Racial/Ethnic Disparities and Immunotherapeutic Advances in the Treatment of Hepatocellular Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Health Disparities in HCC
2.1. Disparities in the Incidence of HCC
2.2. Disparities in Treatment Outcomes
2.3. Underrepresentation of Racial/Ethnic Minorities in Clinical Research
2.4. Biomarkers
2.5. Risk Factors for Racial/Ethnic Disparities in HCC
3. Treatments for Hepatocellular Carcinoma
3.1. Radiofrequency Ablation
3.2. TAE/TACE
3.3. TACE Combination Therapies
3.4. Immune Checkpoint Inhibitors
3.4.1. Anti-VEGF Therapy
3.4.2. Anti PD-1/Anti PD-L1 Therapy
3.4.3. Anti-CTLA-4 Therapy
3.4.4. Immune Checkpoint Resistance
3.5. Adoptive Cell Transfer (ACT)
3.5.1. CAR-T Cells
3.5.2. NK Cell Therapies
3.5.3. CAR-NK/T Therapies
3.5.4. Dendritic Cell Therapies
3.6. Therapeutic Vaccines
3.7. Nanotechnology
3.8. Cytokines
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rumgay, H.; Arnold, M.; Ferlay, J.; Lesi, O.; Cabasag, C.J.; Vignat, J.; Laversanne, M.; McGlynn, K.A.; Soerjomataram, I. Global Burden of Primary Liver Cancer in 2020 and Predictions to 2040. J. Hepatol. 2022, 77, 1598–1606. [Google Scholar] [CrossRef] [PubMed]
- Anwanwan, D.; Singh, S.K.; Singh, S.; Saikam, V.; Singh, R. Challenges in Liver Cancer and Possible Treatment Approaches. Biochim. Biophys. Acta. Rev. Cancer 2020, 1873, 188314. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, X.; Liang, J.; Liu, Y.; Hou, X.; Zhang, M.; Li, Y.; Jiang, X. Immunotherapy for Hepatocellular Carcinoma: Current Status and Future Prospects. Front. Immunol. 2021, 12, 765101. [Google Scholar] [CrossRef] [PubMed]
- Dunn, G.P.; Bruce, A.T.; Ikeda, H.; Old, L.J.; Schreiber, R.D. Cancer Immunoediting: From Immunosurveillance to Tumor Escape. Nat. Immunol. 2002, 3, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Chidambaranathan-Reghupaty, S.; Fisher, P.B.; Sarkar, D. Hepatocellular Carcinoma (Hcc): Epidemiology, Etiology and Molecular Classification. Adv. Cancer Res. 2021, 149, 1–61. [Google Scholar]
- Niemeyer, D.J.; Simo, K.A.; Iannitti, D.A.; McKillop, I.H. Ablation Therapy for Hepatocellular Carcinoma: Past, Present and Future Perspectives. Hepat. Oncol. 2014, 1, 67–79. [Google Scholar] [CrossRef]
- Costentin, C.E.; Mourad, A.; Lahmek, P.; Causse, X.; Pariente, A.; Hagege, H.; Dobrin, A.S.; Becker, C.; Marks, B.; Bader, R.; et al. Hepatocellular Carcinoma Is Diagnosed at a Later Stage in Alcoholic Patients: Results of a Prospective, Nationwide Study. Cancer 2018, 124, 1964–1972. [Google Scholar] [CrossRef] [PubMed]
- Gosalia, A.J.; Martin, P.; Jones, P.D. Advances and Future Directions in the Treatment of Hepatocellular Carcinoma. Gastroenterol. Hepatol. 2017, 13, 398–410. [Google Scholar]
- Li, S.; Zhang, Z.; Wang, Z.; Wang, K.; Sui, M.; Liu, D.; Liang, K. Lenvatinib-Based Treatment Regimens in Conversion Therapy of Unresectable Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Oncol. Lett. 2024, 27, 265. [Google Scholar] [CrossRef]
- Chavda, V.; Zajac, K.K.; Gunn, J.L.; Balar, P.; Khadela, A.; Vaghela, D.; Soni, S.; Ashby, C.R., Jr.; Tiwari, A.K. Ethnic Differences in Hepatocellular Carcinoma Prevalence and Therapeutic Outcomes. Cancer Rep. 2023, 6 (Suppl. S1), e1821. [Google Scholar] [CrossRef]
- Chen, W.; Chiang, C.L.; Dawson, L.A. Efficacy and Safety of Radiotherapy for Primary Liver Cancer. Chin. Clin. Oncol. 2021, 10, 9. [Google Scholar] [CrossRef]
- Barnard Giustini, A.; Ioannou, G.N.; Sirlin, C.; Loomba, R. Review Article: Available Modalities for Screening and Imaging Diagnosis of Hepatocellular Carcinoma-Current Gaps and Challenges. Aliment. Pharmacol. Ther. 2023, 57, 1056–1065. [Google Scholar] [CrossRef] [PubMed]
