
Citation: Shi, J. Early 2-Factor

Transcription Factors Associated with

Progression and Recurrence in

Bevacizumab-Responsive Subtypes of

Glioblastoma. Cancers 2024, 16, 2536.

https://doi.org/10.3390/

cancers16142536

Academic Editor: Andreas Stadlbauer

Received: 16 June 2024

Revised: 8 July 2024

Accepted: 10 July 2024

Published: 14 July 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Early 2-Factor Transcription Factors Associated with Progression
and Recurrence in Bevacizumab-Responsive Subtypes
of Glioblastoma
Jian Shi

Department of Neurology, San Francisco Veterans Affairs Health Care System and University of California,
San Francisco, CA 94121, USA; jian.shi@ucsf.edu

Simple Summary: This study has provided new insights into the role of E2F transcription factors,
a group of proteins, in glioblastoma (GBM), a type of brain cancer. These proteins play a part in
various processes that can lead to cell death, growth, and the formation of new blood vessels, all of
which are crucial in the development of GBM. To understand how these proteins impact a specific
type of GBM that responds to the drug Bevacizumab (BVZ), researchers utilized advanced computer
algorithms on datasets from multiple large databases. By doing so, they were able to predict the
potential lifespan of GBM patients based on the levels of these proteins found in their tumors. The
study revealed that an increase in a protein called E2F8 and its regulatory networks following BVZ
treatment might be associated with the recurrence of cancer. This suggests that E2F8 could be a key
factor in the reemergence of GBM after treatment. Furthermore, the study indicated that BVZ could
be detrimental to GBM patients whose tumors do not respond to the drug, potentially worsening the
disease. These findings emphasize the significance of E2F proteins in the aggressiveness of GBM and
its response to BVZ, suggesting their potential as markers for predicting patient outcomes and as
targets for more personalized treatment approaches.

Abstract: The early 2-factor (E2F) family of transcription factors, including E2F1 through 8, plays a
critical role in apoptosis, metabolism, proliferation, and angiogenesis within glioblastoma (GBM).
However, the specific functions of E2F transcription factors (E2Fs) and their impact on the malignancy
of Bevacizumab (BVZ)-responsive GBM subtypes remain unclear. This study used data from The
Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), European Molecular Biology
Laboratory’s European Bioinformatics Institute (EMBL-EBI), and Gene Expression Omnibus (GEO)
to explore the impact of eight E2F family members on the clinical characteristics of BVZ-responsive
GBM subtypes and possible mechanisms of recurrence after BVZ treatment. Using machine learning
algorithms, including TreeBagger and deep neural networks, we systematically predicted and vali-
dated GBM patient survival terms based on the expression profiles of E2Fs across BVZ-responsive
GBM subtypes. Our bioinformatics analyses suggested that a significant increase in E2F8 post-BVZ
treatment may enhance the function of angiogenesis and stem cell proliferation, implicating this
factor as a candidate mechanism of GBM recurrence after treatment. In addition, BVZ treatment in
unresponsive GBM patients may potentially worsen disease progression. These insights underscore
that E2F family members play important roles in GBM malignancy and BVZ treatment response, high-
lighting their potential as prognostic biomarkers, therapeutic targets, and recommending precision
BVZ treatment to individual GBM patients.

Keywords: glioblastoma; E2F family; Bevacizumab; recurrence; machine learning algorithm;
bioinformatics

1. Introduction

Glioblastoma (GBM) is a highly malignant tumor that primarily affects the central
nervous system and is the most common primary intracranial tumor. The fifth edition of the
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World Health Organization (WHO) classification of tumors of the central nervous system
delineates GBM as a distinct subtype, different from the previously described glioblastoma
multiforme [1]. This GBM subtype is specifically restricted to adult grade 4 diffuse astrocytic
gliomas that are wild type for isocitrate dehydrogenase (IDH). In fact, mutations in IDH and
methylation of the O6-methylguanine-DNA methyltransferase (MGMT) gene in GBM are
associated with a more favorable prognosis. Historically, GBM treatment has involved a
combination of surgical resection, radiation therapy, and chemotherapy. Despite the high
likelihood of tumor recurrence and progression, the integration of multimodal treatment
approaches has led to gradual improvement in patient outcomes. Median overall survival
has been extended to approximately 15 months, and progression-free survival has improved
to 10 months. The five-year survival rate stands at 6.8% [2–4]. These advances underscore
the importance of continued research and the necessity for ongoing innovation in the
management of GBM.

Navigating the complex world of glioblastoma (GBM) chemotherapies [2,5], these
studies provide a comprehensive overview of current therapeutic practices, emerging
strategies, and the challenges within this therapeutic domain. Temozolomide (TMZ), an
oral DNA alkylating agent that penetrates the blood–brain barrier, is a first-line systemic
treatment for glioblastoma, usually in combination with radiation therapy. However, the
effectiveness of TMZ depends on the methylation status of the MGMT gene promoter.
Patients with methylated genes tend to have better treatment outcomes because their tumor
cells have reduced DNA repair capacity. Despite initial responses, resistance and relapse
are common, leading to consideration of alternative chemotherapeutic agents such as other
alkylating agents. Antiangiogenic approaches, including bevacizumab (BVZ), a monoclonal
antibody against vascular endothelial growth factor (VEGF), have been shown to prolong
progression-free survival in relapsed cases, but their overall survival benefit has been
inconsistent. Immunotherapy, including vaccines, oncolytic viruses, immune checkpoint
inhibitors, and CAR-T cell therapy, is an exciting frontier in glioblastoma treatment that
harnesses the power of the immune system. In fact, their widespread use is limited by
several obstacles, including the lack of tumor-specific antigens, ineffective cell traffick-
ing, treatment-related toxicities, and an immunosuppressive tumor microenvironment.
The study of novel targets and synthetic agents, natural compounds, and immunother-
apy has further expanded the therapeutic prospects of glioblastoma, bringing hope for
treating drug resistance and relapse. However, the heterogeneity of glioblastoma, strong
blood–brain barrier, constant recurrence, and immunosuppressive tumor microenviron-
ment continue to pose major challenges to the effectiveness of chemotherapy and emerging
treatment modalities.

The early 2-factor (E2F) family consists of eight key members in humans: E2F1–8.
These members have highly similar DNA-binding domains that directly interact with
consensus sequences [6]. The members are categorized into three subgroups based on
sequence similarity and functional activity: activator proteins (E2F1-3), atypical repressors
(E2F7-8), and canonical repressors (E2F4-6). Each member has distinct expression and
functional patterns that align with their subgroup classification [7,8]. E2Fs play a crucial
role in the cell cycle by forming the core transcriptional axis. In addition to cell cycle
regulation, E2Fs also influence various biological pathways that contribute to malignant
progression, such as apoptosis, angiogenesis, and metabolism in several cancers including
glioblastoma [9–11]. Overexpression of E2F1 in glioma cells has been associated with
enhanced proliferation, regulated by miRNAs, including miR-342-3p and miR-377 [12].
Conversely, suppression of E2F1 via siRNA in the GBM U87MG cell line leads to reduced
cell proliferation, increased cell death, and diminished neurosphere formation, indicating a
role for E2F1 in maintaining GBM stem cells [13]. The silencing of E2F5 has similarly been
shown to inhibit the proliferative capacity of GBM cells, while targeting E2F8 is implicated
in the regulation of glioma development [14,15]. Furthermore, E2F4 and E2F5 have been
demonstrated to directly regulate NF-κB-inducing kinase transcription, playing a crucial
role in promoting GBM cell invasion [16]. Notably, E2F1 and E2F2 are associated with
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increased expression of pro-angiogenic genes in breast cancer, potentially contributing
to a more aggressive phenotype [17]. Therefore, E2F members may serve as promising
therapeutic targets and potential biomarkers for specific cancers.

