Bevacizumab-Based Therapies in Malignant Tumors—Real-World Data on Effectiveness, Safety, and Cost
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Data Extraction
2.3. Statistical Analysis
3. Results
3.1. Population Characteristics
3.2. Response to Treatment
3.3. Safety Analysis–Adverse Events
3.4. Cost of Treatment
4. Discussion
Study | N | Design | Population | Results/Findings | Biases/Discussion |
---|---|---|---|---|---|
Colorectal cancer | |||||
Our study | 379 | Retrospective, Real-world data Unselected patients | mCRC 1L (N = 294) 2+ lines (N = 85) | 1L: PFS 13.5 mo; OS 26.3 mo; RR 60.9% 2+ lines: PFS 6.2 mo; OS 9.3 mo; RR 27.1% | Selection bias Non-uniform therapeutic regimens, dosing and scheduling |
AVF2107g [46,91,97,98] | 923 | Phase III, PL controlled, randomized Multicenter | mCRC 1L arm 1 (N = 411): IFL + PL arm 2 (N = 402): IFL + Bev 5 mg/kgc q2wk arm 3 (N = 110): FL + Bev 5 mg/kgc q2wk Enrollment in arm 3 was ceased prematurely due to safety concerns | OS: adding Bev to IFL improved OS from 15.6 to 20.3 months (p < 0.0001) PFS: adding Bev to IFL improved PFS from 7.06 to 10.35 months (p < 0.0001) RR: 44.8% in combined therapy QoL: no difference between arms in the time until deterioration (p = 0.5807) | Selection deficiencies Major breaches of study protocol in 39.9% of patients in arm 1 and in 49.5% of patients in arm 2 |
AVF0780g [43,45,91] | 104 | Phase II, randomized Multicenter, multidose, open-label | mCRC 1L arm 1 (N = 36): FL arm 2 (N = 35): Bev 5 mg/kgc q2wk + FL arm 3 (N = 33): 10 mg/kgc q2wk + FL | OS: addition of Bev to FL improves OS from 13.6 mo to 17.7 mo (arm 2) and 15.2 mo (arm 3)–results were not statistically significant (p > 0.05) PFS: addition of Bev 5 mg/kgc to FL improved PFS from 5.2 mo to 9.0 mo (p = 0.0049); 10 mg/kgc of Bev was not associated with improved PFS RR: arm 1–16.7%; arm 2–40% (p = 0.029); arm 3–24.2% (p = 0.43) | Multiple protocol deviations Small sample |
AVF2192g [91] | 209 | Phase II, PL controlled, randomized | mCRC 1L, in patients who were not optimal candidates for irinotecan arm 1 (N = 105): FL + PL arm 2 (N = 104): FL + Bev 5 mg/kgc q2wk | OS: although an improvement was observed in arm 2, it was not significant PFS: addition of Bev to FL increased PFS from 5.5 to 9.2 mo (p = 0.0002) RR: no significant difference between arms was observed | NS |
XELOX-1 (NO16966) [91,99,100] | 1401 | Phase III randomized, PL controlled, double-blind | mCRC 1L Bev 7.5 mg/kgc q3wk + XELOX or PL and Bev 5 mg/kgc q2wk + FOLFOX-4 or PL | Superiority of Bev-containing arms versus chemotherapy alone arms in the overall comparison was demonstrated in terms of PFS No significant difference in OS was observed by adding Bev to chemotherapy | NS |
E3200 [41,91] | 829 | Phase III randomized, controlled, open-label | mCRC, 2nd-line, Bev-naïve patients Arm 1 (N = 292): FOLFOX-4 Arm 2 (N = 293): Bev 10 mg/kgc q2wk+ FOLFOX-4 Arm 3 (N = 244): Bev monotherapy | OS: addition of Bev to FOLFOX-4 increased OS from 10.8 to 13.0 mo (p = 0.0012) PFS: addition of Bev to FOLFOX-4 increased PFS from 4.5 to 7.5 mo (p < 0.0001) RR: arm 1–8.6%; arm 2–22.2% (p < 0.0001) No significant difference was observed in OS between arm 3 and arm 1 PFS and RR were inferior in arm 3 compared to arm 1 | NS |
ML18147 [91,101] | 819 | Phase III, randomized, controlled, open-label | 2nd-line with previous Bev treatment following disease progression after 1L, arm 1 (N = 410): Bev 5.0 or 7.5 mg/kgc q2wk + fluoropyrimidine/irinotecan arm 2 (N = 409): fluoropyrimidine/oxaliplatin | OS: addition of Bev increased OS from 9.8 to 11.2 mo (p = 0.0062) PFS: addition of Bev increased PFS from 4.1 to 5.7 mo (p < 0.0001) RR: no significant difference was observed | NS |
Breast cancer | |||||
Our study | 51 | Retrospective, Real-world data Unselected patients | m/r BC 1L (N = 23) 2+ lines (N = 28) | 1L: PFS 10.2 mo; OS 19.7 mo; RR 65.2% 2+ lines: PFS 8.1 mo; OS 15.6 mo; RR 60.7% | Selection bias Non-uniform therapeutic regimens, dosing, and scheduling |
ECOG E2100 [91,102,103] | 722 | Phase III, open-label, randomized, active controlled, multicenter | m/r BC Arm 1 (N = 354): paclitaxel Arm 2 (N = 368): paclitaxel + Bev 10 mg/kgc q2wk | PFS: addition of Bev increased PFS from 5.8 to 11.4 mo (p < 0.0001) RR: arm 1–23.4%; arm 2–48.0% (p < 0.0001) No significant OS benefit was observed | NS |
RIBON 1 (AVF3694g/BO20094) [91,104] | 1237 | Phase III, multicenter, randomized, PL-controlled | m/r BC 1L, Her2-negative patients chemotherapy (capecitabine or anthracycline/taxanes) + PL chemotherapy (capecitabine or anthracycline/taxanes) + Bev 15 mg/kgc q3wk | PFS: addition of Bev to capecitabine increased PFS from 6.2 to 9.8 mo (p = 0.0011) RR: addition of Bev to capecitabine increased RR from 23.6% to 35.4% (p = 0.0097) Similar results were observed when adding Bev to anthracyclines/taxanes No significant OS benefit was observed | Significant increase of adverse reactions in Bev arms |
AVADO (BO17708) [90,91] | 736 | Phase III, randomized, PL-controlled, double blind | m/r BC 1L, Her2 negative patients arm 1: Docetaxel + PL arm 2: Docetaxel + Bev 7.5 mg/kgc arm 3: Docetaxel + Bev 15 mg/kgc | Addition of Bev 7.5 mg/kgc led to a 30% increase of PFS (HR = 0.70; CI95% 0.55–0.90) Addition of Bev 15 mg/kgc led to a 39% increase of PFS (HR = 0.62; CI95% 0.48–0.79) RR: arm 1–44%; arm 2–55%; arm 3–63% (increases in Bev arms were significant) OS has decreased in both Bev arms, but this result was not significant | The absolute improvement in PFS was, in fact, quite small–0,8 mo and, 0.88 mo respectively Significant increase of adverse reactions in Bev arms |