- Chaiteerakij, R.; Addissie, B.D.; Roberts, L.R. Update on Biomarkers of Hepatocellular Carcinoma. Clin. Gastroenterol. Hepatol. 2015, 13, 237–245. [Google Scholar] [CrossRef]
- Ma, J.; Jin, J.; Lu, H.; Zhang, J.; Li, Y.; Cai, X. Exonuclease 1 Is a Potential Diagnostic and Prognostic Biomarker in Hepatocellular Carcinoma. Front. Mol. Biosci. 2022, 9, 889414. [Google Scholar] [CrossRef]
- Fares, S.; Wehrle, C.J.; Hong, H.; Sun, K.; Jiao, C.; Zhang, M.; Gross, A.; Allkushi, E.; Uysal, M.; Kamath, S.; et al. Emerging and Clinically Accepted Biomarkers for Hepatocellular Carcinoma. Cancers 2024, 16, 1453. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, R.; Mitra, A. An Overview of Effective Therapies and Recent Advances in Biomarkers for Chronic Liver Diseases and Associated Liver Cancer. Int. Immunopharmacol. 2015, 24, 335–345. [Google Scholar] [CrossRef]
- Miller, K.D.; Ortiz, A.P.; Pinheiro, P.S.; Bandi, P.; Minihan, A.; Fuchs, H.E.; Tyson, D.M.; Tortolero-Luna, G.; Fedewa, S.A.; Jemal, A.M.; et al. Cancer Statistics for the Us Hispanic/Latino Population, 2021. CA Cancer J. Clin. 2021, 71, 466–487. [Google Scholar] [CrossRef] [PubMed]
- Guo, A.; Pomenti, S.; Wattacheril, J. Health Disparities in Screening, Diagnosis, and Treatment of Hepatocellular Carcinoma. Clin. Liver Dis. 2021, 17, 353–358. [Google Scholar] [CrossRef]
- Li, D.Y.; VoPham, T.; Tang, M.C.; Li, C.I. Disparities in Risk of Advanced-Stage Liver Cancer and Mortality by Race and Ethnicity. J. Natl. Cancer Inst. 2022, 114, 1238–1245. [Google Scholar] [CrossRef]
- Zavala, V.A.; Bracci, P.M.; Carethers, J.M.; Carvajal-Carmona, L.; Coggins, N.B.; Cruz-Correa, M.R.; Davis, M.; de Smith, A.J.; Dutil, J.; Figueiredo, J.C.; et al. Cancer Health Disparities in Racial/Ethnic Minorities in the United States. Br. J. Cancer 2021, 124, 315–332. [Google Scholar] [CrossRef]
- Kim, N.J.; Cravero, A.; VoPham, T.; Vutien, P.; Carr, R.; Issaka, R.B.; Johnston, J.; McMahon, B.; Mera, J.; Ioannou, G.N. Addressing Racial and Ethnic Disparities in Us Liver Cancer Care. Hepatol. Commun. 2023, 7, e00190. [Google Scholar] [CrossRef] [PubMed]
- Barzi, A.; Zhou, K.; Wang, S.; Dodge, J.L.; El-Khoueiry, A.; Setiawan, V.W. Etiology and Outcomes of Hepatocellular Carcinoma in an Ethnically Diverse Population: The Multiethnic Cohort. Cancers 2021, 13, 3476. [Google Scholar] [CrossRef] [PubMed]
- Ladhani, S.; Ohri, A.; Wong, R.J. Disparities in Hepatocellular Carcinoma Surveillance: Dissecting the Roles of Patient, Provider, and Health System Factors. J. Clin. Gastroenterol. 2020, 54, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.S.; Hansen, R.M.; Gray, M.E.; Massoud, O.I.; McGuire, B.M.; Shoreibah, M.G. Hepatocellular Carcinoma Surveillance: An Evidence-Based Approach. World J. Gastroenterol. 2019, 25, 1550–1559. [Google Scholar] [CrossRef] [PubMed]
- Monge, C.; Maldonado, J.A.; McGlynn, K.A.; Greten, T.F. Hispanic Individuals Are Underrepresented in Phase Iii Clinical Trials for Advanced Liver Cancer in the United States. J. Hepatocell. Carcinoma 2023, 10, 1223–1235. [Google Scholar] [CrossRef] [PubMed]
- Bteich, F.; Desai, K.; Zhang, C.; Kaur, A.; Levy, R.A.; Bioh, L.; Wang, A.; Sultana, S.; Kaubisch, A.; Kinkhabwala, M.; et al. Tow, and Y. Saenger. Immunotherapy Efficacy in Advanced Hepatocellular Carcinoma in a Diverse and Underserved Population in the United States. J. Hepatocell. Carcinoma 2024, 11, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Khamis, Z.I.; Pang, X.; Cui, Z.; Sang, Q.A.; Zhang, J. Cytochrome P450-2d6: A Novel Biomarker in Liver Cancer Health Disparity. PLoS ONE 2021, 16, e0257072. [Google Scholar] [CrossRef]
