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Simple Summary: From detection to monitoring therapeutic response, circulating tumor DNA has
emerged at the forefront of numerous clinical applications in oncology. It provides a non-invasive,
real-time window into the evolving tumor as the cancer progresses. Advances in liquid biopsies and
circulating tumor DNA analysis are enhancing their diagnostic applicability with tools like liposomal
nanoparticles and antibody priming agents by binding to cell-free DNA in circulation and aiding
in evading clearance mechanisms. The development of highly sensitive techniques such as digital
droplet PCR and next-generation sequencing-based technologies has enabled the detection of minute
ctDNA fractions amid high background, increasing its potential for early detection and minimal
residual disease.

Abstract: Circulating tumor DNA (ctDNA), a fragment of tumor DNA found in the bloodstream,
has emerged as a revolutionary tool in cancer management. This review delves into the biology of
ctDNA, examining release mechanisms, including necrosis, apoptosis, and active secretion, all of
which offer information about the state and nature of the tumor. Comprehensive DNA profiling
has been enabled by methods such as whole genome sequencing and methylation analysis. The low
abundance of the ctDNA fraction makes alternative techniques, such as digital PCR and targeted
next-generation exome sequencing, more valuable and accurate for mutation profiling and detection.
There are numerous clinical applications for ctDNA analysis, including non-invasive liquid biopsies
for minimal residual disease monitoring to detect cancer recurrence, personalized medicine by
mutation profiling for targeted therapy identification, early cancer detection, and real-time evaluation
of therapeutic response. Integrating ctDNA analysis into routine clinical practice creates promising
avenues for successful and personalized cancer care, from diagnosis to treatment and follow-up.

Keywords: circulating tumor DNA; digital droplet PCR; NGS; minimal residual disease; early detection

1. Introduction

Cancer is a heterogeneous and dynamic disease, and diverse genetic alterations cause
its onset and progression. Early diagnosis and accurate assessment of tumor dynamics are
pivotal for effective cancer management. In this context, circulating tumor DNA (ctDNA)
has emerged as a promising concept.

ctDNA is a fraction of cell-free DNA (cfDNA) shed by tumor cells into the bloodstream.
It carries the genetic and epigenetic alterations specific to the originating tumor, making it
an essential source of information for cancer diagnosis and monitoring [1]. The proportion
of ctDNA within cfDNA in samples varies according to the tumor burden. In early-stage
tumors, it can be less than 1%, while in patients with advanced cancer and a higher
tumor burden, it increases to >10% and can even exceed 40% of the total cfDNA [1]. The

Cancers 2024, 16, 2432. https://doi.org/10.3390/cancers16132432 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers16132432
https://doi.org/10.3390/cancers16132432
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0001-5314-1630
https://doi.org/10.3390/cancers16132432
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers16132432?type=check_update&version=1


Cancers 2024, 16, 2432 2 of 26

detection and analysis of ctDNA have rapidly evolved, driven by advances in sequencing
technologies and bioinformatics, providing a non-invasive and real-time window into the
tumor’s developing landscape [2]. The significance of ctDNA lies in its potential to enable
early cancer detection, monitor treatment response, detect residual disease, and predict
prognosis, transforming the field of oncology.

The prognosis and detection of cancer are pivotal aspects of cancer management.
Early diagnosis and accurate prognosis have mainly been limited over the years by the
constraints of traditional diagnostic tools. Although useful, tissue biopsies are invasive and
frequently fail to capture the tumor’s genetic heterogeneity [3]. As a result, there has been
a growing need for minimally invasive, sensitive, and dynamic tools to improve cancer
diagnosis and prognostication.

Liquid biopsy approaches have recently gained momentum, with ctDNA at the fore-
front. Based on the analysis of ctDNA, circulating tumor cells (CTCs), and other components
or markers in the bloodstream, liquid biopsies offer non-invasive and real-time insights
into the tumor’s genetic and molecular composition [4]. This paradigm shift has led to
multiple advancements in cancer management, enabling early detection, individualized
therapy selection, and dynamic monitoring.

This review underscores the potential of ctDNA application in clinical practice, span-
ning from early detection and tumor profiling to minimal residual disease assessment,
treatment selection, and therapeutic monitoring. While acknowledging specific limitations
that may hinder its widespread application, the review also delves into current advances
that can broaden the utility of ctDNA-based liquid biopsies in oncology. Furthermore, it
explores avenues for expanding and optimizing its use, enabling more effective cancer
management strategies.

2. Biology of ctDNA in Blood

Distinct mechanisms enabling the movement of DNA from the intracellular to the ex-
tracellular milieu, while maintaining its biological stability, are essential to understand. The
possible primary origins of cfDNA encompass processes linked to cellular breakdown and
active DNA release mechanisms [5]. Methylation studies have shown that hematopoietic
cells contribute a major amount of cfDNA in the blood, while only a minor population is
associated with other tissues [6]. The average size of cfDNA in healthy individuals, ranging
from 160–180 base pairs (bp), reflects its association with nucleosomes (147 bp) and linker
DNA (20–50 bp), suggesting a predominant origin from apoptosis [7]. Furthermore, actively
metabolizing tissues such as tumors and hematopoietic tissues show increased cfDNA due
to increased cell death in such tissues [8]. Even though knowledge on the release mecha-
nisms of ctDNA is quite limited to date, the structural attributes of ctDNA can be traced
back to mainly one of these origins, encompassing phenomena such as apoptosis, necrosis,
phagocytosis, and active secretion, which underpin specific structural characteristics [9].
Figure 1 enlists the major possible mechanisms associated with cfDNA release.
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Figure 1. Mechanisms of cfDNA release into the blood circulation. Cell–free DNA, including 
ctDNA, can be released into the bloodstream as a result of (a) apoptosis, which releases short DNA 
fragments; (b) necrosis, yielding longer undigested DNA fragments; (c) active release mechanisms 
such as microvesicles and exosomes; and (d) inflammatory and immune responses involving py-
roptosis and NETosis. 

2.1. Apoptosis: Orchestrated Cell-Free DNA Release 
The release of cfDNA is heavily associated with apoptosis, a well-organized form of 

programmed cell death. The primary source of cfDNA within the blood is thought to orig-
inate from the hematopoietic cells via apoptosis [10]. During apoptosis, cells undergo a 
precisely controlled fragmentation process, leading to the generation of relatively short 
cfDNA fragments, typically around 180–200 base pairs in length [7]. These short frag-
ments are a distinguishing feature, making apoptotic cfDNA easily detectable and ana-
lyzable [11].  

