Imaging Recommendations for Diagnosis and Management of Primary Parathyroid Pathologies: A Comprehensive Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Anatomy of Parathyroid Glands
2.1. Embryology
2.2. Anatomical Variations
2.3. Surgical Anatomy
2.4. Clinical Significance
3. Clinical Manifestations and Laboratory Investigations of Parathyroid Lesions
4. Imaging of Parathyroid Lesions
4.1. Neck Ultrasound and Contrast-Enhanced Ultrasound
4.2. Dual Phase Technetium-99 Sestamibi, and Dual Tracer Technetium-99 Pertechnetate and Technetium-99 -Sestamibi Scintigraphy, with or without Single Photon Emission Computed Tomography or Single Photon Emission Computed Tomography/Computed Tomography
4.3. Four-Dimensional Computed Tomography
4.4. Four-Dimensional Magnetic Resonance Imaging
4.5. Fluoro-Choline Positron Emission Tomography and 11C Methionine Positron Emission Tomography
4.6. Hybrid Imaging with Fluoro-Choline Positron Emission Tomography/Four-Dimensional Computed Tomography and Fluoro-Choline Positron Emission Tomography/Magnetic Resonance Imaging
4.7. Fluorodeoxyglucose Positron Emission Tomography
5. Comparative Studies on Performance of Various Imaging Modalities
6. Parathyroid Venous Sampling
6.1. Indications of PVS
6.2. Venous Drainage of Parathyroid Glands
6.3. Procedure and Interpretation of Parathyroid Venous Sampling
7. Algorithm for Management
8. Role of Artificial Intelligence
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Morris, M.A.; Saboury, B.; Ahlman, M.; Malayeri, A.A.; Jones, E.C.; Chen, C.C.; Millo, C. Parathyroid Imaging: Past, Present, and Future. Front. Endocrinol. 2022, 12, 760419. [Google Scholar] [CrossRef] [PubMed]
- Uljanovs, R.; Sinkarevs, S.; Strumfs, B.; Vidusa, L.; Merkurjeva, K.; Strumfa, I. Immunohistochemical Profile of Parathyroid Tumours: A Comprehensive Review. Int. J. Mol. Sci. 2022, 23, 6981. [Google Scholar] [CrossRef] [PubMed]
- Erickson, L.A.; Mete, O.; Juhlin, C.C.; Perren, A.; Gill, A.J. Overview of the 2022 WHO classification of parathyroid tumors. Endocr. Pathol. 2022, 33, 64–89. [Google Scholar] [CrossRef]
- Johnson, N.A.; Tublin, M.E.; Ogilvie, J.B. Parathyroid Imaging: Technique and Role in the Preoperative Evaluation of Primary Hyperparathyroidism. Am. J. Roentgenol. 2007, 188, 1706–1715. [Google Scholar] [CrossRef] [PubMed]
- Fingeret, A.L. Contemporary Evaluation and Management of Parathyroid Carcinoma. JCO Oncol. Pract. 2020, 17, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Sharretts, J.M.; Simonds, W.F. Clinical and molecular genetics of parathyroid neoplasms. Best. Pract. Res. Clin. Endocrinol. Metab. 2010, 1, 491–502. [Google Scholar] [CrossRef]
- Shattuck, T.M.; Välimäki, S.; Obara, T.; Gaz, R.D.; Clark, O.H.; Shoback, D.; Wierman, M.E.; Tojo, K.; Robbins, C.M.; Carpten, J.D.; et al. Somatic and germ-line mutations of the HRPT2 gene in sporadic parathyroid carcinoma. N. Engl. J. Med. 2003, 30, 1722–1729. [Google Scholar] [CrossRef] [PubMed]
- Kebebew, E. Parathyroid carcinoma, a rare but important disorder for endocrinologists, primary care physicians, and endocrine surgeons. Thyroid 2008, 1, 385–387. [Google Scholar] [CrossRef] [PubMed]
- Petranović Ovčariček, P.; Giovanella, L.; Carrió Gasset, I.; Hindié, E.; Huellner, M.W.; Luster, M.; Piccardo, A.; Weber, T.; Talbot, J.-N.; Verburg, F.A. The EANM practice guidelines for parathyroid imaging. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2801–2822. [Google Scholar] [CrossRef]
- Duan, K.; Gomez Hernandez, K.; Mete, O. Clinicopathological correlates of hyperparathyroidism. J. Clin. Pathol. 2015, 68, 771–787. [Google Scholar] [CrossRef]