- Jiao, J.; Sanchez, J.I.; Thompson, E.J.; Mao, X.; McCormick, J.B.; Fisher-Hoch, S.P.; Futreal, P.A.; Zhang, J.; Beretta, L. Somatic Mutations in Circulating Cell-Free DNA and Risk for Hepatocellular Carcinoma in Hispanics. Int. J. Mol. Sci. 2021, 22, 7411. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.; Wang, Y.; Wang, P.; Chen, K.; Wang, M.; Zeng, H.; Lu, J.; Song, Q.; Diplas, B.H.; Tan, D. Detection of Early-Stage Hepatocellular Carcinoma in Asymptomatic Hbsag-Seropositive Individuals by Liquid Biopsy. Proc. Natl. Acad. Sci. USA 2019, 116, 6308–6312. [Google Scholar] [CrossRef]
- Vidal, A.C.; Moylan, C.A.; Wilder, J.; Grant, D.J.; Murphy, S.K.; Hoyo, C. Racial Disparities in Liver Cancer: Evidence for a Role of Environmental Contaminants and the Epigenome. Front. Oncol. 2022, 12, 959852. [Google Scholar] [CrossRef]
- Rodriguez, J.E.; Campbell, K.M. Racial and Ethnic Disparities in Prevalence and Care of Patients with Type 2 Diabetes. Clin. Diabetes 2017, 35, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Tufano, A.; Perdona, S.; Viscuso, P.; Frisenda, M.; Canale, V.; Rossi, A.; Del Prete, P.; Passaro, F.; Calarco, A. The Impact of Ethnicity and Age on Distribution of Metastases in Patients with Upper Tract Urothelial Carcinoma: Analysis of Seer Data. Biomedicines 2023, 11, 1943. [Google Scholar] [CrossRef] [PubMed]
- Su, F.; Chen, K.; Liang, Z.; Qu, S.; Li, L.; Chen, L.; Yang, Y.; Wu, C.; Liang, X.; Zhu, X. Survival Benefit of Higher Fraction Dose Delivered by Three-Dimensional Conformal Radiotherapy in Hepatocellular Carcinoma Smaller Than 10 Cm in Size. Cancer Manag. Res. 2019, 11, 3791–3799. [Google Scholar] [CrossRef] [PubMed]
- Ulger, S.; Cetin, E.; Catli, S.; Sarac, H.; Kilic, D.; Bora, H. Intensity-Modulated Radiation Therapy Improves the Target Coverage over 3-D Planning While Meeting Lung Tolerance Doses for All Patients with Malignant Pleural Mesothelioma. Technol. Cancer Res. Treat 2017, 16, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.M.; Hsu, W.C.; Chung, N.N.; Chang, F.L.; Fogliata, A.; Cozzi, L. Radiotherapy with Volumetric Modulated Arc Therapy for Hepatocellular Carcinoma Patients Ineligible for Surgery or Ablative Treatments. Strahlenther. Onkol. 2013, 189, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Wahl, D.R.; Stenmark, M.H.; Tao, Y.; Pollom, E.L.; Caoili, E.M.; Lawrence, T.S.; Schipper, M.J.; Feng, M. Outcomes after Stereotactic Body Radiotherapy or Radiofrequency Ablation for Hepatocellular Carcinoma. J. Clin. Oncol. 2016, 34, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Rangamuwa, K.; Leong, T.; Weeden, C.; Asselin-Labat, M.L.; Bozinovski, S.; Christie, M.; John, T.; Antippa, P.; Irving, L.; Steinfort, D. Thermal Ablation in Non-Small Cell Lung Cancer: A Review of Treatment Modalities and the Evidence for Combination with Immune Checkpoint Inhibitors. Transl. Lung Cancer Res. 2021, 10, 2842–2857. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Yang, H.; Xu, X.; Ruan, J.; Liang, M.; Wu, J.; Luo, B. Effect of a Hypoxic Microenvironment after Radiofrequency Ablation on Residual Hepatocellular Cell Migration and Invasion. Cancer Sci. 2017, 108, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Ghanaati, H.; Mohammadifard, M.; Mohammadifard, M. A Review of Applying Transarterial Chemoembolization (Tace) Method for Management of Hepatocellular Carcinoma. J. Fam. Med. Prim. Care 2021, 10, 3553–3560. [Google Scholar]
- Chuang, V.P.; Wallace, S.; Soo, C.S.; Charnsangavej, C.; Bowers, T. Therapeutic Ivalon Embolization of Hepatic Tumors. Am. J. Roentgenol. 1982, 138, 289–294. [Google Scholar] [CrossRef]