Recently, artificial intelligence (AI), encompassing machine learning (ML) and deep
learning (DL) methods, has become a powerful tool for classifying cancer subtypes and pre-
dicting cancer progression, offering improved accuracy and novel insights over traditional
approaches [18,19]. Utilizing AI technologies, such as machine learning and specific deep
learning methods, various omics data, including gene expression, RNA sequences, non-
coding RNA such as miRNA, and protein expression and modification, can be analyzed
to classify cancer subtypes, predict cancer progression, and evaluate treatment response.
For example, we have recently used machine learning methods and miRNAs (miR-10b,
miR-21, and miR-197) as biomarkers to classify bevacizumab (BVZ) responsive subtypes
in glioblastoma (GBM) [20]. Their clinical and pathological characteristics showed that
these GBM BVZ responsive patients had significantly shorter overall survival (OS), with
a median survival rate of approximately 10 months, compared with 15 months for other
GBM patients. The effect of BVZ on the OS may have been masked due to the shorter OS.
Furthermore, several genes (ANXA2, HOXD10, EFNA1, HOXD11, ANXA2P2, GREB1L,
and FKBP9) were selected as gene markers due to significant changes in expression be-
tween these two BVZ response subtypes. In addition, their VEGF methylation levels were
significantly lower than those of other GBM patients, whereas their MGMT methylation
levels did not affect the OS in BVZ-responsive GBM patients. This study can facilitate
precision therapy for GBM patients and further elucidate underlying mechanisms.

Despite responding to treatment, including BVZ therapy, most GBM cases eventually
relapse. The underlying mechanisms behind this relapse have been extensively studied
but remain unclear. BVZ therapy targets VEGF and inhibits angiogenesis within the tumor.
Current opinion suggests that BVZ therapy may prolong progression-free survival (PFS) in
GBM treatment, but there is no evidence of its effect on overall survival (OS). After BVZ
treatment, some glioblastomas can stimulate the growth of tumor vessels by expressing var-
ious angiogenic factors or elevated expression levels, such as EGFR vIII-positive GBM with
BVZ treatment [21] and enhanced bFGF (Fibroblast Growth Factor 2) expression [22], show-
ing worse outcomes of BVZ treatment. In addition, research has shown that post-treatment
recurrent GBM is also driven by pre-existing, treatment-resistant stem-like cells present
in the tumor microenvironment [23]. Moreover, genetic reprogramming and differential
oncogene activation, and regulation of self-renewal, tumorigenicity, and metastasis in the
relapsed tumor cells and their microenvironments contribute to GBM recurrence [24,25].
By examining these aspects of relapse mechanisms, we can enhance our understanding of
GBM development and progression, potentially leading to the discovery of new targets
and more effective treatments.

Our previous research identified several key transcription factors, including E2F fam-
ily members, involved in GBM treated with BVZ [26]. Despite BVZ’s impact on patient
prognosis, significant improvements in overall survival (OS) outcomes have not been
consistently demonstrated, and tumor recurrence continues to be a major challenge in
GBM treatment. Therefore, this study investigates the influence of E2F family members on
the malignancy of BVZ-responsive GBM subtypes before and after treatment, integrating
the clinicopathological characteristics of the patients with multiple omics data for com-
prehensive machine learning analyses. It aims to elucidate the molecular mechanisms
underlying recurrence and progression following BVZ treatment in GBM patients, and to
offer guidance for future therapeutic and translational research strategies.

2. Materials and Methods
2.1. Data Collection

In this study, mRNA expression profiles, along with clinico-pathological data of
glioblastoma (GBM), were obtained from several GBM databases. A total of 426 GBM sam-
ples were obtained from the Cancer Genome Atlas (TCGA) data portal (http://cancergenome.

http://cancergenome.nih.gov/dataportal/
http://cancergenome.nih.gov/dataportal/
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nih.gov/dataportal/ accessed on 16 April 2023) [27]. These samples were all from primary
tumors, including IDH wild-type and mutant types, as they were determined before the
fifth edition of the WHO classification. A total of 136 adult GBM samples were included,
comprising primary, recurrent, and secondary tumors from the Chinses Glioma Genome
Atlas (CGGA), which have IDH genotype information [28,29]. The dataset GSE7967 of
GBM patients treated with Bevacizumab (BVZ) was downloaded from the Gene Expression
Omnibus (GEO). Sequencing data from GBM tissues, collected before and after BVZ treat-
ment, were processed using Trimmomatic and subsequently mapped to the human genome
(hg19) [30,31]. These gene expressions were quantified as fragments per kilobase million
(FPKM). Additionally, a dataset of 15 GBM samples from EMBL-EBI from E-MTAB-1380
and E-MEXP-3296 was included, and the samples were fully paired before and after BVZ
treatment [32,33]. For analytical purposes, data from the same patients, pre- and post-BVZ
treatment, were paired to facilitate comparative statistical analysis.

The inclusion and exclusion criteria adopted for the datasets used in this study were
as follows: patients who received chemotherapy were excluded from the TCGA dataset,
whereas patients were included if both miRNA and mRNA expression data were available
(426). Patients with no survival time (<5%) were excluded when calculating risk scores
and hazard ratios for TCGA and CGGA datasets. In the GSE79671 dataset, there were
7 BVZ responders and 14 BVZ non-responders, but the complete paired patients included
12 BVZ non-responders and 5 BVZ-responsive GBM patients (we obtained). Unlike the
paired t-test that excluded nonpaired (lacking pre- or post-BVZ treatment data) patients, the
conventional t-test was performed using the 14 BVZ non-responders and 7 BVZ-responsive
patients. In this study, outliers were excluded if (outlier − mean) > 2 × SD.

2.2. Bioinformatics Analysis

To explore the potential functions of the eight E2Fs in GBM, several bioinformatics tools
were applied to determine the associations between E2Fs expression patterns and the clini-
cal characteristics of samples from the TCGA, CGGA, EMBL-EBI, and GSE79671 datasets.
A protein–protein interaction (PPI) network of the eight E2Fs and other differentially ex-
pressed (DE) genes was constructed using the STRING database (https://string-db.org/
accessed on 2 May 2024), Cytoscape (3.7.1) software, and Bioinformatics [26,34]. For E2Fs
expression in GBM patients and normal individuals, DoSurvive and its specimens were
used [35]. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses were performed by DE genes between pre- and post-BVZ treatment for
BVZ responsive subtypes of GBM.

