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Simple Summary: This study presented an artificial intelligence-based classification emphasizing
error identification and quantification of cellularity and nuclear morphological features in digital
pathological images of common astrocytic tumors. The identification of incorrect predictions was
essential for the subsequent development of better techniques. Quantifying cellularity and nuclear
morphological features brought deeper insights into neoplastic morphology and paved the way
for further development of a scoring system for objective classification and precision diagnosis to
improve interobserver variations.

Abstract: Interobserver variations in the pathology of common astrocytic tumors impact diagnosis
and subsequent treatment decisions. This study leveraged a residual neural network-50 (ResNet-50)
in digital pathological images of diffuse astrocytoma, anaplastic astrocytoma, and glioblastoma
to recognize characteristic pathological features and perform classification at the patch and case
levels with identification of incorrect predictions. In addition, cellularity and nuclear morphological
features, including axis ratio, circularity, entropy, area, irregularity, and perimeter, were quantified via
a hybrid task cascade (HTC) framework and compared between different characteristic pathological
features with importance weighting. A total of 95 cases, including 15 cases of diffuse astrocytoma,
11 cases of anaplastic astrocytoma, and 69 cases of glioblastoma, were collected in Taiwan Hualien
Tzu Chi Hospital from January 2000 to December 2021. The results revealed that an optimized
ResNet-50 model could recognize characteristic pathological features at the patch level and assist
in diagnosis at the case level with accuracies of 0.916 and 0.846, respectively. Incorrect predictions
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were mainly due to indistinguishable morphologic overlap between anaplastic astrocytoma and
glioblastoma tumor cell area, zones of scant vascular lumen with compact endothelial cells in the
glioblastoma microvascular proliferation area mimicking the glioblastoma tumor cell area, and certain
regions in diffuse astrocytoma with too low cellularity being misrecognized as the glioblastoma
necrosis area. Significant differences were observed in cellularity and each nuclear morphological
feature among different characteristic pathological features. Furthermore, using the extreme gradient
boosting (XGBoost) algorithm, we found that entropy was the most important feature for classification,
followed by cellularity, area, circularity, axis ratio, perimeter, and irregularity. Identifying incorrect
predictions provided valuable feedback to machine learning design to further enhance accuracy and
reduce errors in classification. Moreover, quantifying cellularity and nuclear morphological features
with importance weighting provided the basis for developing an innovative scoring system to achieve
objective classification and precision diagnosis among common astrocytic tumors.

Keywords: digital pathological images; diffuse astrocytoma; anaplastic astrocytoma; glioblastoma;
deep residual learning; residual neural network; hybrid task cascade; quantification; cellularity;
nuclear morphological feature

1. Introduction

The astrocytic tumor is the major type of glioma, which includes glioblastoma, anaplas-
tic astrocytoma, diffuse astrocytoma, and other rare subtypes [1–4]. Each subtype is charac-
terized by specific pathological features and is assigned to one of four grades (grades I to IV)
according to the World Health Organization (WHO) classification based on tumor behavior
and prognosis [3,4]. Glioblastoma is categorized as grade IV, anaplastic astrocytoma as
grade III, and diffuse astrocytoma as grade II [3,4]. Currently, pathologists perform classifi-
cation subjectively, but the task remains challenging due to interobserver variations [5,6].
Interobserver variations can affect the accuracy of diagnosis and subsequent treatment
decisions [6]. Recently, the superior performance of artificial intelligence (AI)-assisted ap-
proaches in digital pathological images has been demonstrated, including target detection,
counting, grading, and classification of various diseases [7–13]. Further, cellularity and
nuclear morphological features extracted by the instance segmentation technique enable
the classification of diseases and the discovery of prognostic factors [14–18].

Nowadays, the deep residual learning algorithm is the main strategy for image recog-
nition [19]. It is an advanced machine learning technique with a residual neural network
(ResNet) to address the degradation problem in conventional deep neural networks [19].
Some research applying different AI models, including deep learning algorithms, in glioma
classification has showcased various performances [20–23]. Moreover, incorrect predic-
tions by AI models have always occurred and have yet to be presented and explained in
previous works [20–23]. Several studies integrating cellularity and nuclear morphologic
features into deep learning models have enhanced glioma classification [17,18]. However,
the quantification or importance weight of the parameters has yet to be presented [17,18].

