] [PubMed]
- Cordero, O.J.; Salgado, F.J.; Nogueira, M. Adenosine deaminase (ADA) isoenzymes ADA1 and ADA2 in biological fluids. Eur. Respir. J. 1997, 10, 2186–2187. [Google Scholar] [CrossRef] [PubMed]
- Ratajczak, H.V.; Sothern, R.B. Measurement in saliva from neurotypical adults of biomarkers pertinent to autism spectrum disorders. Future Sci. OA 2015, 1, FSO70. [Google Scholar] [CrossRef] [PubMed]
- Garreto, L.; Charneau, S.; Mandacaru, S.C.; Nóbrega, O.T.; Motta, F.N.; de Araújo, C.N.; Tonet, A.C.; Modesto, F.M.B.; Paula, L.M.; de Sousa, M.V.; et al. Mapping Salivary Proteases in Sjögren’s Syndrome Patients Reveals Overexpression of Dipeptidyl Peptidase-4/CD26. Front. Immunol. 2021, 12, 686480. [Google Scholar] [CrossRef] [PubMed]
- Chielle, E.O.; Bonfanti, G.; De Bona, K.S.; Moresco, R.N.; Moretto, M.B. Adenosine deaminase; dipeptidyl peptidase-IV activities and lipid peroxidation are increased in the saliva of obese young adult. Clin. Chem. Lab. Med. 2015, 53, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Ohara-Nemoto, Y.; Shimoyama, Y.; Nakasato, M.; Nishimata, H.; Ishikawa, T.; Sasaki, M.; Kimura, S.; Nemoto, T.K. Distribution of dipeptidyl peptidase (DPP) 4; DPP5; DPP7 and DPP11 in human oral microbiota-potent biomarkers indicating presence of periodontopathic bacteria. FEMS Microbiol. Lett. 2018, 365, 22. [Google Scholar] [CrossRef]
- Aemaimanan, P.; Sattayasai, N.; Wara-aswapati, N.; Pitiphat, W.; Suwannarong, W.; Prajaneh, S.; Taweechaisupapong, S. Alanine aminopeptidase and dipeptidyl peptidase IV in saliva of chronic periodontitis patients. J. Periodontol. 2009, 80, 1809–1814. [Google Scholar] [CrossRef]
- Kumeda, N.; Ogawa, Y.; Akimoto, Y.; Kawakami, H.; Tsujimoto, M.; Yanoshita, R. Characterization of Membrane Integrity and Morphological Stability of Human Salivary Exosomes. Biol. Pharm. Bull. 2017, 40, 1183–1191. [Google Scholar] [CrossRef]
- Kluess, H.A.; Neidert, L.E.; Sandage, M.J.; Plexico, L.W. Neuropeptide Y and dipeptidyl peptidase IV in normally cycling and postmenopausal women: A prospective pilot study. Medicine 2019, 98, e14982. [Google Scholar] [CrossRef]
Characteristic | DPP4 | sCD26 | ||||
---|---|---|---|---|---|---|
N | Mean ± SD (mU/mL) | p-Value | N | Mean ± SD (ng/mL) | p-Value | |
Sex | ||||||
Women | 372 | 45.98 ± 11.15 | 602 | 536.12 ± 183.09 | ||
Men | 299 | 40.30 ± 10.91 | <0.001 | 470 | 496.27 ± 182.78 | <0.001 |
Age (years) | ||||||
≤49 | 14 | 44.05 ± 7.92 | 110 | 523.12 ± 174.83 | ||
50–59 | 285 | 45.48 ± 12.43 | 418 | 535.40. ± 185.73 | ||