Cancer cells’ distinctive unregulated proliferation results in several stresses, such as 
paucity of nutrients, inflammatory conditions, hypoxia, oxidative stress, the production 
and release of tissue-specific transcription factors, and the signaling of death-inducing 
molecules [12]. Thus, the ctDNA released through apoptosis carries critical information 
about genomic alterations in cancer cells. It frequently bears specific mutations and epi-
genetic modifications, making it a valuable tool for cancer diagnosis and monitoring [13]. 
Furthermore, the induction of apoptosis in cancer cells by drugs can also increase the con-
centration of ctDNA present in the total cfDNA [14]. In a study evaluating the release of 
cfDNA in cancer cell lines in response to treatment, it was found that the preliminary 
cfDNA release associated with treatment was apoptosis, followed by necrosis, and the 

Figure 1. Mechanisms of cfDNA release into the blood circulation. Cell–free DNA, including ctDNA,
can be released into the bloodstream as a result of (a) apoptosis, which releases short DNA fragments;
(b) necrosis, yielding longer undigested DNA fragments; (c) active release mechanisms such as
microvesicles and exosomes; and (d) inflammatory and immune responses involving pyroptosis
and NETosis.

2.1. Apoptosis: Orchestrated Cell-Free DNA Release

The release of cfDNA is heavily associated with apoptosis, a well-organized form
of programmed cell death. The primary source of cfDNA within the blood is thought to
originate from the hematopoietic cells via apoptosis [10]. During apoptosis, cells undergo
a precisely controlled fragmentation process, leading to the generation of relatively short
cfDNA fragments, typically around 180–200 base pairs in length [7]. These short fragments
are a distinguishing feature, making apoptotic cfDNA easily detectable and analyzable [11].

Cancer cells’ distinctive unregulated proliferation results in several stresses, such as
paucity of nutrients, inflammatory conditions, hypoxia, oxidative stress, the production
and release of tissue-specific transcription factors, and the signaling of death-inducing
molecules [12]. Thus, the ctDNA released through apoptosis carries critical information
about genomic alterations in cancer cells. It frequently bears specific mutations and epi-
genetic modifications, making it a valuable tool for cancer diagnosis and monitoring [13].
Furthermore, the induction of apoptosis in cancer cells by drugs can also increase the
concentration of ctDNA present in the total cfDNA [14]. In a study evaluating the release
of cfDNA in cancer cell lines in response to treatment, it was found that the preliminary
cfDNA release associated with treatment was apoptosis, followed by necrosis, and the
levels were dependent on the treatment duration and interval [15]. Furthermore, the study
also showed that the type of chemotherapy utilized and its targeted cells significantly
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impacted the cfDNA released. Cytotoxic therapies caused delayed apoptotic cfDNA release
in some cells as they underwent senescence, whereas in other cell populations, they led to
immediate release as they triggered apoptosis immediately [16]. Therefore, this highlights
that cfDNA release kinetics provides essential information for elucidating the therapeutic
response and emphasizes the necessity for longitudinal monitoring of ctDNA to maximize
its application.

2.2. Necrosis: Chaotic but Informative DNA Release

Necrosis represents a less controlled and more chaotic form of cell death compared
with apoptosis. It often occurs due to cellular damage or injury, leading to abrupt cell
membrane rupturing and the unregulated release of cellular contents, including DNA,
into the surrounding environment [17,18]. Necrotic cells exhibit organelle dysfunction and
aberrations in the cytoplasmic membrane, causing the tumor DNA to be exposed to the
degrading action of intra- and extracellular nucleases and free radicals [12]. Thus, it gives
rise to longer and more fragmented ctDNA of more than 10 kb, and the amount of DNA
fragments released highly depends on the necrosis-inducing agent [19]. In necrosis, the
irregular fragmentation of chromatin leads to the release of DNA fragments of varying
sizes, distinguishing it from apoptosis [5]. In solid tumors, where cells at the core can
become deprived of nutrients and oxygen, necrosis occurs more commonly [20]. Conse-
quently, the ctDNA profiles can vary, providing information about the tumor size and
aggressiveness [21].

2.3. Active Release: Microvesicles and Exosomes Facilitate Communication

The release of cfDNA is further complicated by active release mechanisms involving
microvesicles and exosomes [22]. Microvesicles are released from the cell membrane, which
contains various cellular components, including DNA [23]. Furthermore, DNA cargo is
transported by exosomes, smaller vesicles originating from multivesicular bodies. These
cfDNA-containing vesicles are also released into bodily fluids [24]. Within the context of
cancer, ctDNA enclosed within microparticles and exosomes serves as a means of intercel-
lular communication. This communication can influence the tumor microenvironment and
potentially contribute to cancer progression and metastasis [8,25]. Exosomes are gaining
attention for their role in carrying genetic information between tumor cells and influenc-
ing the behavior of both the primary tumor and metastatic sites [26]. Understanding the
dynamics of active release mechanisms is essential to comprehending the complexity of
cancer progression. These vesicles serve as a means for the surrounding stromal cells and
immune cells to interact, which can then dictate tumor behavior.

2.4. Inflammation and Immune Responses: Triggers and Modulators of cfDNA Release

Inflammation and immune responses also play a pivotal role in the release of cfDNA,
including ctDNA. Inflammatory processes, such as infections, can initiate cell death and the
subsequent release of cfDNA [27]. In response to inflammation, immune cells release DNA
traps, known as neutrophil extracellular traps (NETs). These DNA traps lead to NETosis,
which contributes to the pool of cfDNA in bodily fluids, potentially including ctDNA from
tumor cells [19,28]. Furthermore, pyroptosis, an inflammasome-mediated cell death, is an-
other contributor to the cfDNA population [27]. Due to the activation of the inflammasome,
the release of pro-inflammatory cytokines leads to cell lysis via pyroptosis. During this pro-
cess, DNA gets fragmented by nucleases and released into circulation [29]. Tumor-derived
cfDNA may carry information about the tumor’s immunogenicity, mutations in immune
checkpoint genes, and other factors that influence the response to immunotherapy [30].

Another plausible source of ctDNA is the CTCs; however, their contribution to the
entire pool of ctDNA is minor. When released from the tumor site, they may undergo
breakage release; however, since the number of CTCs is very minimal, their quantification
and detection make it challenging to evaluate the mechanism [12]. Despite the various
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sources and mechanisms of cfDNA and ctDNA release, detecting ctDNA during the early
stages of cancer is difficult due to its low abundance within the entire cfDNA population.