In the present study, we leveraged a ResNet [19] in digital pathological images of
common astrocytic tumors, specifically the diffuse astrocytoma, anaplastic astrocytoma, and
glioblastoma, to recognize characteristic pathological features and perform classification at
the patch and case levels. The focus is on the identification and presentation of prediction
errors. In addition, we quantified cellularity and nuclear morphological features, including
axis ratio, circularity, entropy, area, irregularity, and perimeter, via a hybrid task cascade
(HTC) framework. Comparisons between different characteristic pathological features
and importance weighting were also performed. The identification of prediction errors
has the potential to enhance the machine learning algorithm’s performance. Furthermore,
measuring cellularity and nuclear morphological features with weighting could aid in
developing a prediction model for common astrocytic tumors.
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2. Materials and Methods
2.1. Cases

Cases of diffuse astrocytoma, anaplastic astrocytoma, and glioblastoma in Taiwan
Hualien Tzu Chi Hospital were collected from January 2000 to December 2021. Two
pathology doctors made and confirmed their pathological diagnoses in routine medical
practice. Each case’s representative pathological hematoxylin-and-eosin-stained (H&E
stain) slide was scanned and transformed into digital pathological images. Then, we anno-
tated the regions of interest (ROIs) for characteristic pathological features. The annotated
ROIs included diffuse astrocytoma, anaplastic astrocytoma, glioblastoma tumor cell area,
glioblastoma microvascular proliferation area, and glioblastoma necrosis area (Figure 1).
The study was approved by the Institutional Review Board of Hualien Tzu Chi Hospital
(approval No. IRB112-255-B).
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cellularity  is  moderately  increased  in  diffuse  astrocytoma,  while  high 
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(H&E stain, all pictures in the same magnification of 200×). 

   

Figure 1. Representative images and the annotated regions of interest (ROIs) included the following:
(A) diffuse astrocytoma showing nuclear atypia of neoplastic astrocytes, (B) anaplastic astrocytoma
in which neoplastic astrocytes show nuclear atypia with anaplasia, (C) glioblastoma tumor cell
area (left), composed of neoplastic astrocytes with nuclear atypia and anaplasia, and microvascular
proliferation (right) with vascular lumen filled with blood cells and lined by endothelial cells, and
(D) glioblastoma necrosis area presenting the contours of dead cells mixed with a small number of
viable cells. The cellularity is moderately increased in diffuse astrocytoma, while high cellularity is
usually presented in anaplastic astrocytoma and glioblastoma. (H&E stain, all pictures in the same
magnification of 200×).

2.2. Application of Deep Residual Learning Model for Classification

To prepare training data for the development of the classification model, we initially
allocated 40% of the digital pathological images to an independent testing set through
random selection. The remaining 60% were subdivided into training and validation sets in
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a 7:3 ratio via random splitting. For each ROI on a slide, we extracted 512 × 512 patches
using a stride of 256. Given the irregularity of the ROIs, we excluded patches in the margin
that had less than a 50% intersection area with an ROI. Then, we optimized a residual neural
network-50 (ResNet-50) [19], a convolutional neural network with a depth of 50 layers and
a residual learning algorithm, with the prepared dataset. The flowchart of this work is
presented in Figure 2. The results are presented using a confusion matrix, in which the
x-axis represents precision and the y-axis represents recall, at the patch and case levels,
respectively. 
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Figure 2. The flowchart for applying residual neural network-50 (ResNet-50) to 

predict  characteristic  pathological  features. Regions  of  interest  (ROIs) were 

annotated on digital pathological images, and 512 × 512 patches were extracted 

from ROIs by using a stride of 256. Residual neural network-50 (ResNet-50) was 

utilized to generate predictions. 

   

Figure 2. The flowchart for applying residual neural network-50 (ResNet-50) to predict characteristic
pathological features. Regions of interest (ROIs) were annotated on digital pathological images, and
512 × 512 patches were extracted from ROIs by using a stride of 256. Residual neural network-50
(ResNet-50) was utilized to generate predictions.

At the patch level, a bootstrapping strategy [24] was adopted, involving 50 samplings
of the independent testing set to determine the 95% confidence interval (CI) of prediction
results. Two confusion matrices were planned to be presented. One presented all five
annotated characteristic pathological features. Another matrix, with the expectation of
a partially indistinguishable morphological spectrum between anaplastic astrocytoma
and glioblastoma tumor cell area [4], presented four categories in which the anaplastic
astrocytoma and glioblastoma tumor cell area were combined into a single category, the
high-grade astrocytoma tumor cell area.

At the case level, different inclusion criteria for the patch ratio of the predicted char-
acteristic pathological feature to be considered for classification were tested to filter out
minor errors. The criteria we used were 0.00, 0.02, and 0.05. The inclusion criterion of 0.00
meant that any predicted characteristic pathological feature patch ratio was considered
for classification. The inclusion criteria of 0.02 and 0.05 meant that the patch ratios of the
predicted characteristic pathological features could only be considered for classification if
they reached 0.02 and 0.05, respectively.