NSCLC | |||||
Our study | 32 | Retrospective, Real-world data Unselected patients | m/a/r NSCLC 1L (N = 27) 2+ lines (N = 5) | 1L: PFS 7.4 mo; OS 12.6 mo; RR 66.7% 2+ lines: PFS 8.4 mo; OS 13.1 mo; RR 60% | Selection bias Non-uniform therapeutic regimens, dosing, and scheduling |
ECOG E4599 [91,105,106] | 878 | Phase II, open-label, randomized, controlled, multicenter | a/m NSCLC arm 1 (N = 444): carboplatin/paclitaxel arm 2 (N = 434): carboplatin/paclitaxel + Bev 1 mg/kgc q3wk | OS: addition of Bev improved OS from 10.3 to 12.3 mo (HR 0.80, CI95% 0.69–0.93, p = 0.003) PFS: addition of Bev improved PFS from 4.8 to 6.4 mo (HR 0.65, CI95% 0.56–0.76, p < 0.0001) RR: addition of Bev improved RR from 12.9% to 29% (p < 0.0001) | In subgroup analysis, the OS benefits were less pronounced in patients with other histology than adenocarcinoma |
AVAiL (BO17704) [91,107] | 1043 | Phase III, randomized, double bind PL-controlled | a NSCLC 1L arm 1 (N = 347): cisplatin/gemcitabine + PL arm 2 (N = 345): cisplatin/gemcitabine + Bev 7.5 mg/kgc q3wk arm 3 (N = 351): cisplatin/gemcitabine + Bev 15 mg/kgc q3wk | No significant OS benefits were observed in Bev arms PFS was improved in both Bev arms but only by an absolute difference of 0.6 mo (in arm 2) and 0.4 mo (in arm 3) RR: 20.1%-arm 1; 34.1%-arm 2 (p < 0.0001); 30.4%-arm 3 (p = 0.002) | NS |
Ovarian cancer | |||||
Our study | 127 | Retrospective, Real-world data Unselected patients | a/m/r OC | PFS 7.0 mo; OS 11.5 mo; RR 31.5% | Selection bias Non-uniform therapeutic regimens, dosing, and scheduling |
GOG-0218 [91,108] | 1873 | Phase III multicenter, randomized, double-blind, PL-controlled | a/m OC 1L, chemotherapy-naïve patients arm 1 (N = 625): 5 cycles carboplatin-paclitaxel + PL followed by 6 cycles of PL alone arm 2 (N = 625): 5 cycles carboplatin-paclitaxel + Bev 15 mg/kgc q3wk followed by 6 cycles of PL alone arm 3 (N = 623): 5 cycles carboplatin-paclitaxel + Bev 15 mg/kgc q3wk followed by 6 cycles of Bev 15 mg/kgc alone | No significant OS or RR benefits were observed in Bev arms. PFS: an increase of PFS was observed in arm 2 (11.6 vs. 10.6 mo; HR 0.89, CI95% 0.78–1.02, p = 0.0437) and in arm 3 (14.7 vs. 10.6 mo; HR 0.70, CI95% 0.61–0.81, p < 0.0001) | NS |
ICON7 (BO17707) [52,91] | 1528 | Phase III, multicenter, randomized, controlled, open-label | a/m OC following surgery, chemotherapy-naïve patients arm 1 (N = 764): carboplatin-paclitaxel arm 2 (N = 764): same chemotherapy + Bev 7.5 mg/kgc q3wk for up to 12 mo (Bev was initiated at cycle 2 of chemotherapy and within 4 weeks of surgery) | No significant OS benefits were observed in Bev arm. PFS: addition of Bev increased PFS from 16.9 to 19.3 mo (HR 0.86, CI95% 0.75–0.98, p = 0.0185) RR: addition of Bev increased RR from 54.9% to 64.7% (p = 0.0188) | NS |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergers, G.; Javaherian, K.; Lo, K.M.; Folkman, J.; Hanahan, D. Effects of Angiogenesis Inhibitors on Multistage Carcinogenesis in Mice. Science 1999, 284, 808–812. [Google Scholar] [CrossRef] [PubMed]
- Folkman, J. Tumor Angiogenesis: Therapeutic Implications. N. Engl. J. Med. 1971, 285, 1182–1186. [Google Scholar] [CrossRef] [PubMed]
- Ribatti, D.; Nico, B.; Crivellato, E.; Roccaro, A.M.; Vacca, A. The History of the Angiogenic Switch Concept. Leukemia 2007, 21, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Carmeliet, P. Mechanisms of Angiogenesis and Arteriogenesis. Nat. Med. 2000, 6, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Shojaei, F.; Ferrara, N. Role of the Microenvironment in Tumor Growth and in Refractoriness/Resistance to Anti-Angiogenic Therapies. Drug Resist. Update 2008, 11, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Whiteside, T.L. The Tumor Microenvironment and Its Role in Promoting Tumor Growth. Oncogene 2008, 27, 5904–5912. [Google Scholar] [CrossRef] [PubMed]
- Folkman, J. Angiogenesis: An Organizing Principle for Drug Discovery? Nat. Rev. Drug Discov. 2007, 6, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Folkman, J. Patterns and Emerging Mechanisms of the Angiogenic Switch during Tumorigenesis. Cell 1996, 86, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Ranieri, G.; Patruno, R.; Ruggieri, E.; Montemurro, S.; Valerio, P.; Ribatti, D. Vascular Endothelial Growth Factor (VEGF) as a Target of Bevacizumab in Cancer: From the Biology to the Clinic. Curr. Med. Chem. 2006, 13, 1845–1857. [Google Scholar] [CrossRef]
- Koch, S.; Claesson-Welsh, L. Signal Transduction by Vascular Endothelial Growth Factor Receptors. Cold Spring Harb. Perspect. Med. 2012, 2, a006502. [Google Scholar] [CrossRef]
- Ferrara, N.; Adamis, A.P. Ten Years of Anti-Vascular Endothelial Growth Factor Therapy. Nat. Rev. Drug Discov. 2016, 15, 385–403. [Google Scholar] [CrossRef]
- Ferrara, N. VEGF and the Quest for Tumour Angiogenesis Factors. Nat. Rev. Cancer 2002, 2, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Shweiki, D.; Itin, A.; Soffer, D.; Keshet, E. Vascular Endothelial Growth Factor Induced by Hypoxia May Mediate Hypoxia-Initiated Angiogenesis. Nature 1992, 359, 843–845. [Google Scholar] [CrossRef] [PubMed]