3. Methods of ctDNA Detection

The low amount of ctDNA (as low as 0.01%) poses a significant challenge to its
detection. Due to its low concentration, there is a high demand for techniques that can
offer sensitivity and specificity for detecting ctDNA among many backgrounds [31]. By
tracking a tumor-specific mutation separately from the primary tumor, a directed strategy
can track the tumor progression. The methodologies to detect ctDNA can be bifurcated
into targeted and untargeted approaches. The most popular targeted approaches include
digital PCR (dPCR) and targeted next-generation sequencing (NGS) approaches, or broader,
untargeted approaches, including whole genome sequencing (WGS) or global methylation
status [32]. Table 1 highlights the advantages and drawbacks of digital PCR-based and
NGS-based ctDNA detection methods. The methodology adopted primarily depends
on the application of ctDNA analysis, along with the assay sensitivity required to detect
varying ctDNA fractions. Figure 2 illustrates the prevalent ctDNA detection methods in
liquid biopsies.

Table 1. Summary of advantages and disadvantages of digital PCR and NGS-based techniques
currently used for ctDNA detection and in various commercial ctDNA kits.

Digital PCR-Based ctDNA Detection NGS-Based ctDNA Detection

Advantages
Increased sensitivity (0.1–0.001%) Enables comprehensive analysis—multiple targets, whole

exome, and whole genome.

Provides absolute quantification of
mutation load Provides an unbiased discovery approach.

Disadvantages Targeted analysis—detection of known
mutants only

Expensive with increased processing times and advanced
analysis and data interpretation techniques.

Higher variant allele frequencies required for detection.

The most popular source of ctDNA is from the plasma since the concentration of
ctDNA within cfDNA is higher, which improves the detection rate. Furthermore, liquid
biopsies are a minimally invasive technique, enabling the enhanced evaluation of the
heterogeneity of tumors at multiple time points compared with tissue samples [32]. On the
other hand, detecting the signal can be challenging due to the high noise proportion within
the plasma samples.

Techniques such as dPCR have made the detection of point mutations, even in low
allele fractions, possible. They enable the detection of rare mutations by analyzing individ-
ual target sequences achieved through compartmentalizing complex mixtures [33]. One
of the first digital PCR technologies developed was BEAMing (beads, emulsion, ampli-
fication, and magnetics), which integrates emulsion PCR and flow cytometry to detect
and enumerate variants [34]. Even though it has the ability to detect up to one mutant
within 10,000 DNA molecules, the process is quite complex for routine analysis [35]. Digital
droplet PCR (ddPCR) is another highly accurate next-generation technique that is based on
nanoliter-sized water-in-oil droplet emulsion technology [36]. It can be used for various
applications such as rare mutation detection, copy number variation analysis, absolute
quantification, gene rearrangements, and DNA methylation from different clinical sample
types. ddPCR has a sensitivity ranging from 0.001% to 0.1% and is an effective tool to
detect and quantify known point mutations [37]. One significant limitation of ddPCR in
ctDNA detection applications is the impact of variability in droplet shape and size on
reproducibility and robustness.
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Figure 2. Prevalent ctDNA detection methods utilized for clinical applications. Highly sensitive
detection methods facilitate the quantification of low ctDNA fractions. PCR techniques like QPCR,
specifically digital droplet PCR, provide high sensitivity and specificity. NGS techniques can also
provide targeted and untargeted ctDNA detection approaches. Microarray technology enables
concurrently detecting multiple genes and genetic aberrations in ctDNA liquid biopsy samples.

Real-time PCR provides a cost-effective and rapid substitute for ctDNA analysis. Even
though this method enables minimal false positives, it can effectively detect mutations at a
very low frequency of only 10–20% of alleles within wild-type DNA backgrounds, which is
considerably low compared with other digital PCR-based methods [31]. Allele-specific PCR
(AS-PCR) provides a simple solution for detecting point mutations within ctDNA samples;
however, the drawbacks are that it can only evaluate a limited number of foci (as with
most targeted approaches) and is only semiquantitative [38]. Co-amplification at lower
denaturation temperatures (COLD-PCR) can further detect minute mutation fractions as
low as 0.1%. Enriching the mutation fractions can further heighten this sensitivity by
100-fold [39]. The limitations of COLD-PCR are that it only provides a semiquantitative
analysis of the mutation load in comparison to some other digital PCR-based techniques
and is more prone to polymerase-induced errors [40].

Microarray technology stands out as a powerful tool for ctDNA analysis. Since it
is a high-throughput technology, it enables the detection of hundreds or thousands of
mutations simultaneously in a single sample [41]. This makes it appealing for multiple
applications, particularly when coupled with its affordability and versatility for targeting
specific mutations. They also enable the detection of mutations present at low frequen-
cies [42]. The technology operates by immobilizing probes on a solid surface designed to
complement specific DNA sequences. Fragmented ctDNA extracted from blood samples is
labeled with a fluorescent dye and hybridized into the microarray. The fluorescent signal
intensity at each probe location reflects the abundance of the corresponding DNA sequence,
allowing the identification and quantification of multiple specific mutations present in the
samples [43]. Although these techniques offer many advantages, they are limited in their
ability to scan and detect unknown mutations within clinical samples and also exhibit high
variance for low-frequency genes.

On the other hand, NGS can profile the ctDNA using both targeted and untargeted
approaches and can also be utilized for WGS. Advancements such as unique barcodes or
molecular identifiers, which are sequences added to each DNA fragment during library
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preparation to identify each read or molecule during analysis, help decrease the false-
positive rates and enhance the sensitivity of the technology [44].

Tagged-Amplicon deep sequencing (TAM-seq) is a method that utilizes NGS, which
uses primers to amplify specific genomic regions. Due to its two-stage amplification process,
this high-throughput method has a sensitivity of 97% and can detect mutant allele fractions
as low as 2% [45]. Furthermore, it has also been developed to determine copy number vari-
ants (CNVs), insertions/deletions, and single nucleotide variations (SNVs) [46]. However,
the primary limitation of this detection method is its higher detection limit compared with
assays targeting individual loci requiring further development, like increased read depth
and enhanced algorithms for detection. Another system, known as the Safe-Sequencing
System (Safe-SeqS), tags each template with a unique identifier to ensure that a mutation is
detected in the majority of the identical unique identifier sequences, providing minimum
false positives and improved accuracy and sensitivity [47]. While promising, this sequenc-
ing system needs to be validated on larger patient cohorts to accurately evaluate its efficacy.
Additionally, further analysis is required to determine the accuracy of the thresholds set
for considering positive readouts. Another NGS-based platform is the Ion Torrent, which
enables the detection of CNVs and SNVs in amounts as low as 1 ng of DNA [48]. This
technology operates by detecting hydrogen ions released during the incorporation of new
nucleotides into the growing DNA strand. While it offers faster sequencing, it has a lower
throughput compared with some other methods [49].