2.3. Quantification of Cellularity and Nuclear Morphological Features with Importance Weighting

For nucleus detection, we applied a hybrid task cascade (HTC) framework for instance
segmentation [14]. After that, cellularity and nuclear morphological features, including
axis ratio, circularity, entropy, area, irregularity, and perimeter, were evaluated. Cellularity
was the ratio of the area occupied by cells to the total area (Figure 3). Welch’s t-test with
Bonferroni correction [25] was used to test whether the means of cellularity were equal
for all two-group combinations of the characteristic pathological features. A p-value less
than 0.05 is considered statistically significant. For nuclear morphological features, we
measured the lengths of both the long and short axes in each nucleus and calculated
the long-to-short axis ratio. Circularity was determined by the pixel overlap between a
concentric circle and the nucleus. The entropy quantified pixel randomness. The area
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denoted nuclear size in square micrometers. Irregularity represented the length variance
from the nucleus center to each boundary vertex. Perimeter was the estimated total length
along a nuclear boundary in micrometers. The nuclear morphological features are sketched
in Figure 4. For each nuclear morphological feature, four commonly used statistical
moments (mean, variance, skewness, and kurtosis) were computed for comparisons [26,27].
In addition, one-way analysis of variance (ANOVA) [28] was used to test the differences in
each moment of each nuclear morphological feature between the characteristic pathological
features. A p-value less than 0.05 is considered statistically significant. A decision-tree-
based machine learning algorithm, extreme gradient boosting (XGBoost) [29], was applied
to evaluate the importance weights. A bootstrapping strategy [24] was adopted, involving
50 samplings of the independent testing set to determine the 95% confidence interval (CI)
of importance weights. 

3 

 

Figure 3. Examples of cellularity. Cellularity represents the proportion of cell-

occupied area to the overall area. The green boxes indicate the cells detected. 
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Figure 3. Examples of cellularity. Cellularity represents the proportion of cell-occupied area to the overall
area. The green boxes indicate the cells detected. (A) Cellularity of 0.012 and (B) cellularity of 0.081.
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Figure 4. The nuclear morphological features. The attributes we used in the present study and the defini-
tions are as follows: (A) axis ratio, the ratio of the length of the long axis to the short axis; (B) circularity,
the overlapping area between the nucleus and a concentric circle; (C) entropy, the measurement of pixel
randomness; (D) area, the estimated nuclear size in square micrometers; (E) irregularity, the length variance
from the center of a nucleus to each vertex of nuclear boundary; and (F) perimeter, the total length along a
nuclear contour in micrometers.

3. Results
3.1. Data Summary

A total of 95 cases were collected, including 15 cases of diffuse astrocytoma, 11 cases of
anaplastic astrocytoma, and 69 cases of glioblastoma. Among these cases, 39, 17, and 39 were
randomly split into training, validation, and testing sets. The sum of annotated ROIs was
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10,920, producing 61,696 patches of 512 × 512 pixels. The details of cases, ROIs, and patches are
presented in Table 1.

Table 1. Data summary.

Category
Training Validation Testing

Cases ROIs Patches Cases ROIs Patches Cases ROIs Patches

Diffuse astrocytoma 4 729 15,176 3 212 1877 8 833 12,316

Anaplastic astrocytoma 6 1487 3551 2 177 401 3 256 1014

Glioblastoma tumor cell area 2207 7382 515 913 1521 11,653

Glioblastoma necrosis area 29 657 2357 12 1072 2088 28 460 2145

Glioblastoma microvascular proliferation area 423 465 114 126 257 232

Total 39 5503 28,931 17 2090 5405 39 3327 27,360

Abbreviation: ROIs, regions of interest.

3.2. Outcomes of Application of Deep Residual Learning Model for Classification
3.2.1. At the Patch Level

Using ResNet-50 to recognize the characteristic pathological features, the accuracy was
0.916 (95% CI, 0.915–0.916) at the patch level. The details of the results are shown in Figure 5,
in which most patches fell on the diagonal line from upper left to lower right, representing
correct predictions. However, two principal incorrect predictions occurred (marked by gray
background lattices in Figure 5). Around 67.9% of patches from anaplastic astrocytoma were
misrecognized as glioblastoma tumor cell area. In addition, around 38.5% of patches from the
glioblastoma microvascular proliferation area were also misrecognized as glioblastoma tumor
cell area.
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Figure 5. The  confusion  matrix  of  prediction  results  using  ResNet-50  to 
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Figure 5. The confusion matrix of prediction results using ResNet-50 to recognize characteristic
pathological features at the patch level. The accuracy was 0.916 (95% confidence interval, 0.915–0.916).
Most patches were correctly predicted. Two main incorrect predictions (lattices with gray background)
were that partial patches (67.9%) of anaplastic astrocytoma and some patches (38.5%) of glioblastoma
microvascular proliferation area were misrecognized as glioblastoma tumor cell area.
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An accuracy of 0.960 (95% CI, 0.960–0.961) was achieved at the patch level after
combining anaplastic astrocytoma and glioblastoma tumor cell area into a single category
of high-grade astrocytoma tumor cell area (Figure 6). In the confusion matrix, the majority of
patches were correctly predicted. Nevertheless, a main incorrect prediction was presented
(lattice with gray background in Figure 6). Approximately 34.7% of patches from the
glioblastoma microvascular proliferation area were erroneously categorized into high-
grade astrocytoma tumor cell area.
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Figure 6. The  confusion  matrix  of  prediction  results  using  ResNet-50  to 