- Chin, K.F.; Greenman, J.; Gardiner, E.; Kumar, H.; Topping, K.; Monson, J. Pre-Operative Serum Vascular Endothelial Growth Factor Can Select Patients for Adjuvant Treatment after Curative Resection in Colorectal Cancer. Br. J. Cancer 2000, 83, 1425–1431. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Heer, K.; Lee, P.W.; Duthie, G.S.; MacDonald, A.W.; Greenman, J.; Kerin, M.J.; Monson, J.R. Preoperative Serum Vascular Endothelial Growth Factor Can Predict Stage in Colorectal Cancer. Clin. Cancer Res. 1998, 4, 1279–1285. [Google Scholar] [PubMed]
- Fernando, N.H.; Hurwitz, H.I. Inhibition of Vascular Endothelial Growth Factor in the Treatment of Colorectal Cancer. Semin. Oncol. 2003, 30, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Grothey, A.; Galanis, E. Targeting Angiogenesis: Progress with Anti-VEGF Treatment with Large Molecules. Nat. Rev. Clin. Oncol. 2009, 6, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, N.; Kerbel, R.S. Angiogenesis as a Therapeutic Target. Nature 2005, 438, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Boehm-Viswanathan, T. Is Angiogenesis Inhibition the Holy Grail of Cancer Therapy? Curr. Opin. Oncol. 2000, 12, 89–94. [Google Scholar] [CrossRef]
- Stapor, P.; Wang, X.; Goveia, J.; Moens, S.; Carmeliet, P. Angiogenesis Revisited—Role and Therapeutic Potential of Targeting Endothelial Metabolism. J. Cell Sci. 2014, 127, 4331–4341. [Google Scholar] [CrossRef]
- Gacche, R.N. Compensatory Angiogenesis and Tumor Refractoriness. Oncogenesis 2015, 4, e153. [Google Scholar] [CrossRef] [PubMed]
- De Bock, K.; Cauwenberghs, S.; Carmeliet, P. Vessel Abnormalization: Another Hallmark of Cancer?Molecular Mechanisms and Therapeutic Implications. Curr. Opin. Genet. Dev. 2011, 21, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Pettersson, A.; Nagy, J.A.; Brown, L.F.; Sundberg, C.; Morgan, E.; Jungles, S.; Carter, R.; Krieger, J.E.; Manseau, E.J.; Harvey, V.S.; et al. Heterogeneity of the Angiogenic Response Induced in Different Normal Adult Tissues by Vascular Permeability Factor/Vascular Endothelial Growth Factor. Lab. Investig. 2000, 80, 99–115. [Google Scholar] [CrossRef]
- Nagy, J.A.; Chang, S.H.; Dvorak, A.M.; Dvorak, H.F. Why Are Tumour Blood Vessels Abnormal and Why Is It Important to Know? Br. J. Cancer 2009, 100, 865–869. [Google Scholar] [CrossRef] [PubMed]
- Dewhirst, M.W.; Secomb, T.W. Transport of Drugs from Blood Vessels to Tumour Tissue. Nat. Rev. Cancer 2017, 17, 738. [Google Scholar] [CrossRef] [PubMed]
- Easwaran, H.; Tsai, H.C.; Baylin, S.B. Cancer Epigenetics: Tumor Heterogeneity, Plasticity of Stem-like States, and Drug Resistance. Mol. Cell 2014, 54, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhu, M.-S.; Wu, W.-R.; Shi, X.-D.; Xu, L.-B. Role of Anti-Angiogenesis Therapy in the Management of Hepatocellular Carcinoma: The Jury Is Still Out. World J. Hepatol. 2014, 6, 830–835. [Google Scholar] [CrossRef] [PubMed]
- Michaelsen, S.R.; Staberg, M.; Pedersen, H.; Jensen, K.E.; Majewski, W.; Broholm, H.; Nedergaard, M.K.; Meulengracht, C.; Urup, T.; Villingshøj, M.; et al. VEGF-C Sustains VEGFR2 Activation under Bevacizumab Therapy and Promotes Glioblastoma Maintenance. Neuro Oncol. 2018, 20, 1462–1474. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.P.; Rodriguez, M.; Adams, K.; Goldenberg, D.M.; Blumenthal, R.D. Altered Tumor Vessel Maturation and Proliferation in Placenta Growth Factor-Producing Tumors: Potential Relationship to Post-Therapy Tumor Angiogenesis and Recurrence. Int. J. Cancer 2003, 105, 158–164. [Google Scholar] [CrossRef]
- Shojaei, F.; Wu, X.; Malik, A.K.; Zhong, C.; Baldwin, M.E.; Schanz, S.; Fuh, G.; Gerber, H.P.; Ferrara, N. Tumor Refractoriness to Anti-VEGF Treatment Is Mediated by CD11b+Gr1+ Myeloid Cells. Nat. Biotechnol. 2007, 25, 911–920. [Google Scholar] [CrossRef]
- Shojaei, F.; Wu, X.; Zhong, C.; Yu, L.; Liang, X.H.; Yao, J.; Blanchard, D.; Bais, C.; Peale, F.V.; Van Bruggen, N.; et al. Bv8 Regulates Myeloid-Cell-Dependent Tumour Angiogenesis. Nature 2007, 450, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Xie, K.; Ding, G.; Li, J.; Chen, K.; Li, H.; Qian, J.; Jiang, C.; Fang, J. Tumor Resistance to Anti-VEGF Therapy through up-Regulation of VEGF-C Expression. Cancer Lett. 2014, 346, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Crawford, Y.; Kasman, I.; Yu, L.; Zhong, C.; Wu, X.; Modrusan, Z.; Kaminker, J.; Ferrara, N. PDGF-C Mediates the Angiogenic and Tumorigenic Properties of Fibroblasts Associated with Tumors Refractory to Anti-VEGF Treatment. Cancer Cell 2009, 15, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Casanovas, O.; Hicklin, D.J.; Bergers, G.; Hanahan, D. Drug Resistance by Evasion of Antiangiogenic Targeting of VEGF Signaling in Late-Stage Pancreatic Islet Tumors. Cancer Cell 2005, 8, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Pahler, J.C.; Tazzyman, S.; Erez, N.; Chen, Y.Y.; Murdoch, C.; Nozawa, H.; Lewis, C.E.; Hanahan, D. Plasticity in Tumor-Promoting Inflammation: Impairment of Macrophage Recruitment Evokes a Compensatory Neutrophil Response. Neoplasia 2008, 10, 329-IN2. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann-La Roche Limited. Product Monograph—Including Patient Medication Information. Available online: https://assets.roche.com/f/173850/x/5c3325cd99/avastin_pm_e.pdf (accessed on 28 February 2024).