All the above-mentioned techniques utilize targeted panels that enable the detection
of indels and point mutations with high sensitivity and at a lower cost. Alternatively, NGS
also provides an untargeted approach that allows WGS to determine CNVs, indels, and
point mutations in the entire tumor DNA genome [50]. The drawback of this technique is
its reduced sensitivity and increased cost. On the other hand, whole-exome sequencing
(WES) provides an improved approach over WGS as it only sequences the exomes within
the genome [48]. Nevertheless, the application of these techniques is limited in ctDNA
detection and analysis as they require a higher input concentration. Furthermore, it has
been found that the sensitivity of digital PCR techniques is higher compared with NGS
platforms and can detect smaller mutant fractions [51].

An additional useful technique for ctDNA identification in cancer settings is the uti-
lization of DNA methylation markers. In the intricate cancer landscape, characterized
by diverse genetic and epigenetic alterations, DNA methylation is one epigenetic change
that has been shown to be particularly important [52]. The stability and persistence of
DNA methylation patterns make them particularly suitable for ctDNA detection, pro-
viding important insights into the tumor’s genetic makeup without requiring invasive
procedures [53]. The ability to develop targeted assays is facilitated by the specificity of
DNA methylation alterations for specific cancer types, allowing precise diagnostics and
contributing to early cancer detection [54]. Moreover, the quantitative nature of methylation
analysis enables the evaluation of tumor burden, which helps monitor minimal residual
disease (MRD) and assess treatment efficacy [55]. The application of DNA methylation
markers in ctDNA detection extends to cancer subtyping, allowing for individualized
treatment approaches based on the distinct epigenetic profiles of various cancer types [55].
Methylation-based liquid biopsy tests may soon be able to be entirely integrated into rou-
tine clinical practice as challenges related to standardization, sensitivity, and large-scale
validation studies continue to be addressed.

Hence, choosing the most appropriate ctDNA detection method requires various
considerations, including the clinical context, desired sensitivity and specificity, target
mutations, cost, and availability. NGS offers the most comprehensive analysis but is
expensive and requires specialized expertise. Although dPCR has a limited target range,
it provides accurate quantification and high sensitivity. Real-time PCR is a cost-effective
and rapid option for detecting specific mutations; however, it offers lower sensitivity
and specificity.
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Commercially Available Kits for ctDNA Detection and Analysis

Various kits have been developed for ctDNA analysis from tumor tissues and liquid
biopsies due to the increasing attention ctDNA has gained in cancer research over the years.
These kits primarily utilize NGS, or PCR-based technology, for analysis. These kits have a
variety of applications, including tumor profiling and mutation detection, and some have
also been FDA-approved for liquid biopsy tests for various clinical applications in cancer
detection and treatment [56,57]. Table 2 enlists some of the commercially available ctDNA
kits and their applications.

Table 2. Application of commercially available kits for ctDNA analysis in cancer.

Name Technology Application Sensitivity Specificity Current Clinical Trial ID(s)
(Type; Cancer) Reference

Personalized Cancer
Monitoring (PCM™)

Anchored Multiplex PCR
(AMP) (for target

enrichment) for NGS
MRD 99.8% 99.9% NCT05219734

(Observational; Pan-cancer) [58]

TruSight Oncology 500 Targeted NGS
Cancer recurrence
detection, Tumor

Profiling
>75% 99.9%

NCT05763472
(Observational; Ovarian

Cancer)
NCT05111067

(Observational; TNBC)

[59]

RaDaR™ (Residual Disease
and Recurrence)

Multiplex PCR-based NGS
assay

MRD,
Early detection of

relapse
95% 100% NCT05388149 (Phase 2;

Breast Cancer [60]

Signatera™ Multiplex-based assay

MRD,
Cancer recurrence

detection,
Therapy Monitoring

>65% 99.9%

NCT04761783
(Observational; Melanoma,

NSCLC, CRC)
NCT05212779

(Observational; Epithelial
Ovarian Cancer)

NCT05757843
(Interventional; NSCLC)

NCT04786600
(Interventional; CRC)

NCT05174169
(Interventional; Colon

Cancer)

[61]

MRDetect WGS MRD 82–86% 82–93% - [62]

Guardant360® CDx NGS Therapy Monitoring 55.6% 100%
NCT05935384

(Observational; NSCLC,
CRC, Breast Cancer)

[63]

PhasED-seq (Phased
Variant Enrichment and
Detection Sequencing)

Hybrid capture-based NGS
assays MRD 95% 97% NCT04417803

(Interventional; Lymphoma [64]

AVENIO ctDNA
Surveillance Kit CAPP-seq

MRD,
Monitoring tumor

burden,
Therapy Monitoring

95–94% 100%
NCT04585477 (Phase 2;
NSCLC) NCT04585490

(Phase 3; NSLC)
[65]

Oncomine Pan-cancer
cell-free assay NGS Mutation Detection 90% >98% NCT04564079

(Observational; NSCLC) [66]

FoundationOne® Liquid
CDx

High throughput
hybridization-based
capture technology

Mutation Detection 96.3%
(PPA) *

99.9%
(NPA) **

NCT05272423
(KRAS-driven cancers;

Observational)
NCT05032092 (Locally
Advanced/Metastatic

Cancers; Interventional)
NCT05846594 (Lung &
Gastrointestinal Cancer;

Interventional)
NCT04484636 (Multiple
Cancers; Interventional)

[67]

* PPA: Positive Percent Agreement. ** NPA: Negative Percent Agreement.

4. Factors Influencing ctDNA Detection

While ctDNA offers invaluable insights into tumor characteristics and dynamics,
enabling its application for personalized cancer care, its analysis necessitates careful consid-
eration of certain key factors such as sample collection, preparation, and detection methods.
To ensure accuracy and reproducible results, meticulous sample handling and preservation
are essential due to the inherent fragility and sensitivity to the degradation of ctDNA.
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ctDNA stability is affected by various factors, including the collected sample type,
storage conditions, freeze–thaw cycles, and processing time. Plasma ctDNA is generally
more stable than serum ctDNA due to degrading enzymes present in the serum [68].
Furthermore, serum samples may contain more background cfDNA than plasma due to
the release of necrotic DNA from blood cells [19]. Reducing degradation requires lower
temperatures and prompt processing after collection [69]. Additionally, adherence to sterile
procedures during blood collection and processing is crucial to prevent contamination with
foreign DNA, leading to false-positive results.