recognize  diffuse  astrocytoma,  high-grade  astrocytoma  tumor  cell  area, 
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Figure 6. The confusion matrix of prediction results using ResNet-50 to recognize diffuse astrocytoma,
high-grade astrocytoma tumor cell area, glioblastoma necrosis area, and glioblastoma microvascular
proliferation area at the patch level. The accuracy achieved was 0.960 (95% confidence interval,
0.960–0.961). Most patches were correctly predicted. A principal incorrect prediction (lattice marked
by gray background) was that some patches (34.7%) of the glioblastoma microvascular proliferation
area were erroneously categorized into high-grade astrocytoma tumor cell area.

3.2.2. At the Case Level

Based on inclusion criterion of 0.00, the accuracy attained using ResNet-50 for classifying
diffuse astrocytoma, anaplastic astrocytoma, and glioblastoma was 0.769 at the case level. The
details of the results are shown in Figure 7, in which six cases of diffuse astrocytoma and three
cases of anaplastic astrocytoma were incorrectly classified as cases of glioblastoma.

Based on the inclusion criterion of 0.02, the accuracy obtained using ResNet-50 for
classifying diffuse astrocytoma, anaplastic astrocytoma, and glioblastoma at the case level
was 0.846 (Figure 8). Three cases of diffuse astrocytoma and three cases of anaplastic astro-
cytoma were incorrectly classified as cases of glioblastoma. Based on the inclusion criterion
of 0.05, the accuracy was 0.846 at the case level (Figure 9). Two cases of diffuse astrocytoma
and three cases of anaplastic astrocytoma were incorrectly classified as cases of glioblastoma.
A case of diffuse astrocytoma was incorrectly classified as anaplastic astrocytoma.

The details of testing results using ResNet-50 for classifying diffuse astrocytoma, anaplastic
astrocytoma, and glioblastoma are shown in Table S1 of the Supplementary Materials. Table 2
presents the selective cases with incorrect classification from Table S1. Among these, three
cases of diffuse astrocytoma (cases 13, 17, and 22) were incorrectly classified into glioblastoma
due to the presence of erroneously predicted scant patches of glioblastoma necrosis area or
glioblastoma microvascular proliferation area based on the inclusion criterion of 0.00. Moreover,
one case of diffuse astrocytoma (case 14) was wrongly classified as glioblastoma, attributed
to the small number of erroneous prediction patches in the glioblastoma tumor cell area,
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glioblastoma necrosis area, and glioblastoma microvascular proliferation area. Additionally,
another diffuse astrocytoma case (case 25) was incorrectly classified as glioblastoma based on the
inclusion criteria of 0.00 and 0.02, stemming from the presence of falsely predicted minor patches
of glioblastoma tumor cell area, glioblastoma necrosis area, and glioblastoma microvascular
proliferation area. This case was also misclassified as anaplastic astrocytoma with the criterion of
0.05 due to the incorrectly predicted major patches of anaplastic astrocytoma. Furthermore, one
instance of diffuse astrocytoma (case 38) was inaccurately classified as glioblastoma because of
the falsely predicted major patches of glioblastoma necrosis area. Lastly, three cases of anaplastic
astrocytoma (cases 15, 27, and 29) were misclassified as glioblastoma due to the significant
number of incorrect prediction patches of glioblastoma tumor cell areas.
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Figure 7. The  confusion  matrix  of  prediction  results  using  ResNet-50  for 
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Figure 7. The confusion matrix of prediction results using ResNet-50 for classifying diffuse astrocytoma,
anaplastic astrocytoma, and glioblastoma at the case level, based on inclusion criterion of 0.00. The
inclusion criterion of 0.00 meant that any predicted characteristic pathological feature patch ratio was
considered for classification. The accuracy was 0.769. Six cases of diffuse astrocytoma and three cases of
anaplastic astrocytoma were incorrectly classified into cases of glioblastoma.
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Figure 8. The confusion matrix of prediction results using ResNet-50 for classifying diffuse astrocytoma,
anaplastic astrocytoma, and glioblastoma at the case level, based on the inclusion criterion of 0.02. The
inclusion criterion of 0.02 meant that the patch ratios of the predicted characteristic pathological features
could only be considered for classification if they reached 0.02. The accuracy was 0.846. Three cases of diffuse
astrocytoma and three cases of anaplastic astrocytoma were incorrectly classified as cases of glioblastoma.
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Figure 9. The confusion matrix of prediction results using ResNet-50 for classifying diffuse astro-
cytoma, anaplastic astrocytoma, and glioblastoma at the case level, based on inclusion criterion of
0.05. Inclusion criterion of 0.05 meant that the patch ratios of the predicted characteristic patho-
logical features could only be considered for classification if they reached 0.05. The accuracy was
0.846. Two cases of diffuse astrocytoma and three cases of anaplastic astrocytoma were incorrectly
classified into cases of glioblastoma. A case of diffuse astrocytoma was incorrectly classified as
anaplastic astrocytoma.