- Kazazi-Hyseni, F.; Beijnen, J.H.; Schellens, J.H.M. Bevacizumab. Oncologist 2010, 15, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Shih, T.; Lindley, C. Bevacizumab: An Angiogenesis Inhibitor for the Treatment of Solid Malignancies. Clin. Ther. 2006, 28, 1779–1802. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, N.; Hillan, K.J.; Gerber, H.P.; Novotny, W. Discovery and Development of Bevacizumab, an Anti-VEGF Antibody for Treating Cancer. Nat. Rev. Drug Discov. 2004, 3, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lu, X.; Lu, B.; Gullo, G.; Chen, L. Measuring the Composition of the Tumor Microenvironment with Transcriptome Analysis: Past, Present and Future. Future Oncol. 2024. [Google Scholar] [CrossRef]
- Giantonio, B.J.; Catalano, P.J.; Meropol, N.J.; O’Dwyer, P.J.; Mitchell, E.P.; Alberts, S.R.; Schwartz, M.A.; Benson, A.B. Bevacizumab in Combination with Oxaliplatin, Fluorouracil, and Leucovorin (FOLFOX4) for Previously Treated Metastatic Colorectal Cancer: Results from the Eastern Cooperative Oncology Group Study E3200. J. Clin. Oncol. 2007, 25, 1539–1544. [Google Scholar] [CrossRef]
- Hurwitz, H.; Saini, S. Bevacizumab in the Treatment of Metastatic Colorectal Cancer: Safety Profile and Management of Adverse Events. Semin. Oncol. 2006, 33, S26–S34. [Google Scholar] [CrossRef] [PubMed]
- Kabbinavar, F.F.; Hurwitz, H.I.; Yi, J.; Sarkar, S.; Rosen, O. Addition of Bevacizumab to Fluorouracil-Based First-Line Treatment of Metastatic Colorectal Cancer: Pooled Analysis of Cohorts of Older Patients from Two Randomized Clinical Trials. J. Clin. Oncol. 2009, 27, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.; Hurwitz, H.I.; Sandler, A.B.; Miles, D.; Coleman, R.L.; Deurloo, R.; Chinot, O.L. Bevacizumab (Avastin®) in Cancer Treatment: A Review of 15 Years of Clinical Experience and Future Outlook. Cancer Treat. Rev. 2020, 86, 102017. [Google Scholar] [CrossRef] [PubMed]
- Kabbinavar, F.; Hurwitz, H.I.; Fehrenbacher, L.; Meropol, N.J.; Novotny, W.F.; Lieberman, G.; Griffing, S.; Bergsland, E. Phase II, Randomized Trial Comparing Bevacizumab Plus Fluorouracil (FU)/Leucovorin (LV) with FU/LV Alone in Patients with Metastatic Colorectal Cancer. J. Clin. Oncol. 2016, 21, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; et al. Bevacizumab plus Irinotecan, Fluorouracil, and Leucovorin for Metastatic Colorectal Cancer. N. Engl. J. Med. 2004, 350, 2335–2342. [Google Scholar] [CrossRef] [PubMed]
- Simion, L.; Rotaru, V.; Cirimbei, S.; Chitoran, E.; Gales, L.; Luca, D.C.; Ionescu, S.; Tanase, B.; Ginghina, O.; Alecu, M.; et al. Simultaneous Approach Of Colo-Rectal And Hepatic Lesions In Colo-Rectal Cancers with Liver Metastasis—A Single Oncological Center Overview. Chirurgia 2023, 118, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Raouf, S.; Bertelli, G.; Ograbek, A.; Field, P.; Tran, I. Real-World Use of Bevacizumab in Metastatic Colorectal, Metastatic Breast, Advanced Ovarian and Cervical Cancer:A Systematic Literature Review. Future Oncol. 2019, 15, 543–561. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, R.H.; Guarneri, V.; Icli, F.; Johnston, S.; Khayat, D.; Loibl, S.; Martin, M.; Zielinski, C.; Conte, P.; Hortobagyi, G.N. Bevacizumab Treatment for Advanced Breast Cancer. Oncologist 2011, 16, 1684–1697. [Google Scholar] [CrossRef] [PubMed]
- Aghajanian, C.; Blank, S.V.; Goff, B.A.; Judson, P.L.; Teneriello, M.G.; Husain, A.; Sovak, M.A.; Yi, J.; Nycum, L.R. OCEANS: A Randomized, Double-Blind, Placebo-Controlled Phase III Trial of Chemotherapy with or without Bevacizumab in Patients with Platinum-Sensitive Recurrent Epithelial Ovarian, Primary Peritoneal, or Fallopian Tube Cancer. J. Clin. Oncol. 2012, 30, 2039–2045. [Google Scholar] [CrossRef]
- Kurtz, J.E.; Marth, C.; Oaknin, A.; Asselain, B.; Baumann, K.H.; Cibula, D.; Vergote, I.; Levy, T.; Pujade-Lauraine, E. ATALANTE (ENGOT-Ov29): A Randomized, Double-Blinded, Phase III Study of Atezolizumab versus Placebo in Patients with Late Relapse of Epithelial Ovarian, Fallopian Tube, or Peritoneal Cancer Treated by Platinum-Based Chemotherapy and Bevacizumab. J. Clin. Oncol. 2018, 36, TPS5607. [Google Scholar] [CrossRef]