- Gunji, T.; Kawauchi, N.; Ohnishi, S.; Ishikawa, T.; Nakagama, H.; Kaneko, T.; Moriyama, T.; Matsuhashi, N.; Yazaki, Y.; Imawari, M. Treatment of Hepatocellular Carcinoma Associated with Advanced Cirrhosis by Transcatheter Arterial Chemoembolization Using Autologous Blood Clot: A Preliminary Report. Hepatology 1992, 15, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Elshaarawy, O.; Gomaa, A.; Omar, H.; Rewisha, E.; Waked, I. Intermediate Stage Hepatocellular Carcinoma: A Summary Review. J. Hepatocell. Carcinoma 2019, 6, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Jeong, S.W.; Jang, J.Y.; Kim, Y.J. Recent Updates of Transarterial Chemoembolilzation in Hepatocellular Carcinoma. Int. J. Mol. Sci. 2020, 21, 8165. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.M.; Lim, Y.S.; Won, H.J.; Kim, J.H.; Kim, K.M.; Lee, H.C.; Chung, Y.H.; Lee, Y.S.; Lee, S.G.; Park, J.H.; et al. Radiotherapy Plus Transarterial Chemoembolization for Hepatocellular Carcinoma Invading the Portal Vein: Long-Term Patient Outcomes. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 2004–2011. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.K.H.; Irvine, A.F.; Jones, R.L.; Samson, A. Immunotherapies for Hepatocellular Carcinoma. Cancer Med. 2022, 11, 571–591. [Google Scholar] [CrossRef] [PubMed]
- Kelley, R.K.; Sangro, B.; Harris, W.; Ikeda, M.; Okusaka, T.; Kang, Y.K.; Qin, S.; Tai, D.W.; Lim, H.Y.; Yau, T.; et al. Safety, Efficacy, and Pharmacodynamics of Tremelimumab Plus Durvalumab for Patients with Unresectable Hepatocellular Carcinoma: Randomized Expansion of a Phase I/Ii Study. J. Clin. Oncol. 2021, 39, 2991–3001. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.; Kang, Y.K.; Kim, T.Y.; El-Khoueiry, A.B.; Santoro, A.; Sangro, B.; Melero, I.; Kudo, M.; Hou, M.M.; Matilla, A.; et al. Efficacy and Safety of Nivolumab Plus Ipilimumab in Patients with Advanced Hepatocellular Carcinoma Previously Treated with Sorafenib: The Checkmate 040 Randomized Clinical Trial. JAMA Oncol. 2020, 6, e204564. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.; Park, J.W.; Finn, R.S.; Cheng, A.L.; Mathurin, P.; Edeline, J.; Kudo, M.; Harding, J.J.; Merle, P.; Rosmorduc, O.; et al. Nivolumab Versus Sorafenib in Advanced Hepatocellular Carcinoma (Checkmate 459): A Randomised, Multicentre, Open-Label, Phase 3 Trial. Lancet Oncol. 2022, 23, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Hoseini, S.S.; Cheung, N.V. Immunotherapy of Hepatocellular Carcinoma Using Chimeric Antigen Receptors and Bispecific Antibodies. Cancer Lett. 2017, 399, 44–52. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Mbrave150 Investigators. Atezolizumab Plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- Mandlik, D.S.; Mandlik, S.K.; Choudhary, H.B. Immunotherapy for Hepatocellular Carcinoma: Current Status and Future Perspectives. World J. Gastroenterol. 2023, 29, 1054–1075. [Google Scholar] [CrossRef]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.Y.; Choo, S.P.; Trojan, J.; Welling, T.H.R.; et al. Nivolumab in Patients with Advanced Hepatocellular Carcinoma (Checkmate 040): An Open-Label, Non-Comparative, Phase 1/2 Dose Escalation and Expansion Trial. Lancet 2017, 389, 2492–2502. [Google Scholar] [CrossRef]
- Graziani, G.; Tentori, L.; Navarra, P. Ipilimumab: A Novel Immunostimulatory Monoclonal Antibody for the Treatment of Cancer. Pharmacol. Res. 2012, 65, 9–22. [Google Scholar] [CrossRef]