- Marcocci, C.; Cetani, F.; Rubin, M.R.; Silverberg, S.J.; Pinchera, A.; Bilezikian, J.P. Parathyroid carcinoma. J. Bone Miner. Res. 2008, 23, 1869–1880. [Google Scholar] [CrossRef] [PubMed]
- Bassler, T.; Wong, E.T.; Brynes, R.K. Osteitis Fibrosa Cystica Simulating Metastatic Tumor. An Almost-Forgotten Relationship. Am. J. Clin. Pathol. 1993, 100, 697–700. [Google Scholar] [CrossRef] [PubMed]
- Kebebew, E. Parathyroid carcinoma. Curr. Treat. Options Oncol. 2001, 2, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, B.J.; Lewis, J.S. Non-functional parathyroid carcinoma: A review of the literature and report of a case requiring extensive surgery. Head Neck Pathol. 2009, 3, 140–149. [Google Scholar] [CrossRef]
- Gao, W.C.; Ruan, C.P.; Zhang, J.C.; Liu, H.M.; Xu, X.Y.; Sun, Y.P.; Wang, Q. Nonfunctional parathyroid carcinoma. J. Cancer Res. Clin. Oncol. 2010, 136, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Bunch, P.M.; Nguyen, C.J.; Johansson, E.D.; Randle, R.W. Opportunistic Parathyroid Gland Assessment on Routine CT Could Decrease Morbidity from Undiagnosed Primary Hyperparathyroidism. Acad. Radiol. 2023, 30, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Bunch, P.M.; Aribindi, S.; Gorris, M.A.; Randle, R.W. Opportunistic CT Assessment of Parathyroid Glands: Utility of Radiologist-Recommended Biochemical Evaluation for Diagnosing Primary Hyperparathyroidism. Am. J. Roentgenol. 2023, 221, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Gulati, S.; Chumber, S.; Puri, G.; Spalkit, S.; Damle, N.A.; Das, C.J. Multi-modality parathyroid imaging: A shifting paradigm. World J. Radiol. 2023, 15, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Kluijfhout, W.P.; Pasternak, J.D.; Drake, F.T.; Beninato, T.; Gosnell, J.E.; Shen, W.T.; Duh, Q.-Y.; Allen, I.E.; Vriens, M.R.; de Keizer, B.; et al. Use of PET tracers for parathyroid localization: A systematic review and meta-analysis. Langenbeck’s Arch. Surg. 2016, 401, 925–935. [Google Scholar] [CrossRef]
- Bunch, P.M.; Randolph, G.W.; Brooks, J.A.; George, V.; Cannon, J.; Kelly, H.R. Parathyroid 4D CT: What the Surgeon Wants to Know. RadioGraphics 2020, 40, 1383–1394. [Google Scholar] [CrossRef]
- Scharpf, J.; Kyriazidis, N.; Kamani, D.; Randolph, G. Anatomy and embryology of the parathyroid gland. Oper. Tech. Otolaryngol.-Head Neck Surg. 2016, 27, 117–121. [Google Scholar] [CrossRef]
- Sadler, T.W. Langman’s Medical Embryology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2022. [Google Scholar]
- Mansberger, A.R., Jr.; Wei, J.P. Surgical embryology and anatomy of the thyroid and parathyroid glands. Surg. Clin. N. Am. 1993, 1, 727–746. [Google Scholar] [CrossRef] [PubMed]
- Gilmour, J.R. The normal histology of the parathyroid glands. J. Pathol. Bacteriol. 1939, 48, 187–222. [Google Scholar] [CrossRef]
- Taterra, D.; Wong, L.M.; Vikse, J.; Sanna, B.; Pękala, P.; Walocha, J.; Cirocchi, R.; Tomaszewski, K.; Henry, B.M. The prevalence and anatomy of parathyroid glands: A meta-analysis with implications for parathyroid surgery. Langenbeck’s Arch. Surg. 2019, 404, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Akerström, G.; Malmaeus, J.; Bergström, R. Surgical anatomy of human parathyroid glands. Surgery 1984, 1, 14–21. [Google Scholar]
- Wang, C.A. The anatomic basis of parathyroid surgery. Ann. Surg. 1976, 183, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Arnault, V.; Beaulieu, A.; Lifante, J.C.; Serra, A.S.; Sebag, F.; Mathonnet, M.; Hamy, A.; Meurisse, M.; Carnaille, B.; Kraimps, J. Multicenter study of 19 aortopulmonary window parathyroid tumors: The challenge of embryologic origin. World J. Surg. 2010, 34, 2211–2216. [Google Scholar] [CrossRef] [PubMed]
