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Simple Summary: Cholangiocarcinoma (CCA) is a type of liver cancer with few treatment options
and low survival rates in advanced stages. Our study developed a mouse model to study this cancer
type by implanting CCA cells into the liver of mice. We used advanced imaging techniques (MRI
and PET scans) to monitor tumor growth and metabolism over four weeks. We observed that tumors
became visible early and grew steadily over time. PET scans showed increasing tumor activity, and
blood tests revealed liver damage. Most mice developed lung metastases after four weeks. Our
research shows that combining MRI and PET scans effectively tracks CCA progression in mice,
providing valuable insights into cancer development and investigating potential treatments.

Abstract: Cholangiocarcinoma (CCA) is a type of primary liver cancer originating from the biliary
tract epithelium, characterized by limited treatment options for advanced cases and low survival
rates. This study aimed to establish an orthotopic mouse model for CCA and monitor tumor growth
using PET/MR imaging. Murine CCA cells were implanted into the liver lobe of male C57BL/6J
mice. The imaging groups included contrast-enhanced (CE) MR, CE-MR with static [18F]FDG-PET,
and dynamic [18F]FDG-PET. Tumor volume and FDG uptake were measured weekly over four weeks.
Early tumor formation was visible in CE-MR images, with a gradual increase in volume over time.
Dynamic FDG-PET revealed an increase in the metabolic glucose rate (MRGlu) over time. Blood
analysis showed pathological changes in liver-related parameters. Lung metastases were observed in
nearly all animals after four weeks. The study concludes that PET-MR imaging effectively monitors
tumor progression in the CCA mouse model, providing insights into CCA development and potential
treatment strategies.

Keywords: cholangiocarcinoma; orthotopic; syngeneic; mouse model; positron emission tomography
(PET); magnetic resonance imaging (MRI); 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG)
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1. Introduction

Cholangiocarcinoma (CCA) stands as the most prevalent biliary malignancy and the
second most common primary hepatic malignancy, following hepatocellular carcinoma. These
tumors represent a diverse set of aggressive malignancies originating from different locations
of the biliary duct [1]. They are categorized according to their anatomical location as intra-
hepatic cholangiocarcinoma (iCCA) and extrahepatic cholangiocarcinoma, including perihilar
(pCCA) and distal cholangiocarcinoma (dCCA). ICCAs are mass-forming and located proxi-
mal to the second-order bile ducts within the hepatic parenchyma (10–20%). Perihilar CCA
emerges between the second-order bile ducts and the cystic duct, comprising the majority,
approximately 50–60%, of CCAs across different studies. Distal CCA (dCCA) arises distal to
the cystic duct insertion (20–30%) [2,3]. Each subtype has its unique epidemiology, molec-
ular pathogenesis, and management strategy. Despite its relative rarity, constituting only
2–3% of all gastrointestinal cancers [4], the incidence of CCA is increasing in several countries
globally, and given its high lethality with 5-year overall survival (OS) ranging from 7% to
20%, this disease has aroused considerable scientific interest [5]. Curative options, such as
surgical resection (for iCCA) and liver transplantation, are viable only for patients diagnosed
at early stages. For those with advanced disease not suitable for surgical intervention, the
first-line treatment involves systemic chemotherapy employing gemcitabine and cisplatin.
Recently, combination therapies such as gemcitabine and cisplatin with durvalumab or pem-
brolizumab have shown improvements in progression-free and overall survival (TOPAZ-1 [6]
and KEYNOTE-966 trial [7]). In addition, second-line treatments of two different targetable
mutations are available and approved, namely fibroblast growth factor receptor 2 (FGFR2)
fusions and isocitrate dehydrogenase 1 (IDH1) [5]. However, there is still an urgent need for
the development of targeted molecular therapies tailored to CCA. Such precision medicine
approaches hinge on a deeper understanding of the molecular underpinnings of CCA.

In cancer research, in vitro studies utilizing cell culture are commonly employed to
explore cancer cells’ genetic and cellular complexity. Besides monolayer cell cultures (2D
cell culture), there is much research on developing organoid cultures (3D cell culture). In
the last decades, the use of organoid cultures has significantly increased as they proved
to be a powerful and reproducible tool for studying organogenesis, pathobiology, and
drug development. While 2D mono-cultures offer advantages like high reproducibility,
homogeneity, and tightly controlled experimental conditions, they do not accurately mimic
the characteristic features of biliary tumors, like cell-to-cell and cell-to-matrix interactions,
phenotypic heterogeneity, and the effect of the tumor microenvironment (TME) on cancer
progression [8]. However, organoid cultures, more closely resembling in vivo physiology
than monolayer cultures, do not entirely encompass the diverse biological processes taking
place in tumors in vivo [9–11].

Consequently, studying interactions between different cell types within a tumor or
investigating the role of various biological processes becomes challenging. Furthermore,
exploring novel therapeutic targets necessitates preclinical studies in animal models. Thus,
the utilization of in vivo models becomes imperative in cancer research.

The choice of animal model for cholangiocarcinoma (CCA) should be guided by the
question to be addressed and should ideally be reproducible in independent approaches.
The ideal animal model of CCA would originate from the biliary tract in an immunocompe-
tent host, possessing a microenvironment matched to the species, would be time-efficient,
and would faithfully recapitulate the genetic, anatomical, and phenotypic features observed
in human CCA [12].

For CCA, a variety of mouse and rat models have been established [8,12,13]. They are
based on chemotoxic induction, genetically engineered models (GEMMs), or the implantation
of human (xenograft) or mouse (allograft) tumor cells or tissue into the liver (orthotopic) or
subcutaneously (heterotopic). Syngeneic models have the advantage of implanting rodent
CCA cells into an animal of the same species, displaying a fully functional immune system.
For human CCA, it was recently shown that circulating immune cells play an important role in
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the prognosis and chemotherapy response of patients with CCA [14]. Therefore, the syngeneic
orthotopic model of CCA is of interest for the development of new therapeutic approaches.