Table 2. The selective testing cases with incorrect classification by using ResNet-50 for classifying
diffuse astrocytoma, anaplastic astrocytoma, and glioblastoma.

Testing
Case
No.

Diagnosis Characteristic Morphological
Features

Prediction Inclusion Criterion of 0.00 Inclusion Criterion of 0.02 Inclusion Criterion of 0.05

Count Ratio Ratio Classification Ratio Classification Ratio Classification

Case
13

Diffuse
astrocy-

toma

Diffuse astrocytoma 5025 0.998 0.998

Glioblastoma

0.998

Diffuse
astrocytoma

0.998

Diffuse
astrocytoma

Anaplastic astrocytoma 3 0.001 0.001 0.001 0.001
Glioblastoma tumor cell area
Glioblastoma necrosis area 9 0.002 0.002 0.002 0.002
Glioblastoma microvascular
proliferation area

Case
14

Diffuse
astrocy-

toma

Diffuse astrocytoma 216 0.722 0.722

Glioblastoma

0.722

Glioblastoma

0.722

Glioblastoma
Anaplastic astrocytoma
Glioblastoma tumor cell area 22 0.074 0.074 0.074 0.074
Glioblastoma necrosis area 60 0.201 0.201 0.201 0.201
Glioblastoma microvascular
proliferation area 1 0.003 0.003 0.003 0.003

Case
15

Anaplastic
astrocy-

toma

Diffuse astrocytoma

Glioblastoma Glioblastoma Glioblastoma
Anaplastic astrocytoma
Glioblastoma tumor cell area 146 1.000 1.000 1.000 1.000
Glioblastoma necrosis area
Glioblastoma microvascular
proliferation area

Case
17

Diffuse
astrocy-

toma

Diffuse astrocytoma 5280 0.998 0.998

Glioblastoma

0.998

Diffuse
astrocytoma

0.998

Diffuse
astrocytoma

Anaplastic astrocytoma
Glioblastoma tumor cell area
Glioblastoma necrosis area 9 0.002 0.002 0.002 0.002
Glioblastoma microvascular
proliferation area

Case
22

Diffuse
astrocy-

toma

Diffuse astrocytoma 530 0.994 0.994

Glioblastoma

0.994

Diffuse
astrocytoma

0.994

Diffuse
astrocytoma

Anaplastic astrocytoma
Glioblastoma tumor cell area
Glioblastoma necrosis area 1 0.002 0.002 0.002 0.002
Glioblastoma microvascular
proliferation area 2 0.004 0.004 0.004 0.004

Case
25

Diffuse
astrocy-

toma

Diffuse astrocytoma 1 0.002 0.002

Glioblastoma

0.002

Glioblastoma

0.002

Anaplastic
astrocytoma

Anaplastic astrocytoma 449 0.943 0.943 0.943 0.943
Glioblastoma tumor cell area 16 0.034 0.034 0.034 0.034
Glioblastoma necrosis area 8 0.017 0.017 0.017 0.017
Glioblastoma microvascular
proliferation area 2 0.004 0.004 0.004 0.004

Case
27

Anaplastic
astrocy-

toma

Diffuse astrocytoma

Glioblastoma Glioblastoma Glioblastoma
Anaplastic astrocytoma 28 0.113 0.113 0.113 0.113
Glioblastoma tumor cell area 220 0.887 0.887 0.887 0.887
Glioblastoma necrosis area
Glioblastoma microvascular
proliferation area
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Table 2. Cont.

Testing
Case
No.

Diagnosis Characteristic Morphological
Features

Prediction Inclusion Criterion of 0.00 Inclusion Criterion of 0.02 Inclusion Criterion of 0.05

Count Ratio Ratio Classification Ratio Classification Ratio Classification

Case
29

Anaplastic
astrocy-

toma

Diffuse astrocytoma

Glioblastoma Glioblastoma Glioblastoma
Anaplastic astrocytoma 296 0.477 0.477 0.477 0.477
Glioblastoma tumor cell area 323 0.521 0.521 0.521 0.521
Glioblastoma necrosis area
Glioblastoma microvascular
proliferation area 1 0.002 0.002 0.002 0.002

Case
38

Diffuse
astrocy-

toma

Diffuse astrocytoma 6 0.016 0.016

Glioblastoma

0.016

Glioblastoma

0.016

Glioblastoma
Anaplastic astrocytoma
Glioblastoma tumor cell area
Glioblastoma necrosis area 367 0.984 0.984 0.984 0.984
Glioblastoma microvascular
proliferation area

The inclusion criterion of 0.00 meant any predicted characteristic pathological feature patch ratio was considered
for classification. The inclusion criteria of 0.02 and 0.05 meant that the patch ratios of the predicted characteristic
pathological features could only be considered for classification if they reached 0.02 and 0.05, respectively. Number
with strikethrough means criteria exclude the patch ratio. The bold number in the ratio column indicates the
determinant(s) for classification. Red text indicates incorrect classification.