Various critical factors influence the successful analysis of ctDNA, including selecting
the appropriate collection tubes [69,70]. For instance, a study showed that EDTA tubes
are superior to heparin or citrate tubes for ctDNA as the concentration of contaminated
DNA is lower in the plasma samples, and EDTA reduces leucocytic apoptosis and necrosis
for 24 h [71]. Furthermore, a study found that the stability of cfDNA or ctDNA in EDTA
tubes is optimal for up to 6 h [72]. Blood volume depends on the specific analysis and
desired ctDNA amount, commonly 10 mL [43]. Tubes containing preservatives offer
enhanced stability by preventing degradation, such as Streck Cell-Free DNA BCT® (Streck,
USA), Roche Cell-Free DNA Collection Tube (Roche, Switzerland), and Qiagen PAXgene
Blood ccfDNA Tube (Qiagen, Germany) [73,74]. Ultimately, understanding the factors
affecting ctDNA stability, utilizing proper sample collection and preservation methods,
and choosing the correct detection method are key to the accurate and efficient detection of
ctDNA. Furthermore, various efforts have been made to manipulate and enrich ctDNA to
enhance its detection, as summarized in Table 3 and discussed in the following sections.

Table 3. Tools for manipulation and enrichment of ctDNA to improve its application in clinical
settings.

Current Challenge Technology Application Reference

Instability of ctDNA and
cfDNA

Liposomal nanoparticle
priming agents

Inhibits the uptake and degradation of cfDNA
(including ctDNA) by liver macrophages and

nucleases.
[75]

Background Noise (limiting
analytical sensitivity)

Magnetic bead-based
isolation,

ssDNA library preparation

Enriches shorter ctDNA fragments to enable
sensitive detection in low variant allele

frequency samples.
[76–78]

Tri-nucleotide Error Reducer
(TNER)

Background polishing algorithm that detects and
eliminates background mutation errors from

healthy subjects and sequencing artifacts from
liquid biopsy data.

[79]

Integrated Digital Error
Suppression (iDES)

In silico background polishing to reduce
common background artifacts and recover
cfDNA molecules by molecular barcoding.

[80]

INtegration of VAriant Reads
(INVAR)

Molecular barcoding and locus-specific
background polishing and detection. [81]

False Positives
(non-tumor-derived genetic

alterations)

Signatera™ Assay
Filters false positives due to clonal

hematopoiesis of indeterminate potential
(CHIP).

[82]

Elimination of Recurrent
Artifacts and Stochastic Errors

Sequencing (ERASE-seq)

Reduces false positives (10–100 fold) using
deconvolution, iterative sequencing of

background/negative DNA controls, and
technical replicate analysis.

[83]

5. Clinical Applications of ctDNA Analysis in Liquid Biopsies

Over the past decade, significant progress has been achieved in understanding the
practical applications of ctDNA analysis in several clinical contexts. These include early
cancer detection, guiding treatment choices, monitoring minimal residual disease (MRD),
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and evaluating treatment response [84–86]. Figure 3 illustrates the dynamic ctDNA levels
and their detection applications at various cancer stages and in response to clinical inter-
ventions. ctDNA analysis presents a powerful tool for tailoring therapeutic strategies to the
individual requirements of each patient by offering a dynamic overview of the processes
involved in cancer progression. This personalized strategy holds immense potential for
optimizing treatment efficacy, managing side effects, and improving patient outcomes.
Further research and development are necessary to fully realize this potential, but the
current momentum suggests that ctDNA analysis can revolutionize cancer care. Table 4
provides an overview of the applications of ctDNA in the analysis of different cancers.
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Levels of ctDNA increase proportionally with cancer progression, with almost negligible levels at the
early stages of cancer development. Post-intervention ctDNA levels can indicate disease progression,
minimal residual disease, and response to treatment. Overcoming the barrier of the limit of detection
has been at the forefront of ctDNA research, leading to the development of strategies including target
enrichment, priming agents, and computational modelling.
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Table 4. ctDNA analysis for various applications in cancer.

Cancer Type Application Technology Total Patients Reference

Lung Cancer

Therapy Response NGS 13 [87]

Therapy Response NGS 12 [88]

MRD, Therapy Response Targeted NGS 139
(97.8% sensitivity) [89]

Therapy Selection Guardant360™ NGS platform 170 [90]

Therapy Response Targeted NGS 42 [91]

MRD, Therapy Response dPCR 40 [92]

MRD, Recurrence Monitoring Multiplex PCR, NGS (RaDaR™
Assay)

88
(86.7% sensitivity;
98.5% specificity)

[46]

Prognosis
Real

Time-Methylation-Specific
PCR

42 [54]

MRD Targeted NGS 33
(57% sensitivity) [93]

MRD, Recurrence Monitoring,
Treatment Selection NGS 330 [86]

MRD, Therapy Response CAPP-seq 65 [94]

Breast Cancer

Prognosis, Therapy Response Targeted capture-based NGS 70 [95]

Therapy Response Targeted NGS, SNV detection
(Mutect) 88 [96]

Prognosis Guardant360™ NGS platform 703 [97]

Prognosis, Treatment Selection Hybridization capture &
targeted deep sequencing 93 [98]

MRD, Recurrence Monitoring,
Treatment Selection

WGS, Hybrid-capture duplex
MRD Test 139 [99]

Therapy Response, MRD,
Metastasis Detection dPCR 208

(99.8% sensitivity) [100]

Therapy Response, MRD,
Metastasis Marker WES, multiplex PCR, NGS 291 [101]

MRD, Recurrence Monitoring Hybrid capture-based NGS 142 [102]

Treatment Selection ddPCR, Guardant360™ NGS
platform

1034 (93% sensitivity;
96–99% specificity) [103]

Therapy Response, MRD
TARDIS (Tumor-specific

Analysis of Residual Disease in
Solid Tumors)

33
(19.6–94.6% sensitivity;

100% specificity)
[104]
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Table 4. Cont.