- Oweida, A.; Hararah, M.K.; Phan, A.; Binder, D.; Bhatia, S.; Lennon, S.; Bukkapatnam, S.; Van Court, B.; Uyanga, N.; Darragh, L.; et al. Resistance to Radiotherapy and Pd-L1 Blockade Is Mediated by Tim-3 Upregulation and Regulatory T-Cell Infiltration. Clin. Cancer Res. 2018, 24, 5368–5380. [Google Scholar] [CrossRef]
- Huang, R.Y.; Francois, A.; McGray, A.R.; Miliotto, A.; Odunsi, K. Compensatory Upregulation of Pd-1, Lag-3, and Ctla-4 Limits the Efficacy of Single-Agent Checkpoint Blockade in Metastatic Ovarian Cancer. Oncoimmunology 2017, 6, e1249561. [Google Scholar] [CrossRef]
- Maj, T.; Wang, W.; Crespo, J.; Zhang, H.; Wang, W.; Wei, S.; Zhao, L.; Vatan, L.; Shao, I.; Szeliga, W.; et al. Oxidative Stress Controls Regulatory T Cell Apoptosis and Suppressor Activity and Pd-L1-Blockade Resistance in Tumor. Nat. Immunol. 2017, 18, 1332–1341. [Google Scholar] [CrossRef]
- Ganeeva, I.; Zmievskaya, E.; Valiullina, A.; Kudriaeva, A.; Miftakhova, R.; Rybalov, A.; Bulatov, E. Recent Advances in the Development of Bioreactors for Manufacturing of Adoptive Cell Immunotherapies. Bioengineering 2022, 9, 808. [Google Scholar] [CrossRef]
- Ma, W.; Wu, L.; Zhou, F.; Hong, Z.; Yuan, Y.; Liu, Z. T Cell-Associated Immunotherapy for Hepatocellular Carcinoma. Cell. Physiol. Biochem. 2017, 41, 609–622. [Google Scholar] [CrossRef]
- Li, D.; Qin, J.; Zhou, T.; Li, Y.; Cheng, X.; Chen, Z.; Chen, J.; Zheng, W.V. Bispecific Gpc3/Pd-1 Car-T Cells for the Treatment of Hcc. Int. J. Oncol. 2023, 62, 53. [Google Scholar] [CrossRef]
- Sun, B.; Yang, D.; Dai, H.; Liu, X.; Jia, R.; Cui, X.; Li, W.; Cai, C.; Xu, J.; Zhao, X. Eradication of Hepatocellular Carcinoma by Nkg2d-Based Car-T Cells. Cancer Immunol. Res. 2019, 7, 1813–1823. [Google Scholar] [CrossRef]
- Zhang, G.; Ji, G.; Liu, L.; Wang, H.; Ren, Z.; Sun, R.; Yu, Z. The Tumor Microenvironment of Hepatocellular Carcinoma and Its Targeting Strategy by Car-T Cell Immunotherapy. Front. Endocrinol. 2022, 13, 918869. [Google Scholar]
- Manfredi, G.F.; Celsa, C.; John, C.; Jones, C.; Acuti, N.; Scheiner, B.; Fulgenzi, C.A.M.; Korolewicz, J.; Pinter, M.; Gennari, A.; et al. Mechanisms of Resistance to Immunotherapy in Hepatocellular Carcinoma. J. Hepatocell. Carcinoma 2023, 10, 1955–1971. [Google Scholar] [CrossRef]
- Myers, J.A.; Miller, J.S. Exploring the Nk Cell Platform for Cancer Immunotherapy. Nat. Rev. Clin. Oncol. 2021, 18, 85–100. [Google Scholar] [CrossRef]
- Abel, A.M.; Yang, C.; Thakar, M.S.; Malarkannan, S. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front. Immunol. 2018, 9, 1869. [Google Scholar] [CrossRef]
- Boles, K.S.; Nakajima, H.; Colonna, M.; Chuang, S.S.; Stepp, S.E.; Bennett, M.; Kumar, V.; Mathew, P.A. Molecular Characterization of a Novel Human Natural Killer Cell Receptor Homologous to Mouse 2b4. Tissue Antigens 1999, 54, 27–34. [Google Scholar] [CrossRef]
- Cheng, M.; Chen, Y.; Xiao, W.; Sun, R.; Tian, Z. Nk Cell-Based Immunotherapy for Malignant Diseases. Cell Mol. Immunol. 2013, 10, 230–252. [Google Scholar] [CrossRef]
- Boles, K.S.; Stepp, S.E.; Bennett, M.; Kumar, V.; Mathew, P.A. 2b4 (Cd244) and Cs1: Novel Members of the Cd2 Subset of the Immunoglobulin Superfamily Molecules Expressed on Natural Killer Cells and Other Leukocytes. Immunol. Rev. 2001, 181, 234–249. [Google Scholar] [CrossRef]
- Buller, C.W.; Mathew, P.A.; Mathew, S.O. Roles of Nk Cell Receptors 2b4 (Cd244), Cs1 (Cd319), and Llt1 (Clec2d) in Cancer. Cancers 2020, 12, 1755. [Google Scholar] [CrossRef]
- Allison, M.; Mathews, J.; Gilliland, T.; Mathew, S.O. Natural Killer Cell-Mediated Immunotherapy for Leukemia. Cancers 2022, 14, 843. [Google Scholar] [CrossRef]