2.3. Software and Statistical Methods

In this study, the software and online tools used included R-project (version 4.0.4,
www.r-project.org), MatLab2023a (https://www.mathworks.com), Venny 2.1.0 (https://
bioinfogp.cnb.csic.es/tools/venny/ accessed on 8 May 2024), MeV (version 4.9.0, MEV,
LLC., Walnut Creek, CA, USA, http://www.tm4.org/mev.html accessed on 8 May 2024),
g:Profiler (ELIXIR, Tartu, Estonia, https://biit.cs.ut.ee/gprofler/ accessed on 8 May 2024),
Bioinformatics (https://bioinformatics.com.cn), and Prism 9.0 (GraphPad Software, Inc.
CA, USA). The statistical methods used included Student’s t-test, the standard Bonferroni
adjusted t-test, paired t-test, and the Wilcoxon-Mann-Whitney test if the data distribution
was not normal.

The risk score model for GBM was constructed using the least absolute shrinkage and
selection operator (LASSO) model, based on TCGA data. In this study, the R language
package “carnet” was utilized to implement the LASSO multivariate Cox regression model
to reduce the number of E2F family members and identify significant members [36]. Fol-
lowing LASSO regression, important members were selected, and their coefficients were
utilized to construct the risk score model as follows:

Riskscore = ∑n
k=1(COEFi × EXPi) (1)

http://cancergenome.nih.gov/dataportal/
http://cancergenome.nih.gov/dataportal/
http://cancergenome.nih.gov/dataportal/
https://string-db.org/
www.r-project.org
https://www.mathworks.com
https://bioinfogp.cnb.csic.es/tools/venny/
https://bioinfogp.cnb.csic.es/tools/venny/
http://www.tm4.org/mev.html
https://biit.cs.ut.ee/gprofler/
https://bioinformatics.com.cn


Cancers 2024, 16, 2536 5 of 20

where COEFi is each of the coefficients, and EXPi is the normalized expression of each
selected signature gene.

2.4. Variable Selection, TreeBagger, and Deep Neual Network Model Construction

We employed TreeBagger (TB), one of the random forest algorithms, for further pre-
diction and assessment of patient survival after BVZ treatment for GBM patients [37].
The TCGA dataset was classified by miRNA biomarkers and the SVM algorithm, and
the GSE79671 dataset was classified by CT scan before and after BVZ treatment for GBM
patients. E2F1–8 expression data were extracted from TCGA and GSE79671 and classified
into BVZ responsive subtype and the non-responsive subtype of GBM, and the pre- and
post-BVZ treatment for the BVZ responsive subtypes of GBM.

Based on the clinical survival data, the survival criteria were classified as:

Criteria = [1, OS ≤ 450 days; 2, OS > 450 days] (2)

All parameters in TB were optimized, including tree number, leaf splits, and number
to even. One process of selecting tree numbers is shown in the results section. After the TB
model had been built, the TCGA dataset was used as the training set and GSE79671 was
used as the testing and predicted set. In these processes, Pearson’s correlation was also
used to select variables.

For further study, we used a deep neural network (DNN) model to predict patient
survival terms defined as the criteria. The E2F1–8 expression data from TCGA and the
BVZ responsive subtype categories were combined as input data, so there were 9 input
neurons and 2 output neurons. After slight optimization of the linear structure, 60 layers
and 16 minibatches were selected in the linear neural network structure. In the process of
constructing the DNN model, the E2F8 expression data and BVZ subtype classification in
the TCGA dataset were divided into a training set (70%), a test set (15%), and a validation
set (15%). The training set was used to train the model, the validation set was used to help
fine-tune the model, and the test set was used to provide the model’s prediction accuracy.
Furthermore, a CGGA dataset was used to validate the prediction.

3. Results
3.1. Differential Transcription Factor Expression in Bevacizumab-Responsive Glioblastoma
Post-BVZ Treatment

To explore the impact of bevacizumab (BVZ) treatment on BVZ-responsive glioblas-
toma (GBM) subtypes, we performed a comprehensive analysis of functional assays in-
cluding Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and
transcription factors (TF). Our analysis involved comparing differentially expressed (DE)
genes obtained from 426 TCGA datasets between BVZ-responsive subtypes identified using
miRNA biomarkers and machine learning approaches [20], with DE genes being used from
21 datasets (17 samples had full paired data, including before and after treatment data) of
GBM patients using a CT scan before and after BVZ treatment to identify BVZ-responsive
subtypes [31]. While typical changes were observed in GO and KEGG pathways, striking
alterations were detected in TFs expression, particularly evident in Figure 1A.

When analyzing the 557 DE genes from GSE79671, 106 TFs surpassed the significance
threshold (set at p = 0.01), as illustrated in Figure 1A. In the previous study, 84 TFs passed
the significance threshold in BVZ-responsive GBM patients using different parameters, but
no TFs passed the threshold in the other two groups [26]. This difference may be attributed
to the improvement of our analytical methods and the continuous updating of the data
sources we refer to. Therefore, we ensured that the current analysis was performed using
the latest and most relevant available data, and we took care to perform these analyses
on the same day to maintain consistency. Notably, only 36 TFs met the threshold using
the 1000 DE genes from the TCGA dataset (Figure 1B). In contrast, in BVZ-non-responsive
patients, no significant TFs were identified between pre- and post-BVZ treatment using the
326 DE genes, not even other terms except one (Figure 1C), indicating non-specific treatment.
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All three analyses were set at the same parameters for those functional analyses, and we
rechecked them on the same day (8 May 2024). Details of significant 106 TFs, including
names, sequences, and p-values are provided in Supplementary Table S1. These substantial
differences underscore the importance of further investigation into TF expression dynamics,
especially in the BVZ-responsive subtype of GBM.
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Figure 1. Transcription factors (TFs) involved in BVZ-responsive subtypes of GBM after treatment.
(A) Image showing the involvement of biological processes (BP (9), orange) of GO and TF (106, blue)
between pre- and post-BVZ treatment in responsive GBM using GSE79671 datasets. (B) Engagement
of BP (34) and TF (38) in GO between BVZ responsive subtypes of GBM based on TCGA datasets.
(C) Involvement of BP (1) of GO and TF (0) between pre- and post-BVZ treatment in non-responsive
subtype of GBM based on GSE79671. In these three analyses, p = 0.01 was set as significant. (D) Venn
diagram showing that 90 TFs involved in pre- and post-BVZ treatment in responsive GBM from the
GSE79671 dataset were different from 38 TFs between BVZ responsive subtypes in the untreated
TCGA GBM dataset. (E) The PPI figure from STRING analysis using 90 TFs shows that E2F members
were involved as hub genes.

Furthermore, we explored the individual differences between 106 TFs from GSE79671
and 38 TFs from TCGA. In Figure 1D, the Venn diagram shows that significant 90 TFs based
on GSE79671 pre- and post- BVZ treatment, were not associated with the 38 TFs between
BVZ responsive subtypes obtained from TCGA glioblastoma dataset. In Supplementary
Table S1, TFs not selected are marked with “#”, showing 90 TFs within 106 TFs. After
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this, using STRING analysis, the protein–protein interaction (PPI) network of these 90 TFs,
including 7 of E2F1–8, (namely E2F1, E2F2, E2F3, E2F4, E2F6, E2F7, and E2F8), was
performed and revealed these E2Fs as hub genes, as shown in Figure 1E. This indicates that
they play a key role in malignant cells. Supplementary Figure S1 shows the full interaction
of these 90 TFs in BVZ-responsive GBM patients treated with BVZ, where the rectangular
area is shown in Figure 1E.