Orthotopic tumor models adequately reproduce the tumor microenvironment, typ-
ically exhibit faster early-stage tumor growth, and also include spontaneous metastases,
reflecting their contribution to cancer aggressiveness. Furthermore, orthotopic models
better reproduce human pharmacodynamics of drug responsiveness depending on the
tumor location [8]. Therefore, orthotopic models are better predictors of clinical ther-
apeutic outcomes [15]. A weakness of the orthotopic liver cancer model is the higher
time-consuming development and difficulty in monitoring tumor progression [16]. How-
ever, modern imaging technologies such as positron emission tomography (PET) combined
with magnetic resonance imaging (MRI) can be applied to follow tumor growth and tu-
mor glucose metabolism for several weeks after tumor cell implantation. Therefore, the
current study aimed to establish a relationship between tumor growth and tumor glucose
metabolism in a syngeneic orthotopic CCA model. Therefore, we performed dynamic
2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET imaging and hybrid [18F]FDG-PET/MR
at weekly intervals in the generated mouse model. In addition, spontaneous metastases
were evaluated on the extracted organs using hematoxylin and eosin staining.

2. Materials and Methods
2.1. Animal Model

The animal study was approved by the Austrian Federal Ministry of Education, Science
and Research (project number 2021–0.611.621). Study procedures were conducted in accor-
dance with the European Community’s Council Directive of 22 September, 2010 (2010/63/EU),
and data reported in this study comply with the ARRIVE (Animal Research: Reporting of In
Vivo Experiments) guidelines 2.0 [17].

Male C57BL/6J mice (n = 44) aged 8–10 weeks were obtained from Core Facility-
Laboratory Animal Breeding and Husbandry (2325 Himberg, Austria) (n = 20; 22.6 ± 0.93 g)
and Janvier Labs (n = 24; 27.2 ± 1.23 g). Animals were housed under controlled environ-
mental conditions (21 ± 2 ◦C, 40–70% humidity, 12 h light/dark cycle) with different
nesting and enrichment materials (red polycarbonate houses, aspen wood wool, nestlets,
aspen wood sticks), free access to standard laboratory rodent diet (LASQdiet™ Rod16; Al-
tromin Spezialfutter GmbH & Co. KG, Lage, Germany), and water. Animals were observed
visually daily to evaluate their overall health condition and weighed once a week. An ac-
climatization period of at least one week was provided before the animals were used for the
experiments. A detailed list of all animal procedures is given in Supplementary Table S1.

2.2. Cell Culture

The murine CCA cell line (SB-1) was kindly provided by the lab of Gregory Gores
(Mayo Clinic, Rochester, NY, USA). SB-1 tumor cells express specific CCA markers as
SRY (Sex Determining Region Y)-Box 9 (SOX9) and cytokeratin (CK)-7 and 19, but lack
hepatocyte nuclear factor 4 alpha and alpha-smooth muscle actin, markers of hepatocellular
carcinoma and cancer-associated fibroblasts [18]. They genetically resemble iCCAs found
in a subset of patients [19]. The tumor cells were cultivated in Dulbecco’s Modified Eagle
Medium (DMEM) (Gibco™ DMEM, high glucose, GlutaMAX™ Supplement, pyruvate;
Fisher Scientific (Austria) GmbH), supplemented with 10% fetal bovine serum (FBS). They
were kept in standardized conditions at 37◦C in a humidified incubator in an atmosphere
containing 5% CO2 during cultivation. As the original cell line was contaminated with
mycoplasma, they were treated for two treatment cycles with a combination of pleuro-
mutilin derivate and tetracycline derivative (BM-Cyclin, Roche, Cat. No. 10 799 050 001,
Sigma-Aldrich, Merck KGaA, Germany) according to the internal standard operation pro-
tocol. After that, the tumor cells underwent regular mycoplasma testing through PCR
analysis. To confirm that the treated cells were in accordance with the parental cell line,
the IMPACT™ PCR profile and CellCheckTM 19 tests were performed by an external lab
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(IDEXX BioAnalytics, IDEXX GmbH, Germany). SB-1 cells were checked daily (except on
weekends) and passaged every 2–3 days during cultivation.

2.3. Establishment of the Orthotopic Syngeneic Mouse Model

SB-1 cells were cultivated for approximately 16 days and cells were not passaged
for at least one day prior to inoculation. On the day of surgical inoculation, they were
processed and prepared according to our standard operating protocol in serum-free DMEM
for injection. They were stored on ice for a maximum of 2 h during inoculation [20].

Male C57BL/6J mice (n = 40) were anesthetized using an induction box filled with
isoflurane (3–5%) in air. Once a sufficient depth of anesthesia was reached, the animal
received an injection subcutaneously of Carprofen (Rimadyl® ad us. vet. solution for injection,
50 mg/mL) 10 mg/kg or Buprenorphine (Temgesic® injection solution, 0.3 mg/mL) 0.6 mg/kg,
afterward the animal was shaved, positioned, and fixed on a heated plate. Anaesthesia was
maintained via a head mask with integrated suction. The maintenance dose of isoflurane
ranged between 1–2% by volume, depending on the required depth of anesthesia, based on
respiration rate measurement. Under sterile conditions and deep anesthesia, a 1 cm incision
was made below the xiphoid process to access the abdominal cavity. The superomedial aspect
of the left medial liver lobe was visualized. Using a 30-gauge needle, 30 µL of serum-free
DMEM containing 1 × 105 tumor cells was slowly injected into the subcapsular region of
the liver parenchyma in the liver lobe. To prevent leakage of the tumor cells and blood loss,
a cotton swab was held over the injection site for one minute. Afterward, the abdominal
wall and skin were closed in separate layers with absorbable suture material (Monosyn® 5/0,
DS 12; product number: C0022210, B. Braun Austria Gesellschaft m.b.H). Furthermore, after
surgery, the mice received a subcutaneous injection of 0.5 mL isotonic electrolyte solution
(Ringer-Lactat-Solution by Hartmann, B. Braun Austria Gesellschaft m.b.H). For postoperative
analgesia, mice received Piritramid (Piritramid® injection solution 7.5 mg/mL, Hameln
Pharma GmbH, Germany) over drinking water for 3 days. We added 5% glucose (Glucose-
Solution 5% ad us. vet. B. Braun Austria Gesellschaft m.b.H) to make the water more tasty.
Animals were weighed daily for 4–5 days after surgery and clinically observed using our
in-house scoring sheet for pain assessment.