Cancer Type Application Technology Total Patients Reference

Pancreatic
Cancer

Therapy Response, Treatment
Selection ddPCR 69 [105]

Prognosis Guardant360™ NGS platform 44 [106]

Prognosis ddPCR 55 [107]

Metastasis Marker ddPCR 172 [108]

Therapy Response dPCR 47 [109]

Therapy Response Oncomine Colon cfDNA Assay
targeted NGS 106 [110]

Prognosis NGS 112 [111]

Mutation Detection ddPCR 162 [112]

Prognosis, Therapy Response ddPCR 67 (0.01–0.1%
sensitivity) [113]

Therapy Response Targeted NGS 38 [114]

Prognosis, Therapy Response NGS, ddPCR 188 [115]

Colorectal
Cancer

Cancer Detection Methylation-specific PCR 212 (43.1% sensitivity;
>85.9% specificity) [116]

Cancer Detection Targeted Methylation Assay by
NGS

20 (85% sensitivity; 92%
specificity) [117]

MRD Multiplex QPCR 299 (78% sensitivity;
90.2% specificity) [118]

Mutation Profiling Targeted NGS 23 [119]

Therapy Monitoring WES, Targeted NGS 171 [120]

Therapy Selection ddPCR 33 (80% sensitivity; 90%
specificity) [121]

Prognosis ddPCR 48 (93% sensitivity; 95%
specificity) [122]

Therapy Response ddPCR, NGS 28 [123]

Therapy Selection ddPCR 100 [124]

Cancer Detection, Mutation
Detection ddPCR 155 (45% sensitivity;

100% specificity) [125]

Skin Cancer

Therapy Response AS-PCR, RT-PCR, ddPCR 85 [126]

Disease Progression ddPCR 93 [127]

Recurrence Monitoring ddPCR 133 [128]

MRD Signatera™ 69 [129]

Prognosis ddPCR 174 [130]

Prognosis ddPCR 80 [131]

Therapy Response ddPCR 72 [132]

Therapy Response ddPCR 96 [133]
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Table 4. Cont.

Cancer Type Application Technology Total Patients Reference

Prostate Cancer

Disease Progression WGS; TAM-Seq 10; 189 [134]

Mutation Profiling, Therapy
Response Guardant360™ NGS platform 514 [135]

Mutation Profiling
Hybrid capture–based

comprehensive genomic
profiling

3334 [136]

Mutation Detection FoundationOne® NGS 619 [137]

Mutation Detection, Mutation
Profiling NGS 279 [138]

Mutation Profiling Targeted NGS sequencing 100 [139]

Prognosis Targeted NGS sequencing 491 [140]

Head & Neck
Cancer

Mutation Profiling Guardant360™ NGS platform 60 [141]

Disease Progression Signatera™ 116 [142]

Mutation Detection ddPCR 107 [143]

Mutation Detection Safe-Seqs 62 [144]

Breast, Liver,
Lung,

Colorectal &
Gastric Cancer

Early Detection, Localization SPOT-MAS (tumor
methylation screening), NGS

738 (73.9–88.3%
sensitivity; 97%

specificity)
[145]

5.1. Early Cancer Detection

A highly promising application of ctDNA analysis is in early cancer detection. Tra-
ditional methods often involve invasive procedures such as tissue biopsies, which may
not be practical for routine screening. A research group developed a specialized capture
and sequencing technique known as targeted error correction sequencing (TEC-Seq) to
enable the sensitive and specific detection of low-frequency sequence alterations using
NGS in cfDNA samples [44]. They employed a 58-gene panel to identify rare tumor-specific
alterations in cfDNA samples from patients with various stages of colorectal, lung, breast,
and ovarian cancers. TEC-Seq demonstrated the capability to detect ctDNA alterations in
50%, 67%, 45%, and 67% of patients with stage I colorectal, ovarian, lung, and breast can-
cers, respectively [44]. Although the fraction of patients with ctDNA alterations increased
from stages II to IV across all cancers, the data indicated that this methodology could
detect ctDNA alterations in stage I of certain cancers [44]. Another study enhanced cancer
personalized profiling using the deep sequencing (CAPP-Seq) method for analyzing ctDNA
to facilitate lung cancer screening [146]. Despite low levels in early-stage lung cancers,
ctDNA is detectable before treatment and strongly prognostic. Most somatic mutations in
the cfDNA of lung cancer patients and controls are linked to clonal hematopoiesis [146].
The study develops and validates a machine-learning method, lung cancer likelihood in
plasma (Lung-CLiP), demonstrating the potential of cfDNA for lung cancer screening by
robustly discriminating between early-stage lung cancer patients and controls [146].

However, the minimal concentration of ctDNA within the entire cfDNA population
restricts the potential application of liquid biopsies and ctDNA for early cancer detection.
Figure 3 depicts the low levels of ctDNA during the early stages of cancer that go untraced
due to the limited detection of current techniques. Despite this challenge, ongoing advance-
ments in molecular techniques are progressively expanding the horizons of liquid biopsy
technology, offering hope for broader and more efficient use in early cancer diagnosis.



Cancers 2024, 16, 2432 14 of 26

5.2. Treatment Selection and Personalized Medicine

By identifying specific genetic alterations that can guide the selection of targeted
therapies, ctDNA analysis plays a pivotal role in guiding treatment decisions. In the age of
precision medicine, understanding the genomic landscape of a patient’s tumor is essential
for modifying therapies that target the underlying molecular abnormalities driving cancer.
Figure 3 shows how evaluating ctDNA at different stages during cancer progression and
intervention can help guide treatment selection.

For instance, in patients with metastatic colorectal cancer, ctDNA analysis can reveal
mutations in genes such as KRAS and BRAF, which have implications for the response to
anti-EGFR therapies [147,148]. Similarly, in advanced gastric cancer, the identification of
HER2 amplification through ctDNA analysis guides the use of HER2-targeted therapies
like trastuzumab [149]. Another study conducted a phase 2a multicohort trial to evalu-
ate the efficacy of ctDNA monitoring in advanced breast cancer and its ability to guide
mutation-directed therapy [103]. Among 1034 patients with ctDNA results, ctDNA testing
demonstrated high sensitivity (93%) and specificity (96–99%), allowing for rapid and ac-
curate genotyping [103]. Targeted therapies in cohorts with HER2 and AKT1 mutations
showed clinically relevant activity, suggesting the potential for ctDNA testing to guide
mutation-directed therapies in routine clinical practice for advanced breast cancer patients.

Furthermore, another study developed highly sensitive and specific mutation-specific
ddPCR assays for real-world cancer management, covering 12 genetic aberrations [150].
Applied to 352 plasma samples, the assays accurately reflected cancer progression, and in
20 cases, ctDNA profiling enabled personalized treatment selection based on actionable
gene targets, highlighting their potential in routine clinical practice for precise disease
monitoring and personalized cancer management [150]. Thus, integrating ctDNA analysis
into clinical decision-making can optimize treatment outcomes by ensuring that patients
receive therapies that specifically target the genetic alterations driving their cancer, thereby
maximizing efficacy while minimizing unnecessary side effects.