3.2. E2F Expression and Bevacizumab-Responsive Subtypes of Glioblastoma

To explore the potential involvement of E2Fs in the malignancy of BVZ-responsive
GBM subtypes, we conducted a systematic analysis of the expression patterns of the eight
E2F transcription factors and their associations with various clinicopathological features
before and after BVZ treatment. Our analysis encompassed 426 GBM patients from the
TCGA dataset, classified using miRNA biomarkers and a machine learning algorithm, and
17 GBM patients from the GSE79671 dataset, classified into BVZ-responsive subtypes based
on CT scans conducted pre- and post-BVZ treatment.

All eight E2Fs exhibited significantly altered expression in GBM compared to nor-
mal controls, indicating their crucial association with GBM malignancy. Specifically, we
observed significant upregulation of all eight E2Fs in GBM (Table 1), based on GBM and
normal brain tissue specimens from the DoSurvive dataset. The log2 (FC(GBM/Normal))
values of E2F2, E2F5, E2F7, and E2F8 were 5.9, 2.37, 5.5, and 6.9, respectively.

Table 1. E2F1–8 Expression in Glioblastoma.

Gene Normal GBM GBM/Normal Log(FC) Wilcoxon p-Value

E2F1 2.42 × 10+02 6.02 × 10+02 2.49 × 10+00 1.31 × 10+00 9.99 × 10−03

E2F2 3.14 × 10+00 1.92 × 10+02 6.11 × 10+01 5.93 × 10+00 1.43 × 10−04

E2F3 4.65 × 10+02 5.96 × 10+02 1.28 × 10+00 3.58 × 10−01 4.76 × 10−01

E2F4 7.18 × 10+02 1.05 × 10+03 1.46 × 10+00 5.48 × 10−01 1.50 × 10−03

E2F5 8.48 × 10+01 4.39 × 10+02 5.18 × 10+00 2.37 × 10+00 1.43 × 10−04

E2F6 3.07 × 10+02 5.56 × 10+02 1.81 × 10+00 8.57 × 10−01 3.27 × 10−04

E2F7 4.37 × 10+00 1.91 × 10+02 4.37 × 10+01 5.45× 10+00 1.55 × 10−04

E2F8 6.50 × 10−01 7.65 × 10+01 1.18 × 10+02 6.88× 10+00 1.55 × 10−04

Using the TAGA dataset, we constructed and performed the LASSO model and
selected important members of the E2F family, namely E2F2, E2F4, and E2F8 based on
their coefficients. According to Formula (1), the risk score is calculated as follows: risk
score = (0.172 × E2F2 + 0.015 × E2F4 − 0.057 × E2F8). The risk score is represented in
Figure 2A, with high and low risks shown in pink and blue, respectively. Figure 2B displays
the patients’ OS and BVZ responsive subtypes. Additionally, Figure 2C presents a heatmap
of E2F1–8 based on the risk scores. We observed no significant differences in the expression
of E2F1–8 between BVZ-responsive and non-responsive GBM. In contrast, the expression
levels of E2F1, E2F2, E2F4, E2F6, and 8 were significantly changed in the high-risk group
compared to the low-risk group of GBM. In addition, we calculated the hazard ratios of
E2F1–8 using the Cox regression method, and we found no significant difference between
these eight E2F members, indicating they are equally hazardous to GBM patients, as shown
in Figure 2E.

Next, we calculated and validated the risk score for the CGGA dataset using Formula (1),
and we grouped the patients based on the risk score. In Figure 2D, we present a heatmap
of E2F1–8 expression in the high-risk and low-risk groups consisting of 136 GBM patients.
We observed a significant increase in the expression levels of E2F1–8 between the high-risk
and low-risk groups. These results differ slightly from those of the TCGA dataset, as
the CGGA dataset utilized a more accurate and sensitive high throughput sequencing
technique, whereas the TCGA data used microarray techniques. We also calculated the
hazard ratios of E2F1–8 from the CGGA data using the Cox regression method, as shown
in Figure 2F. Similar to the results obtained from the TCGA data, the hazard ratios of these
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eight E2F members differed slightly from those of the TCGA dataset, but the difference was
not significant.
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Figure 2. Differential expression of E2F1–8 in the high-risk and low-risk groups of GBM. (A) The
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risk scores. (E) Hazard ratios associated with E2F1–8 using TCGA data. (F) Hazard ratios associated
with E2F1–8 using CGGA data.

3.3. Predicting Survival in Bevacizumab-Responsive Subtypes of Glioblastoma Using
TreeBagger Analysis

Machine learning algorithms have become widely utilized for prediction and prognos-
tic purposes in cancer research. Previously, we employed Support Vector Machine (SVM)
and miRNA biomarkers to classify BVZ-responsive subtypes of GBM. However, SVM
is typically suited for scenarios involving two or three variables. Our research aimed to
predict the survival terms of patients with glioblastoma (GBM) who are responsive or nonre-
sponsive to bevacizumab (BVZ) treatment using an advanced machine learning algorithm.
In this study, we chose TreeBagger, a Random Forest ensemble learning method, for its
ability to manage a high-dimensional dataset and to model complex, nonlinear interactions.

The study incorporated all eight members of the E2F transcription factor family as
predictive variables within the TreeBagger model. Despite decades of effort to optimize
and combine glioblastoma treatments [38], outcomes for patients with GBM remain poor,
with a median life expectancy of approximately 15 months after diagnosis [4]. In this study,
we set the threshold at 15 months (450 days) to predict patient survival terms based on
E2Fs expression and the machine learning analysis. Using the TCGA dataset, 80% and
20% of the dataset were set as the training set and test set, respectively. The accuracy
for predicting patient survival term reached 75%. The confusion matrix illustrating the
performance is presented in Figure 3A. The area under the curve (AUC) was determined to



Cancers 2024, 16, 2536 9 of 20

be 60%, as depicted in Figure 3B. For the calculation, the optimization of tree number (130)
is shown in Figure 3D. Employing 5-fold cross-validation yielded an average accuracy of
67%, indicating no overfitting.
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Figure 3. Predicting mid-term survival in BVZ-responsive glioblastoma subtypes. (A) Confusion
matrix predicted by TreeBagger using the TCGA dataset. (B) Predicted ROC curve (blue). (C) Pearson
correlation of E2F1–8 factors. (D)The blue line shows the optimizing process of the number of trees
for the TreeBagger model.

To validate our model, we utilized the GSE79671 dataset and applied our trained
TreeBagger model to forecast survival terms before and after BVZ treatment. Prediction of
patient survival before and after BVZ treatment using the GSE79671 dataset and trained
TreeBagger by the TCGA dataset. When comparing the prediction of BVZ-responsive versus
non-responsive GBM subtypes, this analysis did not show a significant improvement in
survival after BVZ treatment, consistent with clinical observations. However, due to the
small sample size, these findings necessitate further investigation.