2.4. Experimental Design

The experimental design is depicted in Figure 1. Briefly, mice were randomly assigned to
the four different study groups: contrast-enhanced (CE) MR, 60-min dynamic [18F]FDG-PET,
and sequential static PET-MR using two different [18F]FDG administration routes (intraperi-
toneal injection—i.p. and intravenous injection—i.v.). An overview of the mice groups
included in the study is given in Table 1. Imaging started 7.2 ± 1.0 days after the tumor
cell inoculation and was continued weekly for 4 weeks. For the imaging procedures, mice
were weighed and anesthetized in an induction chamber using isoflurane (4–5% in air). An
overview of the animal weights over the study period is given in Supplementary Figure
S1. After that, we transferred the mice to a temperature-controlled double imaging chamber
for PET imaging and a small rodent volume coil for MR imaging. An intravenous catheter
was placed into the lateral tail vein for injection of the contrast agent or radiotracer. During
preparation and measurement, animals were warmed, and anesthesia was maintained with
an anesthetic facemask (isoflurane 1.5–2.5% in air) while respiration rate was monitored (SA
Instruments Inc., Stony Brook, NY, USA). For all the PET imaging groups, the blood glucose
level was measured before [18F]FDG injection and after the completion of the PET scan using
a conventional glucometer (FreeStyle FREEDOM Lite, mg/dl, Abbott GmbH, Wiesbaden,
Germany). The experimental methods used in this study adhere to published guidelines [21].

Following the last scan, a large blood sample was obtained by puncturing the retrob-
ulbar plexus under anesthesia. The obtained blood was centrifugated (1500 rpm, 5 min)
and plasma was stored at −18 ◦C until the analysis. After blood sampling, mice were
sacrificed by cervical dislocation still under anesthesia, and the liver, including the tumor,
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was extracted. In addition, suspicious organs (e.g., lung, kidney, pancreas) with possible
metastasis were extracted and used for histopathological assessment.
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Table 1. Overview of group size (n), weight, activities, and blood glucose levels for the [18F]FDG
imaging experiments given for each experimental week. The PET scans from the two PET/MR groups
were started 45 min post injection.

Imaging Weeks 1 2 3 4

MR

n 6 6 6 6
Weight (g) 26.2 ± 2.5 27.0 ± 2.9 27.2 ± 3.2 27.2 ± 3.2

MR scan (days after surgery) 7.7 ± 1.0 15.0 ± 0.9 22.0 ± 0.9 29.0 ± 0.9

PET dynamic

n 10 9 9 7
Activity at PET scan (MBq) 9.0 ± 5.8 9.6 ± 1.8 10.3 ± 2.6 11.0 ± 3.1

Weight (g) 25.9 ± 3.0 26.9 ± 2.6 27.0 ± 2.7 26.9 ± 3.6
Blood glucose (mmol/L) 9.9 ± 1.7 10.0 ± 2.2 10.0 ± 3.4 10.7 ± 2.3

PET scan (days after surgery) 7.2 ± 1.0 14.1 ± 1.1 21.1 ± 1.1 27.9 ± 1.1

PET/MR (i.p.)

n 6 7 7 6
Activity at PET scan (MBq) 4.8 ± 0.8 7.8 ± 2.9 6.6 ± 1.7 5.7 ± 3.0

Weight (g) 26.3 ± 2.8 26.3 ± 2.4 26.1 ± 2.6 26.3 ± 3.6
Blood glucose (mmol/L) 7.5 ± 1.2 9.3 ± 2.0 8.4 ± 2.0 9.7 ± 1.8

PET/MR scan (days after surgery) 7.0 ± 1.1 13.6 ± 0.8 20.6 ± 0.8 27.3 ± 0.5

PET/MR (i.v.)

n 6 6 6 5
Activity at PET scan (MBq) 7.6 ± 1.3 7.7 ± 0.9 7.8 ± 1.4 8.6 ± 1.0

Weight (g) 28.7 ± 0.7 29.3 ± 1.0 29.1 ± 1.4 29.7 ± 1.6
Blood glucose (mmol/L) 9.0 ± 2.0 10.1 ± 2.6 10.0 ± 1.2 8.8 ± 1.5

PET/MR scan (days after surgery) 6.7 ± 0.5 13.7 ± 0.5 20.7 ± 0.5 27.6 ± 0.5

2.4.1. Contrast-Enhanced MR Imaging

In the CE MR imaging group, 100 µL (diluted; 0.1 mL Primovist mixed with 0.9 mL
sodiumchloride; 0.1 mmol/kg) of contrast-agent (CA) (Primovist® 0.25 mmol/mL so-
lution for injection, Bayer Vital GmbH, 51368 Leverkusen) were injected intravenously.
Thereafter, anatomical images were obtained using a 1 Tesla Bruker ICON™ (Bruker Cor-
poration, Ettlingen, Germany) scanner, a dedicated small animal system operating on
ParaVision 6.1. Images of coronal sections were acquired using a T1-weighted flash se-
quence with a flip angle of 50◦, 30 ms repetition time, and a 7 ms echo time. The field of

www.biorender.com/
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view used was 76 × 28 × 24 mm with a 217 × 80 × 34 matrix, resulting in a voxel size
of 0.35 × 0.35 × 0.7 mm3. The scan time was 7:36 min. The axial sections were acquired
using a T1-weighted flash sequence with a flip angle of 50◦, 32 ms repetition time, and a
7 ms echo time. The field of view used was 30 × 28 × 40 mm with an 86 × 80 × 53 matrix,
yielding a voxel size of 0.35 × 0.35 × 0.755 mm3. The scan time was 12:54 min. A thin-slice
thickness for the coronal section of 0.7 mm and for the axial section of 0.75 mm was used to
provide detailed anatomical structure.