- Unais, T.M.; Gangadhar, P.; Kolikkat, N. Acute hyperparathyroid crisis: Ectopic submandibular parathyroid gland the culprit. Ann. R. Coll. Surg. Engl. 2021, 103, e7–e9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ng, F.H.; Yung, K.S.; Luk, W.H. Ectopic Submandibular Parathyroid Adenoma by Tc-99m Sestamibi SPECT/CT Localization. J. Clin. Imaging Sci. 2020, 10, 61. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alam, S.; Volsky, P.G.; Wadsworth, J.T.; Karakla, D.W. Consideration of Submandibular (Undescended) Ectopic Parathyroid Glands in Surgery and Localization Studies. JAMA Otolaryngol. Head Neck Surg. 2015, 141, 943–944. [Google Scholar] [CrossRef] [PubMed]
- Phitayakorn, R.; McHenry, C.R. Incidence and location of ectopic abnormal parathyroid glands. Am. J. Surg. 2006, 191, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Gregoire-Ferriol, J.; Infante-Cossio, P.; Marcilla-Plaza, D.; Menendez-Felipe, J.V. Heterotopic parathyroid gland tissue in the parotid gland adjacent to a pleomorphic adenoma. J. Cranio-Maxillofac. Surg. 2009, 37, 49–50. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Mishra, A.; Lombardi, C.; Raffaelli, M. Applied Embryology of the Thyroid and Parathyroid Glands. In Surgery of the Thyroid and Parathyroid Glands, 2nd ed.; Randolph, G., Ed.; Saunders/Elsevier: Philadelphia, PA, USA, 2013; pp. 15–24. [Google Scholar]
- Scharpf, J.; Randolph, G. Thyroid and parathyroid glands, chapter 33. In Essential Otolaryngology, 11th ed.; McGraw Hills Company Ltd.: New York, NY, USA, 2015. [Google Scholar]
- Alveryd, A. Parathyroid glands in thyroid surgery. I. Anatomy of parathyroid glands. II. Postoperative hypoparathyroidism--identification and autotransplantation of parathyroid glands. Acta Chir. Scand. 1968, 389, 1–20. [Google Scholar] [PubMed]
- Fraser, W.D. Hyperparathyroidism. Lancet 2009, 11, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Levin, K.E.; Galante, M.; Clark, O.H. Parathyroid carcinoma versus parathyroid adenoma in patients with profound hypercalcemia. Surgery 1987, 1, 649–660. [Google Scholar]
- Silverberg, S.J.; Clarke, B.L.; Peacock, M.; Bandeira, F.; Boutroy, S.; Cusano, N.E.; Dempster, D.; Lewiecki, E.M.; Liu, J.-M.; Minisola, S.; et al. Current issues in the presentation of asymptomatic primary hyperparathyroidism: Proceedings of the Fourth International Workshop. J. Clin. Endocrinol. Metab. 2014, 1, 3580–3594. [Google Scholar] [CrossRef]
- Bilezikian, J.P.; Brandi, M.L.; Eastell, R.; Silverberg, S.J.; Udelsman, R.; Marcocci, C.; Potts, J.T. Guidelines for the management of asymptomatic primary hyperparathyroidism: Summary statement from the Fourth International Workshop. J. Clin. Endocrinol. Metab. 2014, 1, 3561–3569. [Google Scholar] [CrossRef] [PubMed]
- Bilezikian, J.P.; Silverberg, S.J. Normocalcemic primary hyperparathyroidism. Arq. Bras. Endocrinol. Metabol. 2010, 54, 106–109. [Google Scholar] [CrossRef]
- Marcocci, C.; Cetani, F. Primary hyperparathyroidism. N. Engl. J. Med. 2011, 22, 2389–2397. [Google Scholar] [CrossRef]
- Chen, G.; Xue, Y.; Zhang, Q.; Xue, T.; Yao, J.; Huang, H.; Liang, J.; Li, L.; Lin, W.; Lin, L.; et al. Is normocalcemic primary hyperparathyroidism harmful or harmless? J. Clin. Endocrinol. Metab. 2015, 1, 2420–2424. [Google Scholar] [CrossRef]
- Cusano, N.E.; Silverberg, S.J.; Bilezikian, J.P. Normocalcemic primary hyperparathyroidism. J. Clin. Densitom. 2013, 1, 33–39. [Google Scholar] [CrossRef]