Additionally, we explored the predictive potential of TreeBagger using a subset (E2F1,
E2F2, E2F3, E2F7, and E2F8) of E2F members obtained from Pearson’s correlation analysis,
as shown in Figure 3C. Specifically, we investigated the performance of TreeBagger with
150 trees and 25 leaf splits to predict patient survival using five E2F members. The results
closely paralleled those obtained with all eight E2F members, with the highest accuracy
reaching 73.8% and an AUC of 50%. Notably, based on the confusion matrix, E2Fs and
TreeBagger algorithms showed better predictive ability in identifying survival probabilities
of BVZ-responsive versus BVZ-non-responsive GBM subtypes because, as mentioned
earlier [20], compared with BVZ-non-responsive patients, these patients have lower OS.

Deep learning, a specific subset of machine learning, focuses on deep artificial neural
networks that can deal with complex datasets. Since we found that GBM BVZ subtypes
were related to predict survival terms in TreeBagger analysis, we used the DL algorithm
to combine the expression data of E2F1–8 from TCGA and BVZ responsive categories to
predict the survival terms of GBM patients. After using nine input neurons, two output
neurons, and 60 layers to construct a linear deep neural network (DNN), we used this
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DNN model to predict GBM progression. One of the training progresses of this model is
shown in Figure 4A, and the validation accuracy reached to 81.4%, which is better than the
results obtained by TreeBagger. The confusion matrix is shown in Figure 4B, and the ROC
is shown in Figure 4C. The area under the curve (AUC) was determined to be 66.7%. Using
the CGGA dataset (CGGA_mRNAseq_325) to validate this model, the accuracy reached
68.3% for 136 GBM patient survival. Considering the involvement of 106 transcription
factors and 90 different TFs after BVZ treatment, the survival terms of GBM patients could
be successfully predicted and validated using only E2F family members, and these findings
underscore the significant role of the E2F family in tumor progression and patient survival.
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Figure 4. Predicting mid-term survival in glioblastoma patients using the DNN algorithm. (A) Train-
ing progress of the DNN model using the TCGA dataset and BVZ responsive categories. The blue
line represents each calculated value, and the dashed black line represents the local average. (B) Con-
fusion matrix predicted by the DNN and the dataset. (C) The blue line represents the predicted ROC
curve using this model and dataset.

3.4. Post-treatment Functional Analysis of E2Fs on GBM BVZ Response Subtypes

GBM frequently relapses after BVZ treatment, even in patients who respond to BVZ
and experience prolongation of progression-free survival (PFS), but do not show a sig-
nificant prolongation of overall survival OS [21,39]. However, there are some conflicting
reports. To explore the recurrent mechanism, we performed the expression changes E2F1–8
and their related gene ontology and regulatory networks after BVZ treatment.

Similar to the TCGA dataset, there was no significant difference between BVZ-responsive
and non-responsive GBM subtypes in GSE79671 before treatment, as shown in Figure 5A.
However, post-BVZ treatment analysis in the GSE79671 dataset of BVZ-responsive pa-
tients showed increased expression of E2F2 and E2F8, with particular note being given to
E2F8 (p-value = 0.006 after excluded one outlier) and E2F2 (p-value = 0.052), as shown in
Figure 5B. In contrast, despite the presence of other DE genes, there were no significant
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changes in E2F2 and E2F8 before and after BVZ treatment in BVZ-non-responsive patients.
These findings highlight the complex involvement of E2F family in BVZ treatment response
and the underlying biological mechanisms of GBM recurrence.

Cancers 2024, 16, 2536 12 of 22 
 

 

 

Figure 5. Functional and regulatory network analysis of E2F2 and E2F8 altered by BVZ treatment. 

(A) Expression levels of E2F2 and E2F8 in GBM BVZ-responsive and non-responsive subtypes be-

fore BVZ treatment from the TCGA dataset (p > 0.05, BVZ (n = 123) vs. Non (n = 286), error bars 

represent SE.). (B) Expression levels of E2F2 and E2F8 in GBM BVZ response subtype before and 

after treatment from GSE79671 (p = 0.006, n = 7, error bars represent SE). (C) Significant relevant 

GO terms (set at p = 0.01) based on E2F8 and E2F2. (D) Regulatory-related network of E2F8 over-

lapping with DE genes in BVZ responsive subtype of GBM following its treatment using Cyto-

scape analysis. 

We identified genes that were significantly differentially expressed before and after 

BVZ treatment in the BVZ-responsive subtype of GBM. We further analyzed the biologi-

cal processes and cellular components associated with malignancy, as well as the genes 

associated with enriched miRNA in this process. In Figure 5C, the names of functional 

processes, gene counts, and p-values are shown. We observed the enrichment of genes 

involved in sprouting angiogenesis (GO:0002040) [40,41], cell cycle comprising mitosis 

without cytokinesis (GO:0033301, https://amigo.geneontology.org/amigo/term/ 

GO:0033301/ accessed on 9 July 2024), RNA polymerase II transcription regulator com-

plex (GO:0090575, https://amigo.geneontology.org/amigo/term/GO:0090575/ accessed on 

9 July 2024), and miRNA-let-7a. In these four terms, −log(p-values) of sprouting angio-

Figure 5. Functional and regulatory network analysis of E2F2 and E2F8 altered by BVZ treatment.
(A) Expression levels of E2F2 and E2F8 in GBM BVZ-responsive and non-responsive subtypes before
BVZ treatment from the TCGA dataset (p > 0.05, BVZ (n = 123) vs. Non (n = 286), error bars represent
SE.). (B) Expression levels of E2F2 and E2F8 in GBM BVZ response subtype before and after treatment
from GSE79671 (p = 0.006, n = 7, error bars represent SE). (C) Significant relevant GO terms (set at
p = 0.01) based on E2F8 and E2F2. (D) Regulatory-related network of E2F8 overlapping with DE
genes in BVZ responsive subtype of GBM following its treatment using Cytoscape analysis.

We identified genes that were significantly differentially expressed before and after
BVZ treatment in the BVZ-responsive subtype of GBM. We further analyzed the biolog-
ical processes and cellular components associated with malignancy, as well as the genes
associated with enriched miRNA in this process. In Figure 5C, the names of functional
processes, gene counts, and p-values are shown. We observed the enrichment of genes
involved in sprouting angiogenesis (GO:0002040) [40,41], cell cycle comprising mitosis with-
out cytokinesis (GO:0033301, https://amigo.geneontology.org/amigo/term/GO:0033301/
accessed on 9 July 2024), RNA polymerase II transcription regulator complex (GO:0090575,
https://amigo.geneontology.org/amigo/term/GO:0090575/ accessed on 9 July 2024), and

https://amigo.geneontology.org/amigo/term/GO:0033301/
https://amigo.geneontology.org/amigo/term/GO:0090575/
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miRNA-let-7a. In these four terms, −log(p-values) of sprouting angiogenesis is larger
than other terms, so it was chosen for further investigation. These GO terms and pathway
analyses further revealed that important genes involved in angiogenesis, cell cycle mitosis,
and cell proliferation were significantly enriched in the BVZ-responsive subtype of GBM
after BVZ treatment.