2.4.2. PET Imaging

PET imaging was performed on a dedicated preclinical PET scanner (Focus 220TM,
Siemens Healthineers, Knoxville, TN, USA) with 7.6 cm axial and 19 cm transaxial field-
of-view. Two mice were imaged side by side in one PET image acquisition using a dual-
mouse bed (m2m imaging Corp, Cleveland, OH, USA). Mice underwent a 60-min dynamic
[18F]FDG scan using the injected activities in a volume of 100 µL, listed in Table 1. PET data
acquisition was initiated at the start of intravenous injection (0.1 mL as slow bolus over
~40 s), and list-mode data were acquired for 60 min with an energy window of 250–750 keV
and a 6 ns timing window. A 10-min transmission scan using a rotating 57Co-point source
was performed before each PET scan to obtain data for attenuation correction.

2.4.3. PET/MR Imaging

The PET-MR imaging group was divided into two groups; one group was given
an intravenous CA injection (100 µL) followed by an intraperitoneal [18F]FDG injection
(100 µL). The second group received 20 µL CA and 80 µL of [18F]FDG intravenously. The
injected activities for both PET/MR groups are indicated in Table 1. After that, a coronal
and axial MR image was acquired. Then, the imaging chamber (including the MR coil with
the mouse) was transferred to the PET scanner, and a static PET image was acquired for
15 min, starting 45 min post-injection using the acquisition parameters given before.

2.5. Image Analysis
2.5.1. MR Image Analysis

For image analysis, anatomic MR images were oriented in the standard orientation
(head first, prone) and displayed in horizontal and axial directions. Then, the tumor was
manually outlined on consecutive planes on the horizontal images using the software
program AMIDE (amide.exe 1.0.4 [22]). Afterward, the position and size were controlled
on the axial planes and corrected if necessary, and the tumor volume was recorded.

2.5.2. Dynamic PET Image Analysis

Dynamic PET list-mode data from the 60-min scans were sorted into three-dimensional
sinograms according to the following frame sequence: 8 × 5 s, 2 × 10 s, 2 × 30 s, 3 × 60 s,
2 × 150 s, 2 × 300 s, and 4 × 600 s. All PET images were reconstructed by Fourier rebinning
of the 3D sinograms followed by two-dimensional ordered subset expectation maximization
(OSEM) using 16 subsets and 4 iterations, resulting in a voxel size of 0.4 × 0.4 × 0.8 mm3. The
standard data correction protocol, including normalization, attenuation, and decay correction,
was applied to the data. For image analysis, images were corrected by the injected activity
and body weight and expressed as standardized uptake value (SUV). Thereafter, organs of
interest (tumor, brain, heart, liver, kidneys, vena cava) were defined by delineating manual or
pre-defined volumes of interest (VOIs) using the software program AMIDE [22]. Organ sizes
are given in Supplementary Table S2. Then, the time-activity curves (TACs) of these VOIs
were extracted, and the areas-under-the-curves (AUCs) from 0 to 60 min were calculated.

The curve derived from the vena cava ROI was used as an image-derived input function
(IDIF, [23]). For that, the vena cava curve was scaled to the liver curve using the obtained
values from the last time frame [24,25]. Afterwards, a time-dependent plasma-to-blood
equilibrium ratio was applied to obtain the plasma input function [26]. The final obtained
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plasma input function Cp(T) was used for calculating the net influx rate (Ki) for the tumor
and different organs derived from the slope of the linearized Patlak graphical analysis [27,28]:

CROI(T)
Cp(T)

= Ki ×
∫ T

0 Cp(t)dt
Cp(T)

+ Int (1)

where the AUCROI from 0-T was used as a measure of
∫ T

0 CROI(t)dt. The plot became linear
after 10 min for all assessed organs and the tumor. From the obtained net influx rate, the
metabolic rate of glucose (MRGlu) was calculated:

MRGlu =
Cglu

LC
× Ki (2)

where the Cglu was the average blood glucose level of the two measurements at the begin-
ning and the end of the scan given in mmol/L, and LC is the lumped constant. For the
present study, the following values were used: LC = 1 (tumor), LC = 0.625 (brain, [29]),
LC = 0.67 (heart, [30]). Patlak values were compared with semiquantitative uptake values
given in SUV or SUVglu, where SUVglu = SUV × Cglu.

2.5.3. PET/MR Image Analysis

The static PET images were reconstructed, as mentioned before. Then, the PET images
were coregistered to the MR images, and the tumor, lung, muscle, and brain were manually
outlined on the MR images. VOI sizes for all analyzed organs are summarized in Supple-
mentary Table S1. After that, the VOIs were copied to the PET image, and [18F]FDG uptake
expressed as the mean (SUVmean) and maximum values (SUVmax) of the VOI were extracted.
Furthermore, the tumor volume was recorded. Finally, the SUVglu was calculated for the
tumor (both for SUVmean and SUVmax), taking into account the average blood glucose levels.

2.6. Histological Assessment

For histological assessment, the harvested organs were fixed in Histofix-4 solution
(10:1) for 24 h and then transferred into 70% ethanol. Before processing, all samples
were then transferred to buffered formalin (7.5%). The samples were processed and then
embedded in paraffin (FFPE). The sections were cut at 2 µm thickness and manually stained
according to standard Hematoxylin and Eosin (H&E) protocols. All sections were reviewed
by a specialist gastrointestinal pathologist (B.M.). The liver parenchyma, which contained
the primary CCA, was assessed, and all harvested organs were evaluated for potential
metastatic deposits. These included pancreas, lung, kidney, and mesenteric fat.