3.3. Outcomes of Quantification of Cellularity and Nuclear Morphological Features with
Importance Weighting
3.3.1. Cellularity

The average cellularities for individual characteristic pathological features are shown
in Table 3. Glioblastoma tumor cell area exhibited the highest cellularity at 0.195 ± 0.051
(mean ± standard deviation [SD]), followed by anaplastic astrocytoma with a cellularity of
0.180 ± 0.063, and glioblastoma microvascular proliferation area, which had a cellularity
of 0.122 ± 0.052. The diffuse astrocytoma displayed a cellularity of 0.052 ± 0.018. The
glioblastoma necrosis area exhibited the lowest cellularity, measured at 0.003 ± 0.008.
Welch’s t-test with Bonferroni correction revealed that the cellularities were significantly
different between all two-group combinations (Table 4).

Table 3. The average cellularities for individual characteristic pathological features.

Category ROIs Cellularity

Diffuse astrocytoma 1774 0.052 ± 0.018
Anaplastic astrocytoma 1915 0.180 ± 0.063
Glioblastoma tumor cell area 4238 0.195 ± 0.051
Glioblastoma necrosis area 2184 0.003 ± 0.008
Glioblastoma microvascular proliferation area 794 0.122 ± 0.052

Abbreviation: ROI, region of interest. Cellularity is presented by mean ± standard deviation.

Table 4. The p-value of Welch’s t-test with Bonferroni correction for cellularities between characteristic
pathological features.

Diffuse
Astrocytoma

Anaplastic
Astrocytoma

Glioblastoma
Tumor Cell Area

Glioblastoma
Necrosis Area

Glioblastoma
Microvascular

Proliferation Area

Diffuse astrocytoma <0.001 * <0.001 * <0.001 * <0.001 *

Anaplastic astrocytoma <0.001 * <0.001 * <0.001 *

Glioblastoma tumor cell area <0.001 * <0.001 *

Glioblastoma necrosis area <0.001 *

Glioblastoma microvascular
proliferation area

* Statistically significant, p < 0.05.

3.3.2. Nuclear Morphological Features

The nuclear morphological features in individual characteristic pathological features
are presented in Table 5. The average axis ratio ranged from 1.437 ± 0.103 to 1.734 ±
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0.144, circularity from 0.574 ± 0.035 to 0.672 ± 0.037, entropy from 4.711 ± 0.227 to 4.925
± 0.202, area from 13.676 ± 3.536 to 30.546 ± 6.183 µm, irregularity from 2.648 ± 1.115
to 7.784 ± 2.161, and perimeter from 14.327 ± 1.827 to 21.745 ± 2.075 µm. The one-way
ANOVA analysis revealed significant differences in both mean and variance for all six
individual nuclear morphological features among the various categories. Furthermore,
there were statistically significant variations in the skewness and kurtosis of the axis
ratio, circularity, and irregularity among the different categories. However, the skewness
and kurtosis values for entropy, area, and perimeter were not statistically significant in
discriminating between these categories.

Table 5. The nuclear morphological features for individual characteristic pathological features.

Attributes
Moments
(Mean ±

SD)

Diffuse
Astrocytoma

Anaplastic
Astrocytoma

Glioblastoma
Tumor Cell

Area

Glioblastoma
Necrosis Area

Glioblastoma
Microvascular
Proliferation

Area

F-Test

N = 15 N = 11 N = 69 F-
Statistics p Value

Axis Ratio

Mean 1.437 ± 0.103 1.540 ± 0.118 1.570 ± 0.123 1.504 ± 0.193 1.734 ± 0.144 20.377 <0.001 *

Variance 0.139 ± 0.066 0.192 ± 0.092 0.194 ± 0.101 0.169 ± 0.195 0.359 ± 0.182 12.489 <0.001 *

Skewness 2.351 ± 0.285 2.113 ± 0.409 1.844 ± 0.332 1.704 ± 0.903 1.839 ± 0.614 10.38 <0.001 *

Kurtosis 10.106 ±
2.979 9.264 ± 4.545 6.201 ± 2.959 5.264 ± 6.070 5.368 ± 3.936 21.733 <0.001 *