- Powers, S.B.; Ahmed, N.G.; Jose, R.; Brezgiel, M.; Aryal, S.; Bowman, W.P.; Mathew, P.A.; Mathew, S.O. Differential Expression of Llt1, Slam Receptors Cs1 and 2b4 and Ncr Receptors Nkp46 and Nkp30 in Pediatric Acute Lymphoblastic Leukemia (All). Int. J. Mol. Sci. 2023, 24, 3860. [Google Scholar] [CrossRef]
- Sung, P.S.; Jang, J.W. Natural Killer Cell Dysfunction in Hepatocellular Carcinoma: Pathogenesis and Clinical Implications. Int. J. Mol. Sci. 2018, 19, 3648. [Google Scholar] [CrossRef]
- Wagner, J.; Pfannenstiel, V.; Waldmann, A.; Bergs, J.W.J.; Brill, B.; Huenecke, S.; Klingebiel, T.; Rodel, F.; Buchholz, C.J.; Wels, W.S.; et al. A Two-Phase Expansion Protocol Combining Interleukin (Il)-15 and Il-21 Improves Natural Killer Cell Proliferation and Cytotoxicity against Rhabdomyosarcoma. Front. Immunol. 2017, 8, 676. [Google Scholar] [CrossRef]
- Saetersmoen, M.L.; Hammer, Q.; Valamehr, B.; Kaufman, D.S.; Malmberg, K.J. Off-the-Shelf Cell Therapy with Induced Pluripotent Stem Cell-Derived Natural Killer Cells. Semin. Immunopathol. 2019, 41, 59–68. [Google Scholar] [CrossRef]
- Niu, Z.; Wu, J.; Zhao, Q.; Zhang, J.; Zhang, P.; Yang, Y. Car-Based Immunotherapy for Breast Cancer: Peculiarities, Ongoing Investigations, and Future Strategies. Front. Immunol. 2024, 15, 1385571. [Google Scholar] [CrossRef]
- Portillo, A.L.; Hogg, R.; Poznanski, S.M.; Rojas, E.A.; Cashell, N.J.; Hammill, J.A.; Chew, M.V.; Shenouda, M.M.; Ritchie, T.M.; Cao, Q.T.; et al. Expanded Human Nk Cells Armed with Car Uncouple Potent Anti-Tumor Activity from Off-Tumor Toxicity against Solid Tumors. iScience 2021, 24, 102619. [Google Scholar] [CrossRef]
- Yoon, J.H.; Yoon, H.N.; Kang, H.J.; Yoo, H.; Choi, M.J.; Chung, J.Y.; Seo, M.; Kim, M.; Lim, S.O.; Kim, Y.J.; et al. Empowering Pancreatic Tumor Homing with Augmented Anti-Tumor Potency of Cxcr2-Tethered Car-Nk Cells. Mol. Ther. Oncol. 2024, 32, 200777. [Google Scholar] [CrossRef]
- Hadiloo, K.; Tahmasebi, S.; Esmaeilzadeh, A. Car-Nkt Cell Therapy: A New Promising Paradigm of Cancer Immunotherapy. Cancer Cell Int. 2023, 23, 86. [Google Scholar] [CrossRef]
- Wolf, B.J.; Choi, J.E.; Exley, M.A. Novel Approaches to Exploiting Invariant Nkt Cells in Cancer Immunotherapy. Front. Immunol. 2018, 9, 384. [Google Scholar] [CrossRef]
- Lee, P.T.; Benlagha, K.; Teyton, L.; Bendelac, A. Distinct Functional Lineages of Human V(Alpha)24 Natural Killer T Cells. J. Exp. Med. 2002, 195, 637–641. [Google Scholar] [CrossRef]
- Zhang, H.; Bai, L. Challenges of Inkt Cell-Based Antitumor Immunotherapies. Cell. Mol. Immunol. 2021, 18, 1077–1078. [Google Scholar] [CrossRef]
- Fu, S.; He, K.; Tian, C.; Sun, H.; Zhu, C.; Bai, S.; Liu, J.; Wu, Q.; Xie, D.; Yue, T.; et al. Impaired Lipid Biosynthesis Hinders Anti-Tumor Efficacy of Intratumoral Inkt Cells. Nat. Commun. 2020, 11, 438. [Google Scholar] [CrossRef]
- Simon, B.; Wiesinger, M.; Marz, J.; Wistuba-Hamprecht, K.; Weide, B.; Schuler-Thurner, B.; Schuler, G.; Dorrie, J.; Uslu, U. The Generation of Car-Transfected Natural Killer T Cells for the Immunotherapy of Melanoma. Int. J. Mol. Sci. 2018, 19, 2365. [Google Scholar] [CrossRef]
- Heczey, A.; Liu, D.; Tian, G.; Courtney, A.N.; Wei, J.; Marinova, E.; Gao, X.; Guo, L.; Yvon, E.; Hicks, J.; et al. Metelitsa. Invariant Nkt Cells with Chimeric Antigen Receptor Provide a Novel Platform for Safe and Effective Cancer Immunotherapy. Blood 2014, 124, 2824–2833. [Google Scholar] [CrossRef]
- Li, Y.R.; Zhou, Y.; Yu, J.; Zhu, Y.; Lee, D.; Zhu, E.; Li, Z.; Kim, Y.J.; Zhou, K.; Fang, Y.; et al. Engineering Allorejection-Resistant Car-Nkt Cells from Hematopoietic Stem Cells for Off-the-Shelf Cancer Immunotherapy. Mol. Ther. 2024, 32, 1849–1874. [Google Scholar] [CrossRef]