- Perren, T.J.; Swart, A.M.; Pfisterer, J.; Ledermann, J.A.; Pujade-Lauraine, E.; Kristensen, G.; Carey, M.S.; Beale, P.; Cervantes, A.; Kurzeder, C.; et al. A Phase 3 Trial of Bevacizumab in Ovarian Cancer. N. Engl. J. Med. 2011, 365, 2484–2496. [Google Scholar] [CrossRef] [PubMed]
- Tomao, F.; Papa, A.; Rossi, L.; Caruso, D.; Zoratto, F.; Benedetti Panici, P.; Tomao, S. Beyond Bevacizumab: Investigating New Angiogenesis Inhibitors in Ovarian Cancer. Expert. Opin. Investig. Drugs 2014, 23, 37–53. [Google Scholar] [CrossRef] [PubMed]
- Burger, R.A.; Brady, M.F.; Bookman, M.A.; Fleming, G.F.; Monk, B.J.; Huang, H.; Mannel, R.S.; Homesley, H.D.; Fowler, J.; Greer, B.E.; et al. Incorporation of Bevacizumab in the Primary Treatment of Ovarian Cancer. N. Engl. J. Med. 2011, 365, 2473–2483. [Google Scholar] [CrossRef] [PubMed]
- Simion, L.; Rotaru, V.; Cirimbei, C.; Stefan, D.C.; Gherghe, M.; Ionescu, S.; Tanase, B.C.; Luca, D.C.; Gales, L.N.; Chitoran, E. Analysis of Efficacy-To-Safety Ratio of Angiogenesis-Inhibitors Based Therapies in Ovarian Cancer: A Systematic Review and Meta-Analysis. Diagnostics 2023, 13, 1040. [Google Scholar] [CrossRef] [PubMed]
- Margioula-Siarkou, C.; Petousis, S.; Papanikolaou, A.; Gullo, G.; Margioula-Siarkou, G.; Laganà, A.S.; Dinas, K.; Guyon, F. Neoadjuvant Chemotherapy in Advanced-Stage Ovarian Cancer—State of the Art. Menopausal Rev. 2022, 21, 272–275. [Google Scholar] [CrossRef] [PubMed]
- Tewari, K.S.; Sill, M.W.; Long, H.J.; Penson, R.T.; Huang, H.; Ramondetta, L.M.; Landrum, L.M.; Oaknin, A.; Reid, T.J.; Leitao, M.M.; et al. Improved Survival with Bevacizumab in Advanced Cervical Cancer. N. Engl. J. Med. 2014, 370, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Pfaendler, K.S.; Liu, M.C.; Tewari, K.S. Bevacizumab in Cervical Cancer: 5 Years After. Cancer J. 2018, 24, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Soo, R.A.; Han, J.Y.; Dafni, U.; Cho, B.C.; Yeo, C.M.; Nadal, E.; Carcereny, E.; de Castro, J.; Sala, M.A.; Bernabé, R.; et al. A Randomised Phase II Study of Osimertinib and Bevacizumab versus Osimertinib Alone as Second-Line Targeted Treatment in Advanced NSCLC with Confirmed EGFR and Acquired T790M Mutations: The European Thoracic Oncology Platform (ETOP 10-16) BOOSTER Trial. Ann. Oncol. 2022, 33, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Keam, B.; Kim, M.; Yoon, S.; Kim, D.; Choi, J.G.; Seo, J.Y.; Park, I.; Lee, J.L. Bevacizumab Plus Erlotinib Combination Therapy for Advanced Hereditary Leiomyomatosis and Renal Cell Carcinoma-Associated Renal Cell Carcinoma: A Multicenter Retrospective Analysis in Korean Patients. Cancer Res. Treat. 2019, 51, 1549–1556. [Google Scholar] [CrossRef]
- Rini, B.I.; Halabi, S.; Rosenberg, J.E.; Stadler, W.M.; Vaena, D.A.; Ou, S.S.; Archer, L.; Atkins, J.N.; Picus, J.; Czaykowski, P.; et al. Bevacizumab plus Interferon Alfa Compared with Interferon Alfa Monotherapy in Patients with Metastatic Renal Cell Carcinoma: CALGB 90206. J. Clin. Oncol. 2008, 26, 5422–5428. [Google Scholar] [CrossRef]
- Johnson, D.R.; Leeper, H.E.; Uhm, J.H. Glioblastoma Survival in the United States Improved after Food and Drug Administration Approval of Bevacizumab: A Population-Based Analysis. Cancer 2013, 119, 3489–3495. [Google Scholar] [CrossRef] [PubMed]
- Wick, W.; Gorlia, T.; Bendszus, M.; Taphoorn, M.; Sahm, F.; Harting, I.; Brandes, A.A.; Taal, W.; Domont, J.; Idbaih, A.; et al. Lomustine and Bevacizumab in Progressive Glioblastoma. N. Engl. J. Med. 2017, 377, 1954–1963. [Google Scholar] [CrossRef] [PubMed]
- Chinot, O.L.; Wick, W.; Mason, W.; Henriksson, R.; Saran, F.; Nishikawa, R.; Carpentier, A.F.; Hoang-Xuan, K.; Kavan, P.; Cernea, D.; et al. Bevacizumab plus Radiotherapy–Temozolomide for Newly Diagnosed Glioblastoma. N. Engl. J. Med. 2014, 370, 709–722. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.M.; Umemura, Y.; Leung, D. Bevacizumab and Glioblastoma Past, Present, and Future Directions. Cancer J. 2018, 24, 180–186. [Google Scholar] [CrossRef] [PubMed]
- EMA (European Medicine Agency); CHMP (Committee for Medicinal Products for Human Use). Bevacizumab—Annex I Summary of Product Characteristics; EMA: Amsterdam, The Netherlands, 2005.