≥60 | 372 | 41.87 ± 10.36 | <0.001 | 544 | 504.88 ± 183.56 | 0.006 |
No BT (n = 21) | Anti-TNFα BT (n = 47) | Anti-CD20 BT (n = 10) | Anti-IL6R/Ig-CTLA4 BT (n = 13) | |||||
---|---|---|---|---|---|---|---|---|
Mean ± SD | CI (95%) | Mean ± SD | CI (95%) | Mean ± SD | CI (95%) | Mean ± SD | CI (95%) | |
SW28 | 1.54 ± 2.32 | 0.51–2.58 | 0.91 ± 1.52 | 0.52–1.31 | 2.28 ± 3.45 | 0.29–4.28 | 1.2 ± 1.86 | 0.17–2.23 |
TEN28 | 1.54 ± 3.02 | 0.21–2.88 | 0.98 ± 2.47 | 0.34–1.63 | 4.43 ± 8.07 | −0.23–9.09 | 1.71 ± 2.67 | 0.17–3.26 |
DAS28 | 3.3 ± 1.1 | 2.8–3.8 | 3.4 ± 1.2 | 3.08–3.72 | 3.87 ± 1.51 | 2.99–4.74 | 2.54 ± 1.44 | 1.71–3.37 |
PGA | 34.09 ± 22.37 | 23.91–44.28 | 39.60 ± 23.93 | 33.31–45.89 | 52.5 ± 21.73 | 39.95–65.04 | 42.33 ± 26.45 | 27.69–56.98 |
HAQ | 0.89 ± 0.86 | 0.48–1.31 | 1.09 ± 0.71 | 0.90–1.28 | 1.59 ± 0.61 | 1.23–1.94 | 1.23 ± 0.76 | 0.79–1.68 |
CRP (mg/L) | 8.67 ± 8.99 | 4.34–13.0 | 6.49 ± 8.8 | 4.05–8.94 | 9.4 ± 7.44 | 5.1–13.7 | 3.19 ± 3.16 | 1.44–4.94 |
Platelets (×109 cells/L) | 262.31 ± 107.29 | 214.74–309.88 | 262.03 ± 86.53 | 239.48–284.58 | 255.5 ± 90.2 | 203.42–307.58 | 222.53 ± 39.78 | 200.5–244.56 |
% Erithrocytes | 40.26 ± 3.51 | 38.7–41.81 | 40.2 ± 4.3 | 39.08–41.32 | 41.6 ± 4.55 | 38.97–44.23 | 40.48 ± 4.36 | 37.72–43.96 |
Haemoglobin (g/dL) | 13.55 ± 1.07 | 13.07–14.02 | 13.42 ± 1.48 | 13.03–13.80 | 13.68 ± 1.19 | 12.99–14.37 | 14.17 ± 1.62 | 13.28–15.07 |
ESR (mm/h) | 30.14 ± 13.33 | 24.23–36.05 | 35.98 ± 25.35 | 29.38–42.59 | 26.64 ± 19.23 | 15.54–37.75 | 8.73 ± 8.28 | 4.15–13.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotrulev, M.; Gomez-Touriño, I.; Cordero, O.J. Soluble CD26: From Suggested Biomarker for Cancer Diagnosis to Plausible Marker for Dynamic Monitoring of Immunotherapy. Cancers 2024, 16, 2427. https://doi.org/10.3390/cancers16132427
Kotrulev M, Gomez-Touriño I, Cordero OJ. Soluble CD26: From Suggested Biomarker for Cancer Diagnosis to Plausible Marker for Dynamic Monitoring of Immunotherapy. Cancers. 2024; 16(13):2427. https://doi.org/10.3390/cancers16132427
Chicago/Turabian StyleKotrulev, Martin, Iria Gomez-Touriño, and Oscar J. Cordero. 2024. "Soluble CD26: From Suggested Biomarker for Cancer Diagnosis to Plausible Marker for Dynamic Monitoring of Immunotherapy" Cancers 16, no. 13: 2427. https://doi.org/10.3390/cancers16132427
APA StyleKotrulev, M., Gomez-Touriño, I., & Cordero, O. J. (2024). Soluble CD26: From Suggested Biomarker for Cancer Diagnosis to Plausible Marker for Dynamic Monitoring of Immunotherapy. Cancers, 16(13), 2427. https://doi.org/10.3390/cancers16132427