Furthermore, the regulatory gene network of E2F8 was explored by integrating DE
gene expression in the BVZ responsive subtype of GBM before and after treatment into
the current BioGrid network, as shown in Figure 5D. The protein–protein interaction (PPI)
network data were organized and visualized using Cytoscape, and 25 nodes and 78 edges
were found in the PPI network (all nodes are shown in Supplementary Table S2). The size
and color depth of the nodes in the network correspond to their expression degree labeled
by logFC values, where red indicates increased expression, green indicates decreased
expression, and blue indicates no expression value in the DE genes.

The expression levels of STUB1 (STIP1 Homology And U-Box Containing Protein 1, E3
Ubiquitin) and YWHAQ (Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase) were
significantly increased after BVZ treatment in BVZ-responsive subtype of GBM, indicating
their involvement in the E2F8 network and potential regulation by E2F8. Other nodes
that do not appear in the DE gene list are shown in light blue. In this figure, the colors of
STUB1 and YWHAQ are shown in red, indicating that not only were their expression levels
significantly increased, but they also overlapped with E2F8 regulatory networks.

3.5. Recurrence Machinism Analysis of E2Fs and Related Genes

Because of the involvement of angiogenesis GO:0002040, the expression levels of
VEGF in BVZ-responsive GBM subtypes after BVZ treatment were examined. There
were 17 paired datasets from a total of 21 GBM samples before and after BVZ treatment,
including 12 BVZ non-responsive data (Non) and 5 BVZ responsive data (BVZ). The log(FC)
of (VEGFpost/VEGFpre) was calculated and presented as a bidirectional bar graph. To our
surprise, 80% of patients who did not respond to BVZ treatment had increased or no change
in VEGF expression after treatment, as shown in Figure 6A, while 60% of GBM patients
who responded to BVZ treatment had increased VEGF expression, as shown in Figure 6B.
As can be seen in the figure, there is a more than 10-fold difference in VEGF expression
before and after BVZ treatment in both the subtypes that respond to BVZ and those that do
not respond to BVZ, so in this sample size there is no significant difference between the
two subtypes before and after BVZ treatment. However, GBM patients must be examined
and considered individually. This fact suggests that BVZ treatment in unresponsive GBM
patients may worsen disease progression, and accurate BVZ treatment in GBM patients is
strongly recommended.

To further explore recurrent mechanisms, we compared expression levels of associ-
ated genes between recurrent and primary GBM patients. First of all, we compared the
expression levels of STUB1 and YWHAQ in recurrent patients (24 cases) with primary
(82 cases) GBM from the CGGA dataset, as shown in Figure 6C. Their expression levels
were increased in recurrent patients, although not significantly. E2F8 expression levels
also increased in comparison with primary patients, indicating their involvement in GBM
recurrence. Considering that these relapsed patients did not receive BVZ treatment and
were not classified into BVZ-responsive subtypes, these expression trends support our
hypothesis and results to some extent, especially in the expression of STUB1. However, all
these expression levels need to be validated in a larger cohort of BVZ-treated patients.

Additionally, VEGFC significantly decreased (p = 0.03) in recurrent patients compared
with primary patients. After IDH mutant patients were excluded from both groups of
GBM, E2F3 decreased significantly (p < 0.05) in recurrent patients, and E2F5 decreased
significantly in secondary GBM IDH wild-type patients compared with primary GBM
patients. In contrast, E2F8 increased in recurrent patients and secondary (10) GBM IDH
wild-type patients, but not significantly in such a group size. This suggests that E2F
members play different roles in GBM recurrence, though their hazard ratios are similar.
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Figure 6. Expression levels of genes related to GBM recurrence and BVZ drug resistance. (A) Two-way
bar graph showing the logarithm (FC) of VEGF expression after BVZ treatment in unresponsive
(Non) GBM patients. (B) The graph shows the logarithm (FC) of VEGF expression in patients with
BVZ-responsive (BVZ) GBM after BVZ treatment. (C) The expression levels of E2F8, STUB1, and
YWHAQ from the CGGA dataset are shown as the ratio of (recurrent or primary)/primary (%) (for
STUB1 p = 0.09, primary (82) vs. recurrent (24) and for E2F8 and YWHAQ p > 0.1, all error bars
represent SE). (D) The PPI figure from STRING analysis shows that E2F members are involved as
hub genes using EMBL-EBI dataset. (E) The expression levels of E2F2 and E2F8 represent the ratio
of post- vs. pre-BVZ treatment (%) in BVZ-responsive subtypes of GBM recurrent patients after
treatment (BVZ-responsive n = 3, BVZ-non-responsive n = 12, p > 0.05, not significant) using the
EMBL-EBI dataset. (F) The expression levels of STUB1, YWHAQ, and VEGF represent the ratio
of post- vs. pre-BVZ treatment (%) in BVZ-responsive subtypes of GBM recurrent patients after
treatment (BVZ-responsive n = 3, BVZ-non-responsive n = 12, p > 0.05, not significant) using the
EMBL-EBI dataset.

To validate these results, we used the E-MTAB-1380 and E-MEXP-3296 datasets. These
datasets derived from different platforms and have a small number of cases, so the machine
learning models we constructed could not be used directly in this case. Therefore, we
classified and detected them based on the above-mentioned seven gene biomarkers of GBM
BVZ-responsive subtypes and the original method described before [20]. We were able
to use these biomarkers because they provided gene expression data from pretreatment
primary GBM samples, the same conditions under which we obtained the biomarkers for
GBM BVZ-responsive subtypes. Briefly, we implemented the ‘sequences’ function, one of
the deep learning methods, with the TCGA dataset according to the MatLab protocol and
our previous study. Then the 7 genes obtained were optimized and screened for the best
variants, and GREB1 and FKBP9 were finally selected in the subsequent steps. The z scores
of the highly expressed (top eight) patients for each gene before BVZ treatment were ranked.
The clusters were found through the Venny diagram, giving BVZ-responsive patients as
T2, T3, and T11, and the remaining patients as BVZ-non-responsive subtypes of GBM.
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Supplementary Figure S2 shows the selection process. The Venn diagram showed that
patient IDs among patients with high expression of both GREB1 and FKBP9 were clustered
as BVZ-responsive GBM patients. The other patient IDs (highly expressed GREB1 or highly
expressed FKBP9) were BVZ-non-responsive patients. Considering that these patients who
received BVZ treatment relapsed after an average of 31 days, it is reasonable that 20% of
patients in this group responded to BVZ treatment [33], even though the proportion was
approximately 30%, based on previous AI and clinical studies [20,31,42].

After categorizing the 15 GBM patients into BVZ-responsive and non-responsive
subtypes, we identified 1249 differentially expressed (DE) genes in the responsive subtype
(n = 3) and 1120 DE genes in the non-responsive subtype (n = 12), using paired t-tests
with a significance level of p < 0.05. Functional analysis of these DE genes revealed eight
transcription factors (TFs) that surpassed the significance threshold in the BVZ-responsive
subtype. In contrast, as shown previously, again no significant TFs were identified in the
non-responsive subtype. We further analyzed these significant TFs using STRING analysis,
as shown in Figure 6D. Despite identifying only eight TFs, including members of the E2F
family such as E2F1, E2F2, E2F4, and E2F family, these E2F members still emerged as hub
genes in the regulatory network. It is noteworthy that the E2F family appeared twice in
the list as before, representing different TF IDs and associated with distinct targets. This
reflects the complexity of TF regulation, which is intricately linked to sequence senses. It is
important to acknowledge the significant experimental differences between the GSE79671
and EMBL-EBI datasets. These differences include high-throughput RNA-seq technology
versus microarray technology, fresh tissue versus PPFE fixed tissue, and seven cases versus
three cases. Most importantly, these patients were used for BVZ resistance studies, and
their tumors relapsed within an average of 31 days. Therefore, the validation of the E2F
family regulatory network should be considered to have been well reproduced using this
dataset. Furthermore, the results again demonstrate that the E2F family regulatory network
is not only important but also sensitive to different situations.