- Sasich, L.D.; Sukkari, S.R. The US FDAs Withdrawal of the Breast Cancer Indication for Avastin (Bevacizumab). Saudi Pharm. J. 2012, 20, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Lenzer, J. FDA Committee Votes to Withdraw Bevacizumab for Breast Cancer. BMJ 2011, 343, d4244. [Google Scholar] [CrossRef] [PubMed]
- Tanne, J.H. FDA Cancels Approval for Bevacizumab in Advanced Breast Cancer. BMJ 2011, 343, d7684. [Google Scholar] [CrossRef] [PubMed]
- Kay, A.; Higgins, J.; Day, A.G.; Meyer, R.M.; Booth, C.M. Randomized Controlled Trials in the Era of Molecular Oncology: Methodology, Biomarkers, and End Points. Ann. Oncol. 2012, 23, 1646–1651. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.; Tappenden, P.; Cantrell, A. A Review of Studies Examining the Relationship between Progression-Free Survival and Overall Survival in Advanced or Metastatic Cancer; National Institute for Health and Care Excellence (NICE): London, UK, 2012. [Google Scholar]
- Kim, C.; Prasad, V. Cancer Drugs Approved on the Basis of a Surrogate End Point and Subsequent Overall Survival: An Analysis of 5 Years of US Food and Drug Administration Approvals. JAMA Intern. Med. 2015, 175, 1992–1994. [Google Scholar] [CrossRef]
- Ray-Coquard, I.; Pautier, P.; Pignata, S.; Pérol, D.; González-Martín, A.; Berger, R.; Fujiwara, K.; Vergote, I.; Colombo, N.; Mäenpää, J.; et al. Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer. N. Engl. J. Med. 2019, 381, 2416–2428. [Google Scholar] [CrossRef]
- Pasalic, D.; McGinnis, G.J.; Fuller, C.D.; Grossberg, A.J.; Verma, V.; Mainwaring, W.; Miller, A.B.; Lin, T.A.; Jethanandani, A.; Espinoza, A.F.; et al. Progression-Free Survival Is a Suboptimal Predictor for Overall Survival Among Metastatic Solid Tumor Clinical Trials. Eur. J. Cancer 2020, 136, 176. [Google Scholar] [CrossRef] [PubMed]
- Prasad, V.; Kim, C.; Burotto, M.; Vandross, A. The Strength of Association between Surrogate End Points and Survival in Oncology: A Systematic Review of Trial-Level Meta-Analyses. JAMA Intern. Med. 2015, 175, 1389–1398. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, X.; Lewsley, L.A.; Daniele, G.; Cook, A.; Yanaihara, N.; Tinker, A.; Kristensen, G.; Ottevanger, P.B.; Aravantinos, G.; Miller, A.; et al. Assessment of Progression-Free Survival as a Surrogate End Point of Overall Survival in First-Line Treatment of Ovarian Cancer: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2020, 3, e1918939. [Google Scholar] [CrossRef] [PubMed]
- Al-Abd, A.M.; Alamoudi, A.J.; Abdel-Naim, A.B.; Neamatallah, T.A.; Ashour, O.M. Anti-Angiogenic Agents for the Treatment of Solid Tumors: Potential Pathways, Therapy and Current Strategies—A Review. J. Adv. Res. 2017, 8, 591–605. [Google Scholar] [CrossRef] [PubMed]
- Rajabi, M.; Mousa, S.A. The Role of Angiogenesis in Cancer Treatment. Biomedicines 2017, 5, 34. [Google Scholar] [CrossRef] [PubMed]
- Roche, A.G. Avastin/Bevacizumab Periodic Benefit-Risk Evaluation Report/Periodic Safety Update Report 1092163; European Medicines Agency: London, UK, 2019.
- Rotaru, V.; Chitoran, E.; Cirimbei, C.; Cirimbei, S.; Simion, L. Preservation of Sensory Nerves During Axillary Lymphadenectomy. In Proceedings of the 35th Balkan Medical Week, Athens, Greece, 25–27 September 2018; Available online: https://www.webofscience.com/wos/woscc/full-record/WOS:000471903700045 (accessed on 20 July 2023).
- Manea, E.; Chitoran, E.; Rotaru, V.; Ionescu, S.; Luca, D.; Cirimbei, C.; Alecu, M.; Capsa, C.; Gafton, B.; Prutianu, I.; et al. Integration of Ultrasound in Image-Guided Adaptive Brachytherapy in Cancer of the Uterine Cervix. Bioengineering 2024, 11, 506. [Google Scholar] [CrossRef] [PubMed]
- Simion, L.; Ionescu, S.; Chitoran, E.; Rotaru, V.; Cirimbei, C.; Madge, O.-L.; Nicolescu, A.C.; Tanase, B.; Dicu-Andreescu, I.-G.; Dinu, D.M.; et al. Indocyanine Green (ICG) and Colorectal Surgery: A Literature Review on Qualitative and Quantitative Methods of Usage. Medicina 2023, 59, 1530. [Google Scholar] [CrossRef] [PubMed]
- Simion, L.; Petrescu, I.; Chitoran, E.; Rotaru, V.; Cirimbei, C.; Ionescu, S.-O.; Stefan, D.-C.; Luca, D.; Stanculeanu, D.L.; Gheorghe, A.S.; et al. Breast Reconstruction Following Mastectomy for Breast Cancer or Prophylactic Mastectomy-Therapeutic Options and Results. Life 2023. preprint. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New Response Evaluation Criteria in Solid Tumours: Revised RECIST Guideline (Version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE) Common Terminology Criteria for Adverse Events (CTCAE) v5.0. Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcae_v5_quick_reference_5x7.pdf (accessed on 6 March 2024).
- Savlovschi, C.; Serban, D.; Andreescu, C.; Dascalu, A.; Pantu, H. Economic Analysis of Medical Management Applied for Left Colostomy. Chirurgia 2013, 108, 666–669. [Google Scholar]
- Cirimbei, C.; Rotaru, V.; Chitoran, E.; Cirimbei, S. Laparoscopic Approach in Abdominal Oncologic Pathology. In Proceedings of the 35th Balkan Medical Week, Athens, Greece, 25–27 September 2018; Available online: https://www.webofscience.com/wos/woscc/full-record/WOS:000471903700043 (accessed on 20 July 2023).
- Cirimbei, C.; Rotaru, V.; Chitoran, E.; Pavaleanu, O.; Cirimbei, S.E. Immediate and Long-Term Results of Radiofrequency Ablation for Colorectal Liver Metastases. Anticancer Res. 2017, 37, 6489–6494. [Google Scholar] [CrossRef]
- Leighl, N.B.; Zatloukal, P.; Mezger, J.; Ramlau, R.; Moore, N.; Reck, M.; Manegold, C. Efficacy and Safety of Bevacizumab-Based Therapy in Elderly Patients with Advanced or Recurrent Nonsquamous Non-Small Cell Lung Cancer in the Phase III BO17704 Study (AVAiL). J. Thorac. Oncol. 2010, 5, 1970–1976. [Google Scholar] [CrossRef] [PubMed]
- Pivot, X.; Schneeweiss, A.; Verma, S.; Thomssen, C.; Passos-Coelho, J.L.; Benedetti, G.; Ciruelos, E.; Von Moos, R.; Chang, H.T.; Duenne, A.A.; et al. Efficacy and Safety of Bevacizumab in Combination with Docetaxel for the First-Line Treatment of Elderly Patients with Locally Recurrent or Metastatic Breast Cancer: Results from AVADO. Eur. J. Cancer 2011, 47, 2387–2395. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Avastin-Epar-Scientific-Discussion_en. Available online: https://www.ema.europa.eu/en/documents/scientific-discussion/avastin-epar-scientific-discussion_en.pdf (accessed on 15 June 2024).