2.7. Blood Analysis

The plasma was stored at −18◦ until the blood chemistry analysis. Using a Cobas
4000 c311 analyzer for clinical chemistry (Roche Diagnostics, Mannheim, Germany), the
following parameters were assessed: electrolyte panel: chloride (Cl), potassium (K), sodium
(Na), phosphorus; liver function associated parameters such as alanine aminotransferase
(ALT), aspartate aminotransferase (AST); alkaline phosphatase (ALP), bilirubin, albumin
and total protein; kidney-function-associated parameters such as blood urea nitrogen (BUN)
and creatinine (CREA); and triglycerides and glucose.

2.8. Statistical Analysis

Statistical testing was performed using GraphPad Prism 10.2.2 software (GraphPad
Software, La Jolla, CA, USA). Differences in organ uptake from the static [18F]FDG-PET/MR
scans between the four weeks were analyzed by ordinary one-way ANOVA followed by
Tukey’s multiple comparisons test. Blood chemistry parameters were analyzed by a 2-sided
unpaired t-test with Welch correction using the Holm–Sidak method and assuming individual
variance for each group. Correlation analysis was performed between outcome parameters of
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the kinetic modeling and glucose levels. The level of statistical significance was set to p < 0.05.
Unless stated otherwise, all values are given as mean ± standard deviation (SD).

3. Results
3.1. Cell Culture

The treated SB-1 cells were shown to be free of Corynebacterium bovis, Corynebacterium sp.
(HAC2), Ectromelia virus (ECTV), EDIM, Hantaan virus, K virus, LCMV, LDEV, MAV1, MAV2,
mCMV, MHV, MNV, mouse kidney parvovirus (MKPV), MPV, MTV, MVM, Mycoplasma
pulmonis, Mycoplasma sp., polyoma, PVM, REO3, sendai, and TMEV. No interspecies contami-
nation was found. As no genetic profile was available for this specific cell line, the treated
cells were compared with the parental cell line. The results from the cell authentication using
short tandem repeat (STR) profiling are listed in Appendix A in Table A1.

3.2. Tumor Growth Derived by CE-MR

The first CCA tumors were visible on the CE-MR image at around 7 days after surgery.
CE-MR images from an exemplary mouse are shown in Figure 2A over the duration of the
imaging experiments.
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Figure 2. Representative horizontal images of the syngeneic orthotopic CCA model from the (A) contrast-
enhanced (CE) MR group, (B) dynamic [18F]FDG-PET group (50–60 min time frame), (C) combined
[18F]FDG-PET/MR group (i.p. injection), and (D) combined [18F]FDG-PET/MR group (i.v. injection).
The radiation scale is set from 0–4 SUV. The tumor (T) is indicated with a yellow arrow on the images.
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3.3. PET Kinetic Modeling

VOI-based analysis of the dynamic small animal PET data was performed to determine
tumor, brain, heart, and liver uptake of [18F]FDG. PET images over the four weeks of
observation after tumor cell implantation are shown in Figure 2B. Organ-derived TACs
are given in Supplementary Figure S2. For the determination of the net influx (Ki) as
an outcome parameter for [18F]FDG distribution, we generated an image-derived blood
input function (IDIF) by placing a cylindrical VOI over the vena cava of the individual
animals. Then, this curve was scaled to the liver curve using the obtained values from
the last time frame and transferred to the plasma input function by multiplication of a
time-dependent plasma-to-blood equilibrium ratio. An exemplary patlak plot from a tumor
is shown in Supplementary Figure S3. The relationships between blood glucose level
and Ki, MRGlu, and SUV in the tumor, heart, and brain are illustrated in Supplementary
Figure S4. There was a significant inverse relationship between tumor Ki (R2 = 0.2807,
p = 0.0054), heart Ki (R2 = 0.1818, p = 0.0133), and cerebral Ki (R2 = 0.1856, p = 0.0123), and
blood glucose level. However, no significant association was found between the tumoral
MRGlu and cerebral MRGlu and blood glucose level, as shown by the quality of regression
lines (R2 = 0.00026 and R2 = 0.01209, respectively), and the regression slopes were not
significantly different from zero. On the contrary, for the heart MRGlu, a significant positive
correlation with blood glucose level was obtained (R2 = 0.1696, p = 0.0173). SUV did not
correlate significantly with blood glucose levels for all analyzed regions.

For the tumor, both SUV and SUVglu exhibited a significant positive correlation with
MRGlu, as shown in Figure 3 (SUV: R2 = 0.2478, p = 0.0113; SUVglu: R2 = 0.2123, p = 0.0205).
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Finally, we obtained an increase in the MRGlu tumor values over the observation
period of four weeks, as illustrated in Supplementary Figure S5. All these results together
suggest that both SUV and SUVglu are adequate representatives of MRGlu tumor values
for the static [18F]FDG-PET/MR scans.

3.4. Tumor Volume and FDG Uptake from the PET/MR Groups

The obtained tumor volumes from all the CE-MR images (MR group and the two
[18F]FDG-PET/MR groups) are displayed in Figure 4. The tumor volume gradually in-
creased over the observation period with a doubling rate of around 6.4 days.

Apart from the tumor volume, we also extracted the [18F]FDG uptake in the tumor
after i.p. or i.v. [18F]FDG injection. Exemplary images from the i.p. [18F]FDG-PET/MR
and i.v. [18F]FDG-PET/MR groups can be found in Figure 2C,D. In the i.p. group, we had
some misinjections into the gut. These images were excluded from the analysis. From the
remaining images, the SUV and SUVglu were calculated for the tumor (both for SUVmean
and SUVmax), taking into account the average blood glucose levels. The results for the
i.p. [18F]FDG-PET/MR and i.v. [18F]FDG-PET/MR groups can be found in Figure 5 for
each individual animal. For both groups, an increase in the SUVmax and SUVglumax was
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observed, whereas the SUVmean and SUVglumean increased until week 3, and exhibited a
small decline in week 4. This is probably due to necrotic and/or hypoxic areas in the tumor,
reducing the average [18F]FDG SUV in the total tumor region.
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imaging. Imaging was initiated around one week after tumor cell inoculation into the liver and
performed weekly for four weeks.
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Figure 5. Tumor uptake given in SUV and SUVglu calculated from the SUVmean (triangles, red
shades) and SUVmax (squares, blue shades). The SUVglu values were corrected by the average blood
glucose levels in the syngeneic orthotopic CCA model. The mean and the standard deviation (shaded
area) are illustrated on the images for the (a,c) i.p. [18F]FDG-PET/MR group (n = 1–5) the (b,d) i.v.
[18F]FDG-PET/MR group (n = 4–6). Bold lines indicate mean values. Imaging was initiated around
one week after tumor cell inoculation into the liver and performed weekly for four weeks.