Circularity

Mean 0.672 ± 0.037 0.634 ± 0.040 0.622 ± 0.038 0.641 ± 0.053 0.574 ± 0.035 25.248 <0.001 *

Variance 0.014 ± 0.003 0.015 ± 0.003 0.015 ± 0.003 0.013 ± 0.007 0.018 ± 0.003 10.478 <0.001 *

Skewness −0.642 ±
0.153

−0.422 ±
0.153

−0.330 ±
0.163 −0.423 ± 0.365 −0.250 ± 0.223 11.425 <0.001 *

Kurtosis 0.140 ± 0.308 −0.235 ±
0.274

−0.341 ±
0.248 −0.282 ± 0.657 −0.525 ± 0.307 11.417 <0.001 *

Entropy

Mean 4.921 ± 0.198 4.745 ± 0.165 4.808 ± 0.187 4.925 ± 0.202 4.711 ± 0.227 7.833 <0.001 *

Variance 0.127 ± 0.035 0.131 ± 0.034 0.135 ± 0.035 0.138 ± 0.072 0.192 ± 0.059 9.655 <0.001 *

Skewness −0.401 ±
0.187

−0.398 ±
0.229

−0.408 ±
0.290 −0.474 ± 0.453 −0.517 ± 0.348 0.806 0.546

Kurtosis 0.993 ± 0.568 0.885 ± 0.568 0.900 ± 0.692 0.766 ± 1.745 0.866 ± 0.941 0.323 0.899

Area (µm2)

Mean 21.311 ±
3.466

25.958 ±
4.901

30.546 ±
6.183 13.676 ± 3.536 25.345 ± 6.750 53.112 <0.001 *

Variance 83.678 ±
40.508

164.005 ±
78.404

231.174 ±
126.803 55.408 ± 37.289 185.253 ±

181.007 13.109 <0.001 *

Skewness 1.460 ± 0.377 1.588 ± 0.355 1.471 ± 0.511 1.575 ± 1.037 1.362 ± 0.567 1.639 0.151

Kurtosis 6.493 ± 7.097 4.493 ± 2.177 4.257 ± 5.202 6.362 ± 14.965 3.129 ± 3.774 1.153 0.334

Irregularity

Mean 3.339 ± 0.948 5.342 ± 1.327 6.783 ± 1.907 2.648 ± 1.115 7.784 ± 2.161 59.537 <0.001 *

Variance 17.540 ±
9.779

40.655 ±
15.941

61.880 ±
32.027 9.060 ± 9.498 90.134 ± 115.829 9.488 <0.001 *

Skewness 4.279 ± 0.728 3.691 ± 0.865 3.200 ± 0.663 2.710 ± 1.650 2.747 ± 1.243 7.622 <0.001 *

Kurtosis 33.584 ±
11.747

26.882 ±
14.452

18.175 ±
9.300 14.466 ± 17.311 13.132 ± 15.371 9.002 <0.001 *

Perimeter
(µm)

Mean 17.887 ±
1.390

19.942 ±
1.760

21.745 ±
2.075 14.327 ± 1.827 20.254 ± 2.39 79.245 <0.001 *

Variance 14.608 ±
5.064

24.255 ±
5.941

30.381 ±
8.932 13.589 ± 7.075 30.875 ± 13.953 24.395 <0.001 *

Skewness 0.824 ± 0.205 1.014 ± 0.313 0.833 ± 0.300 0.827 ± 0.509 0.846 ± 0.405 1.413 0.221

Kurtosis 2.137 ± 1.224 1.732 ± 0.952 1.190 ± 1.089 1.392 ± 3.147 1.062 ± 1.275 1.35 0.245

Abbreviation: SD, standard deviation. * Statistically significant, p < 0.05.
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3.3.3. Importance Weighting

By using XGBoost to evaluate importance weight, entropy was the most important
with a weight of 1607.2 (95% CI, 1600.2–1614.2), followed by cellularity with an important
weight of 1160.4 (95% CI, 1153.9–1166.9), area, 528.8 (95% CI, 524.4–533.2), circularity, 524.2
(95% CI, 519.7–528.7), axis ratio, 502.1 (95% CI, 498.6–505.6), perimeter, 434.8 (95% CI,
432.3–437.3), and irregularity with an importance weight of 358.0 (95% CI, 355.9–360.1)
(Figure 10). 

10 

 

Figure 10. The  importance weight  evaluated  by  using  the XGBoost model. 

Entropy was  the most  significant  contributor,  followed  by  cellularity,  area, 

circularity, axis ratio, perimeter, and irregularity. 

Figure 10. The importance weight evaluated by using the XGBoost model. Entropy was the most
significant contributor, followed by cellularity, area, circularity, axis ratio, perimeter, and irregularity.