5.3. Monitoring Minimal Residual Disease

Following initial treatment, MRD indicates the persistence of cancer cells that may not
be detectable by conventional imaging or clinical assessments. The persistence of these
remnant tumor cells or disease in patients can remain at low, undetectable levels by imaging
or physical exam and eventually lead to cancer relapse. Figure 3 highlights the importance
of longitudinal monitoring of ctDNA post-initial intervention in detecting and guiding
treatment decisions. Studies have shown that therapy after surgery can help eradicate MRD
and prevent relapse [151,152]. DNA analysis provides a sensitive and specific method for
monitoring MRD, allowing for the early identification of disease recurrence.

A study found that perioperative ctDNA analysis effectively predicted MRD and
relapse risk in non-small cell lung cancer (NSCLC) [86]. In the study, postoperative MRD
detection strongly predicted disease relapse, surpassing clinicopathologic variables such
as TNM staging in predicting recurrence-free survival and demonstrating that adjuvant
therapies had differential effects on patients based on MRD status. Similarly, in a study of
resectable pancreatic ductal adenocarcinoma (PDAC) patients, a sensitive NGS technology
detected preoperative ctDNA in 37.7% of cases, revealing twelve additional oncogenic mu-
tations exclusively in ctDNA [153]. The findings suggest that optimized NGS approaches,
including postoperative ctDNA concentration assessment, could enhance MRD evaluation
in resectable PDAC, emphasizing the value of parallel analyses of matched tissues and
leukocytes for accurately detecting clinically relevant ctDNA.

Another study found that tumor-naive plasma ctDNA analysis is highly sensitive
(95%) and specific (100%) for detecting MRD in oligometastatic colorectal cancer (CRC)
patients’ post-neoadjuvant chemotherapy [154]. Despite its feasibility, urine-based ctDNA
MRD detection showed lower sensitivity (64%), emphasizing the superior performance of
plasma ctDNA for guiding personalized treatment in this context [154]. A study focusing
on high-risk early-stage hormone receptor-positive breast cancer (HR+ BC) found that
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all patients with positive MRD testing developed distant metastatic recurrence before
overt clinical recurrence, suggesting the potential of ctDNA as an early indicator with
implications for future interventions in HR+ BC patients [155]. The ability to detect residual
disease at a molecular level enables timely intervention, potentially improving outcomes
by initiating therapeutic interventions before clinical relapse occurs.

5.4. Assessment of Therapeutic Response and Disease Progression

ctDNA analysis is a dynamic tool for tracking the response to therapy and monitor-
ing disease progression in real time. Alterations in ctDNA levels and the emergence of
new genetic changes can provide insights into the tumor’s evolving genomic landscape.
Monitoring ctDNA in the context of targeted therapies enables clinicians to assess treat-
ment responses and modify therapeutic strategies appropriately. For example, in NSCLC
patients receiving tyrosine kinase inhibitors (TKIs) targeting EGFR mutations, changes in
ctDNA levels and the emergence of resistance mutations can be indicative of treatment
resistance, prompting a switch to alternative therapies [85]. In a study where the ctDNA
was monitored serially in progressive metastatic breast cancer, they observed alterations in
resistance genes such as ERBB2, TP53, and PIK3CA with disease progression [156].

Additionally, ctDNA analysis has demonstrated its efficacy in predicting treatment
responses to immune checkpoint inhibitors in various cancer types [157,158]. Identifying
specific genomic features associated with response or resistance to immunotherapy enables
selecting patients more likely to benefit from these novel treatment approaches. As sug-
gested in Figure 3, using ctDNA to monitor cancer’s response to chemotherapies can be
extremely helpful for tracking progress and making informed decisions in real-time.

6. Overcoming Current Limitations with ctDNA Detection

While ctDNA analysis has transformed the field of cancer diagnostics and monitoring
by providing a minimally invasive window into tumor genetics, its transformative potential
is currently hampered by various challenges that limit its clinical utility. Certain intrica-
cies of ctDNA analysis in cancer, such as technological hurdles and inherent biological
factors, impact its applicability and efficacy [2]. Table 3 summarizes the current prominent
limitations and the advances made to enhance ctDNA detection.

Achieving high sensitivity and specificity is one of the primary challenges in applying
this analysis. ctDNA often appears in minute fractions among a vast background of normal
cell-free DNA, making its detection challenging. Low-level mutations or alterations may go
undetected, leading to false negatives. Improving the sensitivity of ctDNA assays is crucial
for reliable detection, especially in earlier cancer stages where ctDNA levels are relatively
low. Liu et al. demonstrated that the enrichment of shorter cfDNA fragments (90–150 bp)
by developing an ssDNA library using magnetic beads could significantly improve the
sensitivity for low variant allele frequency detection [76]. Even though this study presents
a potential solution to enrich ctDNA, it needs further validation, as it is limited by the small
patient cohort and the quality and quantity of the samples used for the analysis, which can
lead to discrepancies in ctDNA detection.

Additionally, attaining high specificity is essential to avoid false positives, which could
result from various factors, including clonal hematopoiesis of indeterminate potential
(CHIP) or an increase in non-tumor-derived genetic alterations accumulating in bone
marrow and blood cells in a significant fraction of patients [82]. Distinguishing between
ctDNA and normal cell-free DNA requires advanced assays, bioinformatic algorithms, and
quality control measures [159]. The Signatera™ ctDNA is one such assay that allows for
distinguishing tumor-derived genetic alterations from background sources such as CHIP
by leveraging ultra-deep NGS and WES data from patients’ buffy coats to eliminate CHIP
interference [82]. Factoring CHIP mutations during ctDNA detection can reduce biological
background noise by eliminating false positives; however, CHIP mutations can also be
indicative of chemotherapy-associated malignancies in cancer patients. Thus, more research
needs to be conducted to assess the clinical significance of monitoring CHIP mutations
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for therapy assessment and disease chemotherapy monitoring [160]. Another technique
developed to minimize false positives is AccuScan. AccuScan enhances the potential of
MRD by removing errors introduced during DNA sequencing. It integrates linked reads
and rolling circle amplification to address errors propagated during library preparation
and sequencing [161]. This enables selective amplification of tumor-derived mutations,
enhancing the signal and accurately detecting frequencies less than 10 ppm [161]. Even
though this technology shows promise, validation in larger patient cohorts in multiple
cancers, along with CRC, is essential to determining the applicability of this technology in
multiple clinical settings.