In addition to the tumor, we also analyzed changes in the [18F]FDG uptake in other
organs, such as the brain, lung, and muscle, for the i.v. [18F]FDG-PET/MR group. As
depicted in Figure 6, we obtained statistically significant higher [18F]FDG uptake given in
SUV in week 4 compared to week 3 and week 1 for the brain. Moreover, lung [18F]FDG
uptake in week 4 drastically increased compared to the rest of the imaging time points. No
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changes in muscle uptake were observed. When the SUV parameter was corrected by the
average blood glucose level yielding SUVglu, only one statistically significant difference
remained for the lung.
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Figure 6. Activity concentrations given in SUVmean for the (a) brain, (b) lung, and (c) muscle region
derived from the i.v. [18F]FDG-PET/MR group (n = 5–6) in the syngeneic orthotopic CCA model.
The SUV parameter corrected by the blood glucose levels, SUVglu, are shown for the (d) brain,
(e) lung, and (f) muscle region. Imaging was initiated around one week after tumor cell inoculation
into the liver and performed weekly for four weeks. The individual values and mean ± standard
deviation are illustrated. * p < 0.05, ** p < 0.01, ordinary one-way ANOVA followed by Tukey’s
multiple comparisons test.

Furthermore, we also observed some experimentally induced and pathological changes
visualized in the [18F]FDG images. In the first week after surgery, a higher [18F]FDG ac-
tivity was found at the site of the wound suture, pointing to physiological inflammation.
Moreover, as shown in Figure 2D, in some animals, the [18F]FDG uptake after i.p. injection
was very high in the abdominal cavity at four weeks after the surgery, whereas the uptake
in the rest of the body, such as in the heart and brain, were low. The autopsy revealed
ascites in the abdominal cavity in these animals, which seems to have reduced the uptake
of [18F]FDG into the bloodstream and thus distribution to all the other organs.

3.5. Blood Chemistry and Histopathology

Blood chemistry performed on the plasma samples taken on the last imaging day
revealed a change in the liver-associated parameters, as shown in Figure 7. ALP, AST, and
ALT parameters were statistically significantly higher in tumor-bearing mice compared
to control (healthy) mice of the same strain, sex, and age, whereas albumin was lower
in the CCA model compared to the control. In addition, glucose values measured from
the plasma sample correlated with the blood glucose value directly taken after the scan
(Supplementary Figure S6).

For the characterization of the orthotopic CCA mouse model, we sacrificed the animals
(n = 18/24, Janvier lab animals) after 4 weeks of imaging and harvested the liver, which
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included the tumor and other organs suspected of containing metastatic deposits. The selected
samples were analyzed by a specialist GI histopathologist based on H&E-stained slides. CCA
tumor cells were confirmed in all analyzed liver samples (n = 17/17). The CCA in the mice
livers was comparable to the small duct iCCA of the mass-forming type in humans, contrasting
with the periductal infiltrating large duct type that typically grows in the perihilar region. The
tumors were morphologically identical between mice and humans, exhibiting small tubular,
solid, and occasionally poorly differentiated growth patterns. Interestingly, within the primary
tumor, metaplastic bone (n = 16/17) and, in one instance, metaplastic cartilage formation
(n = 1/17) was noted (see Figure 8). In addition to the liver, tumor metastases were observed
in nearly all analyzed lung samples (n = 16/17). Most of the metastases were multifocal, and
some contained necrotic areas. Metastatic cells were also observed in the peritoneal cavity
and in mesenteric fatty tissue in the vicinity of the kidney and pancreas.
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Figure 8. H&E-stained slices at different magnifications; images of different organ samples. (1) The
star (*) denotes non-neoplastic liver parenchyma. The black arrow lies within an area of cholangiocar-
cinoma (CCA). (2) Liver parenchyma with cholangiocarcinoma (CCA). The yellow arrow points to
an area of metaplastic bone formation. (3) Liver parenchyma with cholangiocarcinoma (CCA). The
yellow arrow points to an area of metaplastic cartilage formation. (4) Higher magnification of liver
with cholangiocarcinoma (CCA). (5) Lung parenchyma (*) with CCA metastases, marked by black
arrows. (6) Liver with cholangiocarcinoma (*). The yellow arrow denotes the necrotic area.
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4. Discussion

Preclinical models of cholangiocarcinoma (CCA) are essential for accelerating the
development of novel clinical treatment strategies. While ectopic xenograft or syngeneic
mouse models—based on human or rodent cell lines injected into immunocompromised
or immunocompetent mice—are easy to establish and have limited complications from
the procedure, they have significant limitations. These cancer models typically reflect
advanced tumor stages, grow rapidly, and make the study of early CCA challenging.
Additionally, different CCA cell lines exhibit varying tumorigenic activity, with some
unable to generate tumors after injection. Furthermore, these tumors are implanted in
a non-physiological site, seldom metastasize, and may lose the molecular heterogeneity
characteristic of human CCA [8]. We aimed to establish a syngeneic orthotopic mouse
model of CCA to address these limitations. Recently, a CCA model using murine cells
(SB1–7) derived from Akt-YAP driven tumors was described. These cells exhibit phenotypic
features of human CCA, and their implantation results in the development of orthotopic
tumors that are morphologically and phenotypically similar to human CCA [18]. This
mouse model, having a fully functional immune system, is ideal for studying tumor-stroma
interactions and testing immunotherapy-based interventions.