- Fasano, R.; Shadbad, M.A.; Brunetti, O.; Argentiero, A.; Calabrese, A.; Nardulli, P.; Calbi, R.; Baradaran, B.; Silvestris, N. Immunotherapy for Hepatocellular Carcinoma: New Prospects for the Cancer Therapy. Life 2021, 11, 1355. [Google Scholar] [CrossRef]
- Lurje, I.; Hammerich, L.; Tacke, F. Dendritic Cell and T Cell Crosstalk in Liver Fibrogenesis and Hepatocarcinogenesis: Implications for Prevention and Therapy of Liver Cancer. Int. J. Mol. Sci. 2020, 21, 7378. [Google Scholar] [CrossRef]
- Bachem, A.; Guttler, S.; Hartung, E.; Ebstein, F.; Schaefer, M.; Tannert, A.; Salama, A.; Movassaghi, K.; Opitz, C.; Mages, H.W.; et al. Superior Antigen Cross-Presentation and Xcr1 Expression Define Human Cd11c+Cd141+ Cells as Homologues of Mouse Cd8+ Dendritic Cells. J. Exp. Med. 2010, 207, 1273–1281. [Google Scholar] [CrossRef]
- He, G.; Zheng, C.; Huo, H.; Zhang, H.; Zhu, Z.; Li, J.; Zhang, H. Tace Combined with Dendritic Cells and Cytokine-Induced Killer Cells in the Treatment of Hepatocellular Carcinoma: A Meta-Analysis. Int. Immunopharmacol. 2016, 40, 436–442. [Google Scholar] [CrossRef]
- Heo, J.; Reid, T.; Ruo, L.; Breitbach, C.J.; Rose, S.; Bloomston, M.; Cho, M.; Lim, H.Y.; Chung, H.C.; Kim, C.W.; et al. Randomized Dose-Finding Clinical Trial of Oncolytic Immunotherapeutic Vaccinia Jx-594 in Liver Cancer. Nat. Med. 2013, 19, 329–336. [Google Scholar] [CrossRef]
- Sawada, Y.; Yoshikawa, T.; Nobuoka, D.; Shirakawa, H.; Kuronuma, T.; Motomura, Y.; Mizuno, S.; Ishii, H.; Nakachi, K.; Konishi, M.; et al. Phase I Trial of a Glypican-3-Derived Peptide Vaccine for Advanced Hepatocellular Carcinoma: Immunologic Evidence and Potential for Improving Overall Survival. Clin. Cancer Res. 2012, 18, 3686–3696. [Google Scholar] [CrossRef]
- Tojjari, A.; Saeed, A.; Singh, M.; Cavalcante, L.; Sahin, I.H.; Saeed, A. A Comprehensive Review on Cancer Vaccines and Vaccine Strategies in Hepatocellular Carcinoma. Vaccines 2023, 11, 1357. [Google Scholar] [CrossRef]
- Jeng, L.B.; Liao, L.Y.; Shih, F.Y.; Teng, C.F. Dendritic-Cell-Vaccine-Based Immunotherapy for Hepatocellular Carcinoma: Clinical Trials and Recent Preclinical Studies. Cancers 2022, 14, 4380. [Google Scholar] [CrossRef]
- Wang, X.; Bayer, M.E.; Chen, X.; Fredrickson, C.; Cornforth, A.N.; Liang, G.; Cannon, J.; He, J.; Fu, Q.; Liu, J.; et al. Phase I Trial of Active Specific Immunotherapy with Autologous Dendritic Cells Pulsed with Autologous Irradiated Tumor Stem Cells in Hepatitis B-Positive Patients with Hepatocellular Carcinoma. J. Surg. Oncol. 2015, 111, 862–867. [Google Scholar] [CrossRef]
- Yang, M.; Chen, W.; Gupta, D.; Mei, C.; Yang, Y.; Zhao, B.; Qiu, L.; Chen, J. Nanoparticle/Engineered Bacteria Based Triple-Strategy Delivery System for Enhanced Hepatocellular Carcinoma Cancer Therapy. Int. J. Nanomed. 2024, 19, 3827–3846. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Li, J.; Liu, Z.; Xie, H.; Wei, X.; Lu, D.; Zhuang, R.; Xu, X.; Zheng, S. Irgd-Decorated Polymeric Nanoparticles for the Efficient Delivery of Vandetanib to Hepatocellular Carcinoma: Preparation and in Vitro and in Vivo Evaluation. ACS Appl. Mater Interfaces 2016, 8, 19228–19237. [Google Scholar] [CrossRef]
- Chau, N.G.; Haddad, R.I. Vandetanib for the Treatment of Medullary Thyroid Cancer. Clin. Cancer Res. 2013, 19, 524–529. [Google Scholar] [CrossRef]
- Ghazarian, M.; Revelo, X.S.; Nohr, M.K.; Luck, H.; Zeng, K.; Lei, H.; Tsai, S.; Schroer, S.A.; Park, Y.J.; Chng, M.H.Y.; et al. Type I Interferon Responses Drive Intrahepatic T Cells to Promote Metabolic Syndrome. Sci. Immunol. 2017, 2, eaai7616. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Liu, S.; Yang, M. Regulatory T Cells and Their Associated Factors in Hepatocellular Carcinoma Development and Therapy. World J. Gastroenterol. 2022, 28, 3346–3358. [Google Scholar] [CrossRef]