- Ranpura, V.; Hapani, S.; Wu, S. Treatment-Related Mortality with Bevacizumab in Cancer Patients: A Meta-Analysis. JAMA 2011, 305, 487–494. [Google Scholar] [CrossRef]
- Rini, B.I.; Halabi, S.; Rosenberg, J.E.; Stadler, W.M.; Vaena, D.A.; Archer, L.; Atkins, J.N.; Picus, J.; Czaykowski, P.; Dutcher, J.; et al. Phase III Trial of Bevacizumab plus Interferon Alfa vs. Interferon Alfa Monotherapy in Patients with Metastatic Renal Cell Carcinoma: Final Results of CALGB 90206. J. Clin. Oncol. 2010, 28, 2137–2143. [Google Scholar] [CrossRef]
- Barlesi, F.; Scherpereel, A.; Rittmeyer, A.; Pazzola, A.; Tur, N.F.; Kim, J.H.; Ahn, M.J.; Aerts, J.G.J.V.; Gorbunova, V.; Vikström, A.; et al. Randomized Phase III Trial of Maintenance Bevacizumab with or without Pemetrexed after First-Line Induction with Bevacizumab, Cisplatin, and Pemetrexed in Advanced Nonsquamous Non-Small-Cell Lung Cancer: AVAPERL (MO22089). J. Clin. Oncol. 2013, 31, 3004–3011. [Google Scholar] [CrossRef]
- Simion, L.; Chitoran, E.; Cirimbei, C.; Stefan, D.-C.; Neicu, A.; Tanase, B.; Ionescu, S.O.; Luca, D.C.; Gales, L.; Gheorghe, A.S.; et al. A Decade of Therapeutic Challenges in Synchronous Gynecological Cancers from the Bucharest Oncological Institute. Diagnostics 2023, 13, 2069. [Google Scholar] [CrossRef] [PubMed]
- Voinea, S.C.; Bordea, C.I.; Chitoran, E.; Rotaru, V.; Andrei, R.I.; Ionescu, S.O.; Luca, D.; Savu, N.M.; Capsa, C.M.; Alecu, M.; et al. Why Is Surgery Still Done after Concurrent Chemoradiotherapy in Locally Advanced Cervical Cancer in Romania? Cancers 2024, 16, 425. [Google Scholar] [CrossRef]
- Drug Approval Package: Avastin (Bevacizum). NDA #125085. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2004/STN-125085_Avastin.cfm (accessed on 10 March 2024).
- Hurwitz, H.I.; Fehrenbacher, L.; Hainsworth, J.D.; Heim, W.; Berlin, J.; Holmgren, E.; Hambleton, J.; Novotny, W.F.; Kabbinavar, F. Bevacizumab in Combination with Fluorouracil and Leucovorin: An Active Regimen for First-Line Metastatic Colorectal Cancer. J. Clin. Oncol. 2005, 23, 3502–3508. [Google Scholar] [CrossRef]
- Saltz, L.B.; Clarke, S.; Díaz-Rubio, E.; Scheithauer, W.; Figer, A.; Wong, R.; Koski, S.; Lichinitser, M.; Yang, T.S.; Rivera, F.; et al. Bevacizumab in Combination with Oxaliplatin-Based Chemotherapy as First-Line Therapy in Metastatic Colorectal Cancer: A Randomized Phase III Study. J. Clin. Oncol. 2008, 26, 2013–2019. [Google Scholar] [CrossRef]
- Saltz, L.; Clarke, S.; Diaz-Rubio, E.; Scheithauer, W.; Figer, A.; Wong, R.; Koski, S.; Lichinitser, M.; Yang, T.; Cassidy, J. Bevacizumab (Bev) in Combination with XELOX or FOLFOX4: Updated Efficacy Results from XELOX-1/ NO16966, a Randomized Phase III Trial in First-Line Metastatic Colorectal Cancer. J. Clin. Oncol. 2007, 25, 4028. [Google Scholar] [CrossRef]
- Bennouna, J.; Sastre, J.; Arnold, D.; Österlund, P.; Greil, R.; Van Cutsem, E.; von Moos, R.; Viéitez, J.M.; Bouché, O.; Borg, C.; et al. Continuation of Bevacizumab after First Progression in Metastatic Colorectal Cancer (ML18147): A Randomised Phase 3 Trial. Lancet Oncol. 2013, 14, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Gray, R.; Bhattacharya, S.; Bowden, C.; Miller, K.; Comis, R.L. Independent Review of E2100: A Phase III Trial of Bevacizumab plus Paclitaxel vs. Paclitaxel in Women with Metastatic Breast Cancer. J. Clin. Oncol. 2009, 27, 4966–4972. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.; Wang, M.; Gralow, J.; Dickler, M.; Cobleigh, M.; Perez, E.A.; Shenkier, T.; Cella, D.; Davidson, N.E. Paclitaxel plus Bevacizumab vs. Paclitaxel Alone for Metastatic Breast Cancer. N. Engl. J. Med. 2007, 357, 2666–2676. [Google Scholar] [CrossRef] [PubMed]
- Robert, N.J.; Diéras, V.; Glaspy, J.; Brufsky, A.M.; Bondarenko, I.; Lipatov, O.N.; Perez, E.A.; Yardley, D.A.; Chan, S.Y.T.; Zhou, X.; et al. RIBBON-1: Randomized, Double-Blind, Placebo-Controlled, Phase III Trial of Chemotherapy with or without Bevacizumab for First-Line Treatment of Human Epidermal Growth Factor Receptor 2-Negative, Locally Recurrent or Metastatic Breast Cancer. J. Clin. Oncol. 2011, 29, 1252–1260. [Google Scholar] [CrossRef] [PubMed]
- Sandler, A.; Yi, J.; Dahlberg, S.; Kolb, M.M.; Wang, L.; Hambleton, J.; Schiller, J.; Johnson, D.H. Treatment Outcomes by Tumor Histology in Eastern Cooperative Group Study E4599 of Bevacizumab with Paclitaxel/Carboplatin for Advanced Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2010, 5, 1416–1423. [Google Scholar] [CrossRef] [PubMed]