To further explore the mechanism of recurrence, we compared the expression levels
of relevant genes in GBM patients before and after BVZ treatment in the EMBL-EMI
dataset. First, we compared the expression levels of E2F2 and E2F8 in the BVZ-responsive
subtypes of recurrent patients, as shown in Figure 6E. In BVZ-responsive GBM patients,
the expression levels of E2F2 and E2F8 increased by approximately 2-fold and 6.5-fold,
respectively, after BVZ treatment. In contrast, in BVZ-unresponsive patients, the expression
level of E2F2 decreased by 70% compared to that before BVZ treatment, while the expression
levels of E2F8 increased by approximately 190%. Then, we examined the expression levels
of STUB1, YWHAQ, and VEGF in BVZ-responsive subtypes of GBM recurrent patients,
as shown in Figure 6F. The expression levels of YWHAQ increased by 160% in BVZ-
responsive GBM recurrent patients but decreased by 70% in BVZ-non-responsive GBM
recurrent patients after BVZ treatment. The expression levels of STUB1 and VEGF remained
unchanged or slightly increased in BVZ-responsive subtypes of GBM recurrent patients.
Although there were many differences between this dataset and the previously used dataset,
these correlated gene expression data partially supported our previous results, especially
in the expression of E2F2, E2F8, and YWHAQ. After treatment, the expression levels of
E2F8 and E2F2 increased by 190% and 118, respectively, and the expression levels of STUB1
and YWHAQ increased by approximately 110% between GBM BVZ-responsive and non-
responsive subtypes (p > 0.05, BVZ (n = 3) vs. Non (n = 12)). These results suggest that the
expression levels of these related genes were increased in patients with relapse after BVZ
treatment but were more increased in GBM BVZ-responsive patients. Therefore, all results
were repeated and validated to some extent, including the regulatory networks of the E2F
family, the expression levels of E2F2, E2F8, STUB1, and YWHAQ after BVZ treatment.

4. Discussion

This study introduced a novel perspective by focusing on the complex relationship
between E2F family members, survival outcomes, and relapse mechanisms in GBM patients
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after BVZ treatment, with a particular emphasis on the role of E2F8. BVZ treatment has
been shown to have a significant impact on 90 transcription factors and their hub genes,
including E2Fs. This phenotype encouraged our investigation. The expression levels of
all E2F members have a strong association with survival-related risk, but the more impor-
tant factors identified by the LASSO model were E2F8, E2F2, and E2F4. Using machine
learning approaches, including TreeBagger and DNN, and E2F1–8 expression datasets,
survival terms of GBM patients were successfully predicted and validated, emphasizing
that these factors play a key role in tumor progression and patient survival. By analyzing
clinicopathological characteristics in primary and recurrent GBM, we gained insights and
identified targets related to angiogenesis and proliferation through E2F8 regulation after
BVZ treatment. Most importantly, BVZ therapy may worsen disease progression in patients
with unresponsive GBM, indicating the necessity of precise treatment. Finally, we were
the first to identify and validate the involvement of STUB1 and YWHAQ, suggesting their
potential roles in GBM recurrence and progression in patients who are responsive to BVZ
treatment. These findings may guide future therapeutic strategies. However, further ex-
perimentation is needed to confirm these results derived from bioinformatics and artificial
intelligence analyses.

Given that AI technology has been successfully used in precision medicine, including
in cancer category classification and drug design based on big data training and vali-
dation [43,44], this study utilized AI technology, bioinformatics analyses, and existing
datasets as tools and resources. It followed the principles of real-world experiments (or
wet experiments), which involve starting with new phenotypes and open exploration
to explore possible GBM recurrence mechanisms. Throughout this process, researchers
constantly tracked new data and clues, adjusted directions, and improved their understand-
ing. The only difference here is the use of artificial intelligence algorithms and existing
datasets as tools. Most importantly, AI techniques and bioinformatics analyses often deliver
surprising results and opportunities because they avoid barriers such as funding, equip-
ment and spaces, and biases stemming from personal preferences or perspectives. This
novel journey has brought existing research, accumulated through years of human effort
and vast amounts of money, back to life, contributing to human well-being and biomedi-
cal exploration again. In contrast, real experiments emphasize repeatability and control.
Our findings have been validated and compared using different datasets from various
research groups, thus demonstrating repeatability and reproduction of our results through
a combined validation approach. This study not only discovered novel facts and possible
mechanisms, but also contributed to customizing and adapting existing interpretable ML
methods and datasets to biomedical and bioinformatics research problems. It provided
suggestions and directions for precision cancer treatment and research.

Previous studies have indicated that E2F7 and E2F8, both considered as atypical E2Fs,
function as transcriptional regulators of VEGF expression [45]. Specifically, they directly
bind to, and stimulate, the VEGF promoter, independently of canonical E2F binding ele-
ments, thereby controlling angiogenesis. BVZ, an antibody that neutralizes and inhibits
VEGF, thus suppressing angiogenesis, has been found to potentially increase E2F8 expres-
sion. This increase in E2F8 expression may reduce the effectiveness of BVZ treatment,
rapidly restore VEGF expression and angiogenesis, and increase its hazard of risk. In recur-
rent GBM, E2F8 also showed a tendency to increase, while E2F3 decreased significantly.
However, the underlying mechanisms responsible for BVZ enhancing E2F8 expression re-
main unknown. Furthermore, studies on mouse and zebrafish with non-functional E2F7/8
mutant have demonstrated varying degrees of defects in angiogenesis and apoptosis, high-
lighting the crucial role of E2F7/8 in angiogenesis. In a mouse model, the inhibition of
E2F8 has been shown to suppress the development of various tumors by inhibiting angio-
genesis [46]. Therefore, incorporating E2F8 inhibition into BVZ therapy may potentially
enhance the inhibition of angiogenesis and lead to improved treatment efficiency.

E2F8 plays a significant role in cancer by affecting the proliferation and differentiation
of cancer stem cells (CSCs). CSCs are a small group of cancer cells that can self-renew
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and give rise to a diverse lineage of tumor-forming cells. They are largely responsible
for tumor growth, progression, and recurrence [47]. Studies have shown that E2F8 is
upregulated in various cancers, including glioblastoma, ovarian cancer, and hepatocellular
carcinoma, where it promotes cell proliferation and other effects [15,48]. Moreover, the
regulation of E2F8 throughout the cell cycle demonstrates extensive co-ordination between
phosphorylation, ubiquitination, and transcription in the mammalian cell cycle. E2F8 is
involved in the regulation of cyclin D1 and promotes the accumulation of S-phase cells in
hepatocellular carcinoma, further highlighting its role in cell proliferation [49]. Additionally,
E2F8 is one of the E2F family of transcription factors and is crucial for various cellular
processes, including those associated with cancer stem cells [8]. Therefore, targeting E2F8
may present a promising therapeutic approach to disrupt cancer stem cells and hinder
tumor growth and progression.