- He, B.; Wu, L.; Xie, W.; Shao, Y.; Jiang, J.; Zhao, Z.; Yan, M.; Chen, Z.; Cui, D. The Imbalance of Th17/Treg Cells Is Involved in the Progression of Nonalcoholic Fatty Liver Disease in Mice. BMC Immunol. 2017, 18, 33. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, Z.; Chen, J.; Chen, X.; Huang, L.; Zhang, X.; Huang, X.; Ma, N.; Xu, W.; Yi, X.; et al. A Novel Engineered Il-21 Receptor Arms T-Cell Receptor-Engineered T Cells (Tcr-T Cells) against Hepatocellular Carcinoma. Signal. Transduct. Target Ther. 2024, 9, 101. [Google Scholar] [CrossRef]
- Sadagopan, N.; He, A.R. Recent Progress in Systemic Therapy for Advanced Hepatocellular Carcinoma. Int. J. Mol. Sci. 2024, 25, 1259. [Google Scholar] [CrossRef]
Ongoing Clinical Trials of Immune Checkpoint Inhibitors | |||
---|---|---|---|
NCT Number | Immune Checkpoint Inhibitors | Phase | Recruitment Status |
NCT04696055 | Pembrolizumab + Regorafenib | Completed | Completed |
NCT05178043 | Nivolumab + GT90001 | Phase II | Active; Not recruiting |
NCT05048017 | Regorafenib + PDL1 inhibitor | Phase II | Recruiting |
NCT04183088 | Tislelizumab + Regorafenib | Phase II | Recruiting |
NCT05086692 | MDNA11 + ICI | Phase I & II | Recruiting |
NCT04050462 | Nivolumab + Cabiralizumab + BMS-986253 | Phase II | Active; Not recruiting |
NCT03893695 | GT90001 + Nivolumab | Completed | Completed |
NCT03682276 | Ipilimumab + Nivolumab | Phase I & II | Recruiting |
NCT05257590 | Nivolumab + CVM-1118 | Phase II | Recruiting |
NCT04567615 | Nivolumab + Relatlimab | Phase II | Active; Not recruiting |
NCT03841201 | Lenvatinib + Nivolumab | Completed | Completed |
NCT01658878 | Nivolumab + Ipilimumab + Sorafenib + Cabozantinib | Phase I & II | Active; Not recruiting |
NCT04039607 | Nivolumab + Ipilimumab + Sorafenib + Lentvatinib | Phase III | Active; Not recruiting |
NCT04170556 | Regorafenib + Nivolumab | Phase I & II | Active; Not recruiting |
NCT03539822 | Cabozantinib + Durvalumab + Tremelimumab | Phase I & II | Active; Not recruiting |
NCT04102098 | Atezolizumab + Bevacizumab | Phase III | Active; Not recruiting |
NCT04912765 | Neoantigen + Dendritic cell vector + Nivolumab | Phase II | Recruiting |
NCT03829436 | TPST-1120 + Nivolumab | Phase I & II | Completed |
NCT03170960 | Cabozantinib + Atezolizumab | Phase I & II | Active; Not recruiting |
NCT05176483 | XL092 + Nivolumab + Ipilimumab + Relatlimab | Phase I | Recruiting |
NCT05337137 | Relatlimab + Nivolumab + Bevacizumab | Phase I & II | Recruiting |
NCT03439891 | Nivolumab + Sorafenib | Phase II | Active; Not recruiting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, A.; Mathew, S.O. Racial/Ethnic Disparities and Immunotherapeutic Advances in the Treatment of Hepatocellular Carcinoma. Cancers 2024, 16, 2446. https://doi.org/10.3390/cancers16132446
Garcia A, Mathew SO. Racial/Ethnic Disparities and Immunotherapeutic Advances in the Treatment of Hepatocellular Carcinoma. Cancers. 2024; 16(13):2446. https://doi.org/10.3390/cancers16132446
Chicago/Turabian StyleGarcia, Alexsis, and Stephen O. Mathew. 2024. "Racial/Ethnic Disparities and Immunotherapeutic Advances in the Treatment of Hepatocellular Carcinoma" Cancers 16, no. 13: 2446. https://doi.org/10.3390/cancers16132446
APA StyleGarcia, A., & Mathew, S. O. (2024). Racial/Ethnic Disparities and Immunotherapeutic Advances in the Treatment of Hepatocellular Carcinoma. Cancers, 16(13), 2446. https://doi.org/10.3390/cancers16132446