- Sandler, A.; Gray, R.; Perry, M.C.; Brahmer, J.; Schiller, J.H.; Dowlati, A.; Lilenbaum, R.; Johnson, D.H. Paclitaxel–Carboplatin Alone or with Bevacizumab for Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2006, 355, 2542–2550. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Von Pawel, J.; Zatloukal, P.; Ramlau, R.; Gorbounova, V.; Hirsh, V.; Leighl, N.; Mezger, J.; Archer, V.; Moore, N.; et al. Phase III Trial of Cisplatin plus Gemcitabine with Either Placebo or Bevacizumab as First-Line Therapy for Nonsquamous Non-Small-Cell Lung Cancer: AVAiL. J. Clin. Oncol. 2009, 27, 1227–1234. [Google Scholar] [CrossRef] [PubMed]
- Tewari, K.S.; Burger, R.A.; Enserro, D.; Norquist, B.M.; Swisher, E.M.; Brady, M.F.; Bookman, M.A.; Fleming, G.F.; Huang, H.; Homesley, H.D.; et al. Final Overall Survival of a Randomized Trial of Bevacizumab for Primary Treatment of Ovarian Cancer. J. Clin. Oncol. 2019, 37, 2317–2328. [Google Scholar] [CrossRef]
- Huang, X.; Li, X.-Y.; Shan, W.-L.; Chen, Y.; Zhu, Q.; Xia, B.-R. Targeted Therapy and Immunotherapy: Diamonds in the Rough in the Treatment of Epithelial Ovarian Cancer. Front. Pharmacol. 2023, 14, 1131342. [Google Scholar] [CrossRef]
Gender | Male | 238 (38.08%) |
Female | 387 (61.92%) | |
Age | <65 years | 234 (37.44%) |
57.6 years (range 21–85) | ≥65 years | 391 (62.56%) |
Provenience | Urban | 369 (59.04%) |
Rural | 256 (40.96%) | |
Comorbidities | Hypertension | 227 (36.32%) |
Diabetes | 90 (14.40%) | |
Chronic pulmonary disease | 43 (6.88%) | |
Other cancers | 7 (1.12%) | |
Treatment episodes per tumor origin * | CRC | 386 (58.75%) |
NSCLC | 47 (7.15%) | |
BC | 53 (8.07%) | |
OC | 132 (20.09%) | |
CC | 31 (4.72%) | |
Others | 8 (1.22%) | |
Metastatic site(s) ** | Liver | 391 (62.56%) |
Lung | 344 (55.04%) | |
Peritoneum | 156 (24.96%) | |
Bone | 43 (6.88%) | |
CNS | 32 (5.12%) | |
Other | 64 (10.24%) |
ORR (PR and CR) | Clinical Benefits | PFS | OS | ||||
---|---|---|---|---|---|---|---|
N (%) | CI 95% | N (%) | Median (Months) | CI 95% | Median (Months) | CI 95% | |
Colorectal (n = 379) | |||||||
1L (n = 294) | 179 (60.9) | 42.9–68.9 | 185 (62.9) | 13.5 | 8.6–18.6 | 26.3 | 9.1–43.5 |
2+ lines (n = 85) | 23 (27.1) | 16.5–41.6 | 68 (80.0) | 6.2 | 4.7–7.7 | 9.3 | 7.7–10.9 |
Ovarian (n = 127) | |||||||
2+ lines | 42 (31.5%) | 14.4–46.1 | 76 (59.8) | 7.0 | 1.3–12.7 | 11.5 | 6.0–17.0 |
Breast (n = 51) | |||||||
1L (n = 23) | 15 (65.2) | 51.1–79.3 | 19 (82.6) | 10.2 | 6.1–14.3 | 19.7 | 16.0–23.4 |
2+ lines (n = 28) | 17 (60.7) | 46.2–73.8 | 23 (82.1) | 8.1 | 5.6–10.6 | 15.6 | 12.5–18.7 |
NSCLC (n = 32) | |||||||
1L (n = 27) | 18 (66.7) | 48.1–80.9 | 20 (74.1) | 7.4 | 6.0–8.9 | 12.6 | 8.8–16.4 |
2+ lines (n = 5) | 3 (60) | 23.0–88.0 | 4 (80.0) | 8.4 | 3.7–13.1 | 13.1 | 0.1–26.2 |
Others (n = 21) | |||||||
2+ lines | 13 (61.9) | 32.5–91.3 | 21 (100) | 11.2 | 2.3–20.1 | 19.7 | 4.0–35.3 |
AE of All Grades (>5% of Patients) | N (%) | Severe AE Leading to Bevacizumab Discontinuation | N |
---|---|---|---|
Hemorrhage | 167 (25.42) | Hemorrhage | 13 |
Hypertension | 42 (6.39) | Hypertension | 12 |
Proteinuria | 208 (31.66) | Proteinuria | 16 |
Thromboembolic events | 37 (5.63) | Thrombosis/Embolism | 9 |
Abdominal pain | 53 (8.06) | Gastrointestinal perforation | 10 |
Nausea/Vomiting | 56 (8.52) | Other perforations/fistular complications | 4 |
Fatigue | 84 (12.78) | Infusion reaction | 1 |
Septic complications | 62 (9.43) | Severe thrombocytopenia | 7 |
Diarrhea | 46 (7.00) | Major cardiovascular events | 5 |
Voluntary withdrawal | 2 | ||
Wound-healing deficiencies | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chitoran, E.; Rotaru, V.; Ionescu, S.-O.; Gelal, A.; Capsa, C.-M.; Bohiltea, R.-E.; Mitroiu, M.-N.; Serban, D.; Gullo, G.; Stefan, D.-C.; et al. Bevacizumab-Based Therapies in Malignant Tumors—Real-World Data on Effectiveness, Safety, and Cost. Cancers 2024, 16, 2590. https://doi.org/10.3390/cancers16142590
Chitoran E, Rotaru V, Ionescu S-O, Gelal A, Capsa C-M, Bohiltea R-E, Mitroiu M-N, Serban D, Gullo G, Stefan D-C, et al. Bevacizumab-Based Therapies in Malignant Tumors—Real-World Data on Effectiveness, Safety, and Cost. Cancers. 2024; 16(14):2590. https://doi.org/10.3390/cancers16142590
Chicago/Turabian StyleChitoran, Elena, Vlad Rotaru, Sinziana-Octavia Ionescu, Aisa Gelal, Cristina-Mirela Capsa, Roxana-Elena Bohiltea, Madalina-Nicoleta Mitroiu, Dragos Serban, Giuseppe Gullo, Daniela-Cristina Stefan, and et al. 2024. "Bevacizumab-Based Therapies in Malignant Tumors—Real-World Data on Effectiveness, Safety, and Cost" Cancers 16, no. 14: 2590. https://doi.org/10.3390/cancers16142590
APA StyleChitoran, E., Rotaru, V., Ionescu, S. -O., Gelal, A., Capsa, C. -M., Bohiltea, R. -E., Mitroiu, M. -N., Serban, D., Gullo, G., Stefan, D. -C., & Simion, L. (2024). Bevacizumab-Based Therapies in Malignant Tumors—Real-World Data on Effectiveness, Safety, and Cost. Cancers, 16(14), 2590. https://doi.org/10.3390/cancers16142590