Furthermore, STUB1, an E3 ligase gene, is encoded at p13.3 of chromosome 16. It con-
tains seven exons and six introns and encodes a protein consisting of 303 amino acids [50]. It
plays a crucial role in cancer by regulating multiple pathways and participating in the E2F8
regulatory network. In GBM-recurrent patients, STUB1 expression increased. After BVZ
treatment, it increased significantly, indicating its effects in recurrent GBM and as resistant
to BVZ treatment. This study revealed that STUB1 inhibitors suppress interferon gamma
(IFNγ) responses by degrading IFNγ receptor 1 (IFNGR1). As a result, STUB1 inhibitors
enhance the tumor response to checkpoint immunotherapy [51]. Additional studies have
demonstrated that knocking down STUB1 increases the likelihood of metastasis to the
lungs of mice when injected intravenously or subcutaneously. In breast and lung cancer,
STUB1 interacts with various proteins through its ubiquitination-dependent proteasome
activity. It acts as a negative regulator associated with different proteins, affecting cell cycle
progression and metastasis [52,53].

YWHAQ belongs to the 14-3-3 (YWHA) small protein family with a molecular weight
of approximately 30 kD and has a hockey stick shape. The gene is located at 8q22.3. Various
14-3-3 isoforms have highly conserved structures and significant sequence similarity, so they
were historically studied using a single isoform [54]. They are phospho-serine/-threonine
binding proteins that are highly conserved and participate in many important cellular
processes, including metabolism, protein transport, signal transduction, apoptosis, and
cell cycle regulation. After BVZ treatment, YWHAQ expression levels were significantly
increased, and its expression was also increased in recurrent GBM patients. It may play an
important role in GBM recurrence. In addition, YWHAQ is upregulated in patients with
amyotrophic lateral sclerosis (ALS) [55]. While its specific expression in cancer has not
been extensively reported, other members of the family have been studied in cancer. For
example, YWHAZ, also known as 14-3-3ζ, is frequently upregulated in various cancers
and acts as an oncogene, promoting tumor progression through multiple cellular activities.
In breast cancer tissues, the expression levels of DAAM1 (dishevelled-associated activator
of morphogenesis 1) and YWHAZ are significantly upregulated and colocalized, with
YWHAZ binding to DAAM at its phosphorylated site, regulating cancer cell migration and
being strongly associated with poor prognosis [56]. The WHO now recognizes four cate-
gories of endometrial stromal tumor, with YWHAE, another 14-3-3 protein translocation,
identifying high-grade endometrial stromal sarcoma (HG-ESSs). This highlights the impact
of the YWHA family in molecular genetics in cancer and supports a new classification
system [57].

Based on numerous works of research, including our studies, accurate BVZ treatment
is highly recommended, for there are only about 30% of GBM patients who respond to
it [20,31,42]. For BVZ-non-responsive patients, they will take serious risks but without
benefits. Our previous study showed that BVZ treatment in unresponsive patients of GBM
resulted in multiple side effects, including aging [26]. In this study, we found that BVZ
treatment is most likely to increase VEGF expression, particularly in patients with BVZ-
unresponsive GBM. This VEGF increase may cause tumor recurrence and BVZ resistance.
Furthermore, according to clinical reports, GBM patients who undergo BVZ treatment
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are at risk of wound complications, including dehiscence, cerebrospinal fluid leakage,
infection, etc. After treatment, 44% of GBM patients who received pre-operative BVZ devel-
oped severe healing complications, compared to only 9% of patients who did not receive
treatment, which significantly increased the morbidity and mortality of these patients [58].
Other serious adverse events that GBM patients receiving BVZ treatment reported included
hypertension, neutropenia, visceral perforation, and serious hemorrhage [59]. This fact is
also supported by some reports about other cancers. It was reported that VEGF expression
significantly increased in SKBR-3 breast cancer cells treated with BVZ compared with
untreated cells, both in the low- and high-estrogen groups [60]. Moreover, BVZ treatment
increased VEGF in endothelial cells isolated from colon cancer [61]. Additionally, VEGF
levels were found to be elevated in the blood of patients with colorectal cancer metastases
treated with BVZ, which was thought to be due to a blockade of VEGF clearance by the
host [62]. Therefore, this increase may lead to GBM recurrence and affect the OS of GBM
patients treated with BVZ. In patients who responded to BVZ, the treatment decreased
several angiogenesis-related genes in addition to VEGF, including Ang1, SH1D2A, and
LEF1, as we previously reported, although VEGF expression was increased in some pa-
tients, which may indicate some different mechanisms, such as VEGF as an independent
mechanism for its antiangiogenic effects.

The utilization of AI techniques and pre-existing datasets in bioinformatics and
biomedical research studies is not without challenges [63], despite their discussed ad-
vantages. The quality of AI’s output is inherently tied to the data it is trained on, which
may contain biases or inaccuracies, especially biomedical data. The training process also
leads to a bias-variance trade-off, which is common to all machine learning applications.
Reliance on existing data can also hinder the discovery of new findings because exten-
sively studied datasets may not yield groundbreaking insights. In addition, some data
are generated using different techniques and are small in size, making them difficult to
combine and validate against each other, as we encountered in this study. Furthermore,
some machine learning models, such as deep neural networks, are black boxes, making it
difficult to interpret their decision-making processes. The lack of experimental validation
raises questions about the biological relevance of computational predictions. Addition-
ally, the use of pre-packaged software, such as some of those listed in the Materials and
Methods section (without coding), can limit customization and perpetuate existing biases
within the tools. Additionally, there are legal and privacy restrictions when dealing with
sensitive health records and exposure risks. The rapid evolution of AI technology can
render research quickly obsolete, while the resource-intensive nature of AI models can
be a barrier for some researchers. Lastly, the statistical significance identified by AI does
not always indicate biological relevance, leading to misleading conclusions. Addressing
these limitations requires a conscientious approach to research design, transparency and,
whenever possible, experimental corroboration of computational results.

5. Conclusions

In conclusion, a deep examination of E2F members provides new insights into the
mechanisms of glioblastoma outcomes and recurrence after bevacizumab (BVZ) treatment,
specifically those associated with E2F8. This study provides very strong evidence to rec-
ommend precision BVZ treatment for GBM patients. In addition, the involvement of
STUB1 and YWHAQ was revealed for the first time. However, there is still much to be
explored and confirmed in the future, especially regarding the changes in TFs after BVZ
treatment. It is worth noting that, although the E2F family positively influences angiogen-
esis, proliferation, and cancer progression, it also regulates some negative regulators or
tumor suppressors, and each member of the family shows different sensitivities to different
pathological situations. This leads to complex regulation of tumor growth and diverse
responses to cancer treatments. Therefore, targeting hub genes like E2F8 or multiple targets
simultaneously may yield favorable outcomes in cancer treatment.
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