4. Discussion

This study presented a deep residual learning-based classification focusing on iden-
tifying incorrect predictions and quantification of cellularity and nuclear morphological
features with importance weighting specifically in common astrocytic tumors.

A patch size of 512 × 512 pixels was chosen to balance graphics processing unit
(GPU) video random access memory (VRAM) limitations and the need to consider a more
extensive region within each patch. While larger patches could provide more information
for the model, they also require more GPU VRAM. In our case, a 512 × 512 patch size
requires approximately 20 GB of VRAM, which fits within the 24 GB VRAM capacity of our
display card. Additionally, using a 512 × 512 patch size is common in previous AI-related
studies [30–32]. For the stride length, we aimed to balance storage requirements and the
desire for the model to see all possible regions. An extreme approach would be to set the
stride to one pixel, ensuring that all possible patches are provided. However, this would
result in excessive patches, exceeding our server’s storage capacity. Setting the stride to
half the patch size (256 pixels) balances storage requirements and region coverage well.

We demonstrated the excellent performance of the ResNet-50 for recognizing char-
acteristic pathologic features and classification in common astrocytic tumors, compared
to other similar previous works [20–23]. However, what distinguished our work from
others was that we identified and explained the details of incorrect predictions, which
were not articulated in previous works. Our study revealed three main incorrect predic-
tions (Figure 11). Firstly, partial indistinguishable morphological overlap led to anaplastic
astrocytoma being misrecognized as glioblastoma tumor cell area at the patch level and
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classified as glioblastoma at the case level. Secondly, certain zones within the glioblastoma
microvascular proliferation area presented dense and crowded endothelial cells with scarce
vascular lumen mimicking the glioblastoma tumor cell area. Thirdly, the cellularity in
certain regions of diffuse astrocytoma was too low, leading to misrecognition as the glioblas-
toma necrosis area at the patch level and glioblastoma at the case level. As suggested by
our results, the selection of an inclusion criterion of 0.02 for the patch ratio considered for
classification was appropriate to filter out minor errors and reduce misclassification.
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Figure 11. The actual case examples of incorrect predictions. (A,B) Anaplastic 
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Figure 11. The actual case examples of incorrect predictions. (A,B) Anaplastic astrocytoma resembled
and was misrecognized as a glioblastoma tumor cell area. (C,D) Densely compact endothelial cells
with a small amount of vessel lumen in the glioblastoma microvascular proliferation area mimicked
the glioblastoma tumor cell area. (E,F) Low cellularity regions in diffuse astrocytoma imitated
glioblastoma necrosis area.

Several studies have applied a deep learning model integrating cellularity and nuclear
morphologic features to enhance glioma classification [17,18]. However, no quantified
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value or importance weight is available. Our study quantified cellularity and nuclear
morphological features, including axis ratio, circularity, entropy, area, irregularity, and
perimeter, with an evaluation of importance weight. In addition, the comparisons of the
above attributes showed significant differences among different characteristic pathological
features. Furthermore, using the XGBoost algorithm, we found that entropy was the
most important feature for classification. The entropy of an image indicates the level of
randomness present [21,33]. Previous studies demonstrated the value of entropy in low-
grade gliomas was different than that of high-grade gliomas [21], and the entropy could
differentiate patients with glioblastoma from a healthy control in pathological images [33].
The entropy of the nucleus reflects spatial homogeneity/heterogeneity [21], which is
potentially influenced by factors like the extent of nuclear anaplasia and pleomorphism in
neoplastic cells, suggesting the potential reason for this importance. Further large-scale
studies applying advanced statistical methods, such as a receiver operating characteristic
(ROC) curve [34,35], logistic regression model [36], or nomogram [37], to determine the
cut-off value of each attribute are needed to establish a prediction model for differentiation
among common astrocytic tumors.

Our study had several limitations. Firstly, the case number was relatively small,
potentially requiring a more robust dataset that might yield more powerful and convincing
results. Secondly, this study only included cases from a single hospital. Including a
more diverse and representative selection of cases could enhance the ability to extract
disease characteristics more effectively. Thirdly, the study did not include other rare
subtypes of astrocytic tumors that were difficult to collect, suggesting a potential area for
further exploration and inclusion to provide a more comprehensive understanding of the
astrocytic tumors.

5. Conclusions

This study demonstrated a deep residual learning-based classification focusing on
identifying and explaining the incorrect predictions and quantification of cellularity and
nuclear morphological features with importance weighting specifically in common astro-
cytic tumors. Identifying incorrect predictions provided worthwhile feedback to machine
learning algorithm design to further refine accuracy and diminish errors in classification.
Quantifying cellularity and nuclear morphological features with importance weighting
was the basis for developing an innovative scoring system. Further multicentric study
involving more significant case numbers and other rare subtypes of astrocytic tumors is
necessary to establish a powerful prediction model to achieve objective classification and
precision diagnosis among astrocytic tumors.
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