The motivation for this study was to examine the tumor growth behavior of orthotopic
cholangiocarcinoma cell implantation (SB-1) in greater detail using in vivo preclinical imag-
ing. Specifically, we aimed to investigate changes in tumor volume and glucose metabolism
over four weeks following tumor cell implantation. To achieve this, we employed contrast-
enhanced MR and [18F]FDG-PET imaging. Additionally, we sought to develop an imaging
protocol suitable for subsequent therapeutic studies, ensuring the anesthesia duration was
limited to a maximum of 1.5 h. Although this animal model was proposed six years ago, lit-
tle is known about its tumor growth behavior, highlighting the importance of our research.
Rizvi et al. [18] reported on tumor weight following orthotopic SB-1 cell (1 × 106 cells,
40 µL, standard media) implantation into male C57BL/6 mice, measuring mean tumor
weights of approximately 50 mg and 570 mg at two and four weeks post-implantation,
respectively. However, their study included only two time points and did not incorporate
in vivo imaging. Wabitsch et al. [19] established an orthotopic model by injecting SB-1 cells
(2 × 105 cells, 20 µL, 50:50 solution of PBS and Matrigel) into the left liver lobe of female
8-week-old C57BL/6 mice. They reported a tumor weight of approximately 800 mg in the
control group 20 days post-implantation. In our study, CE-MR derived tumor volumes
across all animals (n = 14–20 per time point) were approximately 18 mm3, 44 mm3, 127 mm3,
and 332 mm3 at one-, two-, three-, and four-weeks post-implantation (1 × 105 cells, 30 µL,
DMEM), respectively. Given the variations in cell numbers, injection volumes, media, and
implantation techniques and skills, these differences are acceptable and provide a basis for
selecting the therapy start point in subsequent studies.

We utilized dynamic [18F]FDG-PET and Patlak graphical analysis to calculate quanti-
tative outcome parameters, focusing particularly on the Ki and MRGlu values. We observed
that Ki is strongly correlated with blood glucose for all analyzed organs, aligning with
previous findings [31]. In contrast, tumor MRGlu did not correlate with blood glucose,
and thus it was selected as the primary outcome value. This was an important validation,
especially since we did not fast the animals before the [18F]FDG-PET scans, although nu-
merous publications [26,32,33] recommend fasting periods before imaging. Fasting imposes
a significant burden on the animals [34], and to minimize the loss of mice, we opted to
measure blood glucose levels before and after the scans for glucose correction.

Given that dynamic [18F]FDG-PET combined with MRI on separate scanners requires
prolonged anesthesia times (15 min for preparation, 60 min for the PET scan, 10 min for the
attenuation scan, and 30 min for the MR scan), we aimed to use static [18F]FDG-PET scans.
This approach allows MR scans to be performed during the uptake period. Consequently,
we correlated the obtained MRGlu values with SUV and SUVglu, confirming a significant
correlation. However, it should be noted that correcting for blood glucose levels results in
higher data variability. This was illustrated in Figure 6, where the coefficients of variation
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(CV) were up to three times higher in the brain for SUVglu (CV ~ 16–31%) compared to
SUV (CV ~ 7–9%). Similarly, in the lung region, the CV increased after correction for blood
glucose, resulting in fewer statistically significant differences. Therefore, both SUV and
SUVglu were selected as outcome parameters for the static [18F]FDG-PET scans.

We also evaluated which administration route for [18F]FDG is better suited for this
animal model. Previous studies have shown that both intravenous (i.v.) and intraperitoneal
(i.p.) [18F]FDG injections result in similar tracer distribution approximately 30–60 min post-
injection [26,32,35]. However, due to the risk of misinjections and pathological [18F]FDG
uptake in the peritoneal cavity related to ascites, we ultimately opted for the i.v. injection
route for the [18F]FDG-PET/MR protocol.

The most striking finding was the observation of metastasis in the lungs of nearly all
analyzed animals. This result is not surprising, as orthotopic grafts are more likely to trigger
tumor dissemination, leading to the development of distant metastases [36]. However, lung
metastases had been reported previously but had not been published yet [8], underscoring
the significance of our study. In orthotopic liver tumor models, lung metastasis appears
to be common, as demonstrated in two immune-competent orthotopic hepatocellular
carcinoma mouse models [37]. The lung metastases were macroscopically visible during the
section and were confirmed by histopathological examination. Additionally, the enhanced
[18F]FDG uptake in the lungs observed at 4 weeks post-implantation (see Figure 6b) further
confirmed pathological uptake. Therefore, the combination of anatomical imaging (CE-MR)
and molecular imaging ([18F]FDG-PET), alongside histopathology, proved to be an ideal
method for characterizing this animal model.

Furthermore, histopathological appraisal identified metaplastic bone and cartilage
formation in the primary CCA tumors, a finding exceptionally rare in human CCA. Many
primary tumors and lung metastasis showed areas of tumor necrosis. Peritoneal dissemina-
tion was also frequently observed, as demonstrated in the spread surrounding the pancreas
and kidneys.

Finally, ex vivo analysis revealed increased ALT, AST, and ALP levels in tumor-bearing
mice. When hepatocyte injury occurs, ALT is released from the damaged hepatocytes,
causing a significant increase in serum ALT activity. Elevated ALT is associated with
increased severity of liver diseases in humans [38], and similar increases have been reported
in animal studies [37,39]. This biochemical evidence supports the presence of liver damage
and further validates the use of this model for studying tumor growth and metastasis in
the context of liver disease.

One limitation is that our study included only male mice and did not include an
assessment of tumor growth and metabolism in female mice. We originally intended to
include female mice in the study. However, the animal ethics committee did not approve
our application to use female mice in accordance with good scientific practice at that
time. The committee based its decision on the origin of the tumor cell line SB-1, which
was generated in male mice, although this justification is no longer valid. We intended
to conduct this study in female mice, mainly because of the documented differences
between male and female subjects in preclinical and clinical studies [40,41], particularly in
therapeutic investigations.