The stability of cfDNA in circulation is another challenge that limits its implementation.
The concentration of ctDNA in the blood is significantly low; furthermore, upon release,
it undergoes degradation primarily due to liver-resident macrophages and nucleases in
circulation [75]. In a recent study, Martin-Allonso et al. presented two novel priming
strategies enabling the elongation of the half-life of cfDNA. A liposomal nanoparticle agent
containing succinyl phosphoethanolamine was found to reduce the rate of cfDNA uptake
and degradation by the liver macrophage population (kupffer cells) [75]. Another priming
agent that showed efficacy was a monoclonal antibody specifically binding to circulating
dsDNA, preventing nuclease-mediated degradation, and the engineered structure of the an-
tibody’s Fc domain also enabled evasion of Fc gamma receptor (FcγR)-mediated clearance
in the liver [75]. These priming agents, administered 1–2 h before a blood draw, showed
the ability to increase the cfDNA up to ten times more than a standard blood draw. The
proposed priming agents show great potential for boosting the sensitivity of liquid biopsies;
however, further validation and testing of these agents and their required doses is essential
to determining how these preclinical findings will translate clinically. Figure 4 summarizes
the priming strategies enabling the stabilization and increase of cfDNA in the bloodstream.
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tions of liposomal nanoparticle priming agents containing succinyl phosphoethanolamine or DNA–
binding Fcγreceptor–modified recombinant antibodies inhibit cfDNA (including ctDNA) uptake and
degradation by liver macrophages and nucleases, consequently elevating cfDNA concentrations in
liquid biopsies.

Tumor heterogeneity is a significant challenge in ctDNA analysis. Tumors are complex,
consisting of diverse cell populations with distinct genetic profiles, and ctDNA may not
entirely represent this complexity. Subclonal mutations or alterations in only a small
number of tumor cells may be missed, leading to an incomplete understanding of the
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tumor’s genomic landscape. Comprehending and addressing intra-tumoral heterogeneity
is crucial for accurately characterizing the genetic features of the cancer through ctDNA
analysis. Two independent studies utilized ctDNA data using NGS and machine learning to
determine the comprehensive genomic landscape and biological features defining non-CRC
gastrointestinal and metastatic breast cancer [162,163].

Clonal evolution and the emergence of resistance mechanisms are facilitated by dy-
namic changes in the genomic landscape of tumors during treatment. Even though ctDNA
analysis provides real-time information, it might be unable to keep up with how the
tumor evolves. Resistance mutations or genetic aberrations may arise, leading to insuffi-
cient treatment response assessment and potentially directing clinicians toward ineffective
therapeutic strategies. Monitoring clonal evolution and understanding the dynamics of re-
sistance mechanisms present ongoing challenges in ctDNA analysis [164]. To overcome this
challenge, a study employed a longitudinal monitoring strategy for ctDNA in metastatic
CRC patients, successfully identifying distinct resistance-linked mutations and detect-
ing ctDNA progression before radiological progressive disease, essentially aiding in the
identification of potential candidates for clinical trials and targeted therapies [165].

The absence of standardized protocols and harmonization across different ctDNA
analysis platforms is a significant challenge. Variability in sample processing, sequencing
technologies, and bioinformatics pipelines can lead to discrepancies in results between
different laboratories or studies [166]. Ensuring the reproducibility and reliability of ctDNA
analysis across various clinical settings requires standardizing pre-analytical and analytical
procedures and establishing rigorous quality control measures. While the potential benefits
of ctDNA analysis are substantial, the associated costs and accessibility remain significant
barriers. High-throughput sequencing technologies and complex analytical tools can be
expensive, limiting widespread adoption, especially in resource-constrained healthcare
settings. For liquid biopsies to reach their maximum potential, efforts to develop cost-
effective ctDNA analysis platforms and strategies to improve accessibility are crucial.

Validating ctDNA analysis for clinical application requires stringent clinical trials
and regulatory approval. It is a complex process to establish the clinical validity and
applicability of ctDNA assays in various cancer stages and types. As ctDNA analysis
and liquid biopsies become increasingly integrated into clinical practice, ethical and legal
considerations come to the forefront. Issues related to patient consent, data privacy, and
the potential psychological impact of ctDNA results on individuals must be carefully
addressed. Implementing ethical guidelines is essential for the responsible and patient-
centered application of the technology.

7. Conclusions

Despite the challenges and limitations, ctDNA analysis can potentially transform
cancer diagnostics and monitoring. Ongoing research and technological advancements are
gradually addressing many of the existing limitations. Improving sensitivity and specificity,
understanding tumor heterogeneity, and standardizing procedures are essential for enhanc-
ing the reliability and clinical utility of ctDNA analysis. As the field advances, collaborative
efforts are vital to overcoming these challenges. The broader integration of ctDNA analy-
sis into routine clinical practice will be enabled by overcoming technical limitations and
enhancing analytical robustness, offering an effective tool for personalized cancer care.
Developing this diagnostic tool can have a significant impact on patient outcomes. It allows
for closer monitoring of minimal residual disease and the detection of cancer at earlier
stages, which often go undetected by most current imaging and diagnostic techniques.

Currently, the most promising technique for ctDNA detection for applications specif-
ically early detection and recurrence monitoring is digital droplet PCR, as it provides a
higher sensitivity and specificity for the detection of multiple known mutations. Addition-
ally, incorporating ctDNA stabilization techniques, such as priming agents, and ctDNA
enrichment techniques, such as enriching shorter DNA fragments, can further enhance
the potential of ddPCR for these cancer detection and monitoring applications. Therefore,



Cancers 2024, 16, 2432 18 of 26

despite current obstacles, the momentum surrounding ctDNA research points to a promis-
ing future for liquid biopsy as a transformative approach in the cancer diagnostics and
monitoring landscape.
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Abbreviations

AS-PCR Allele-specific PCR
BEAM Beads, emulsion, amplification, and magnetics
CAPP-Seq Cancer personalized profiling by deep sequencing
cfDNA Cell-free DNA
CHIP Clonal hematopoiesis of indeterminate potential
CNVs Copy number variants
COLD-PCR Co-amplification at lower denaturation temperature-PCR
CRC Colorectal cancer
CTC Circulating tumor cell
ctDNA Circulating tumor DNA
ddPCR Digital droplet PCR
dPCR Digital PCR
HR+BC Hormone receptor-positive breast cancer
Lung-CLip Lung cancer likelihood in plasma
MRD Minimal residual disease
NET Neutrophil extracellular trap
NGS Next generation sequencing
NSCLC Non-small cell lung cancer
PDAC Pancreatic ductal adenocarcinoma
Safe-SeqS Safe-Sequencing System
SNVs Single nucleotide variations
TAM-Seq Tagged-Amplicon deep sequencing
TEC-Seq Targeted error correction sequencing
TKIs Tyrosine Kinase Inhibitors
WES Whole exome sequencing
WGS Whole genome sequencing
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