5. Conclusions

The combination of CE-MR and [18F]FDG-PET imaging proves effective for monitoring
tumor growth and metabolism in the syngeneic orthotopic CCA tumor model. Notably,
this model showcases lung metastasis formation observed four weeks post-tumor cell
implantation. Additionally, liver tumors exhibit bone and cartilage formation, with elevated
ALT, AST, and ALP levels confirming liver damage. With these findings, along with the
established imaging protocols, this animal model is now primed for therapeutic studies,
offering a promising avenue for exploring potential treatments.
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significant at p < 0.05; Figure S5: Relationship between MRGlu derived from the tumor by Patlak
graphical analysis with the time (in days) after tumor cell implantation; Figure S6: Relationships
between glucose levels measured from a certified lab (x-axis; taken from the plasma) and blood
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Appendix A

Table A1. Results from the short tandem repeat (STR) marker profile from the parental and treated
SB-1 cells.

Marker Name Parental SB-1 Treated SB-1

MCA-1–1 16, 17 16, 17
MCA-1–2 19 19
MCA-2–1 16 16
MCA-3–2 14 14
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Table A1. Cont.

Marker Name Parental SB-1 Treated SB-1

MCA-4–2 20.3 20.3
MCA-5–5 17 17
MCA-6–4 18 18
MCA-6–7 17, 18 17, 18
MCA-7–1 27.2 27.2
MCA-8–1 16 16
MCA-9–2 18 18

MCA-11–2 16 16
MCA-12–1 17 17
MCA-13–1 17 17
MCA-15–3 22.3 22.3
MCA-17–2 16 16
MCA-18–3 16 16
MCA-19–2 12, 13 12, 13
MCA-X-1 27 27, 28
MCA-1–1 16, 17 16, 17
MCA-1–2 19 19
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water-soluble usnic acid salt, shows enhanced bioavailability and inhibits invasion and metastasis in colorectal cancer. Sci. Rep.
2018, 8, 16234. [CrossRef]

https://doi.org/10.1016/j.dld.2012.10.008
https://www.ncbi.nlm.nih.gov/pubmed/23177172
https://doi.org/10.3390/cancers13153651
https://www.ncbi.nlm.nih.gov/pubmed/34359553
https://doi.org/10.1371/journal.pbio.3000410
https://doi.org/10.18632/oncotarget.23638
https://doi.org/10.1016/j.jcmgh.2021.05.011
https://doi.org/10.1038/nprot.2015.080
https://doi.org/10.2310/7290.2013.00055
https://doi.org/10.1162/153535003322556877
https://www.ncbi.nlm.nih.gov/pubmed/14649056
https://doi.org/10.2967/jnumed.113.127381
https://www.ncbi.nlm.nih.gov/pubmed/24914058
https://doi.org/10.2967/jnumed.108.060533
https://www.ncbi.nlm.nih.gov/pubmed/19443595
https://doi.org/10.2310/7290.2010.00004
https://www.ncbi.nlm.nih.gov/pubmed/20236605
https://doi.org/10.2967/jnumed.110.085092
https://www.ncbi.nlm.nih.gov/pubmed/21498533
https://doi.org/10.1038/jcbfm.1985.87
https://www.ncbi.nlm.nih.gov/pubmed/4055928
https://doi.org/10.1038/jcbfm.1983.1
https://www.ncbi.nlm.nih.gov/pubmed/6822610
https://doi.org/10.2967/jnumed.112.110114
https://doi.org/10.1186/2191-219X-2-6
https://www.ncbi.nlm.nih.gov/pubmed/22297096
https://www.ncbi.nlm.nih.gov/pubmed/16741310
https://doi.org/10.1186/s13550-022-00921-y
https://www.ncbi.nlm.nih.gov/pubmed/35962869
https://doi.org/10.1177/0023677213501659
https://doi.org/10.1007/s13139-011-0087-7
https://doi.org/10.1016/j.jhep.2013.11.005
https://www.ncbi.nlm.nih.gov/pubmed/24239776
https://doi.org/10.1371/journal.pone.0219517
https://www.ncbi.nlm.nih.gov/pubmed/31291357
https://doi.org/10.1002/hep.22109
https://doi.org/10.1038/s41598-018-34709-9


Cancers 2024, 16, 2591 18 of 18

40. Barus, R.; Bergeron, S.; Chen, Y.; Gautier, S. Sex differences: From preclinical pharmacology to clinical pharmacology. Therapies
2023, 78, 189–194. [CrossRef]

41. Wagner, A.; Oertelt-Prigione, S.; Adjei, A.; Buclin, T.; Cristina, V.; Csajka, C.; Coukos, G.; Dafni, U.; Dotto, G.-P.; Ducreux, M.;
et al. Gender medicine and oncology: Report and consensus of an ESMO workshop. Ann. Oncol. 2019, 30, 1914–1924. [CrossRef]
[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.therap.2022.10.005
https://doi.org/10.1093/annonc/mdz414
https://www.ncbi.nlm.nih.gov/pubmed/31613312

	Introduction 
	Materials and Methods 
	Animal Model 
	Cell Culture 
	Establishment of the Orthotopic Syngeneic Mouse Model 
	Experimental Design 
	Contrast-Enhanced MR Imaging 
	PET Imaging 
	PET/MR Imaging 

	Image Analysis 
	MR Image Analysis 
	Dynamic PET Image Analysis 
	PET/MR Image Analysis 

	Histological Assessment 
	Blood Analysis 
	Statistical Analysis 

	Results 
	Cell Culture 
	Tumor Growth Derived by CE-MR 
	PET Kinetic Modeling 
	Tumor Volume and FDG Uptake from the PET/MR Groups 
	Blood Chemistry and Histopathology 

	Discussion 
	Conclusions 
	Appendix A
	References