- Pipili, C.; Sekecioglu, N.; Oreopoulos, D.G. Normocalcemic hyperparathyroidism in patients with recurrent kidney stones: A disease entity or vitamin D deficiency? Clin. Nephrol. 2012, 1, 352–357. [Google Scholar] [CrossRef]
- Nabata, K.J.; Wiseman, J.J.; Wiseman, S.M. Normohormonal primary hyperparathyroidism: A systematic review and meta-analysis. Am. J. Surg. 2023, 226, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Eastell, R.; Brandi, M.L.; Costa, A.G.; D’Amour, P.; Shoback, D.M.; Thakker, R.V. Diagnosis of asymptomatic primary hyperparathyroidism: Proceedings of the Fourth International Workshop. J. Clin. Endocrinol. Metab. 2014, 1, 3570–3579. [Google Scholar] [CrossRef]
- Udelsman, R.; Åkerström, G.; Biagini, C.; Duh, Q.-Y.; Miccoli, P.; Niederle, B.; Tonelli, F. The surgical management of asymptomatic primary hyperparathyroidism: Proceedings of the Fourth International Workshop. J. Clin. Endocrinol. Metab. 2014, 1, 3595–3606. [Google Scholar] [CrossRef]
- Giusti, F.; Cavalli, L.; Cavalli, T.; Brandi, M.L. Hereditary hyperparathyroidism syndromes. J. Clin. Densitom. 2013, 1, 69–74. [Google Scholar] [CrossRef]
- Arnold, A.; Lauter, K. Chapter 12—Genetics of hyperparathyroidism including parathyroid cancer. In Genetic Diagnosis of Endocrine Disorders; Academic Press: New York, NY, USA, 2010; pp. 141–148. [Google Scholar]
- DeLellis, R.A. Parathyroid tumors and related disorders. Mod. Pathol. 2011, 24, S78–S93. [Google Scholar] [CrossRef]
- Eldeiry, L.S.; Ruan, D.T.; Brown, E.M.; Gaglia, J.L.; Garber, J.R. Primary hyperparathyroidism and familial hypocalciuric hypercalcemia: Relationships and clinical implications. Endocr. Pract. 2012, 1, 412–417. [Google Scholar] [CrossRef]
- Segiet, O.A.; Deska, M.; Michalski, M.; Gawrychowski, J.; Wojnicz, R. Molecular profiling in primary hyperparathyroidism. Head Neck 2015, 37, 299–307. [Google Scholar] [CrossRef]
- Westin, G.; Björklund, P.; Åkerström, G. Molecular genetics of parathyroid disease. World J. Surg. 2009, 33, 2224–2233. [Google Scholar] [CrossRef]
- Marx, S.J.; Simonds, W.F.; Agarwal, S.K.; Burns, A.L.; Weinstein, L.S.; Cochran, C.; Skarulis, M.C.; Spiegel, A.M.; Libutti, S.K.; Alexander, H.R.; et al. Hyperparathyroidism in hereditary syndromes: Special expressions and special managements. J. Bone Miner. Res. 2002, 17 (Suppl. 2), N37–N43. [Google Scholar]
- Agarwal, S.K. Multiple endocrine neoplasia type 1. Endocr. Tumor Syndr. Their Genet. 2013, 41, 1–5. [Google Scholar]
- Thakker, R.V. Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol. Cell. Endocrinol. 2014, 386, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.K.; Jarosek, S.L.; Virnig, B.A.; Evasovich, M.; Tuttle, T.M. Trends in the incidence and treatment of parathyroid cancer in the United States. Cancer 2007, 1, 1736–1741. [Google Scholar] [CrossRef] [PubMed]
- Hundahl, S.A.; Fleming, I.D.; Fremgen, A.M.; Menck, H.R. Two hundred eighty-six cases of parathyroid carcinoma treated in the US between 1985–1995: A National Cancer Data Base Report. Cancer 1999, 1, 538–544. [Google Scholar] [CrossRef]
- Fernandez-Ranvier, G.G.; Khanafshar, E.; Jensen, K.; Zarnegar, R.; Lee, J.; Kebebew, E.; Duh, Q.; Clark, O.H. Parathyroid carcinoma, atypical parathyroid adenoma, or parathyromatosis? Cancer 2007, 15, 255–264. [Google Scholar] [CrossRef]
- Harari, A.; Waring, A.; Fernandez-Ranvier, G.; Hwang, J.; Suh, I.; Mitmaker, E.; Shen, W.; Gosnell, J.; Duh, Q.-Y.; Clark, O. Parathyroid carcinoma: A 43-year outcome and survival analysis. J. Clin. Endocrinol. Metab. 2011, 1, 3679–3686. [Google Scholar] [CrossRef] [PubMed]
- Busaidy, N.L.; Jimenez, C.; Habra, M.A.; Schultz, P.N.; El-Naggar, A.K.; Clayman, G.L.; Asper, J.A.; Diaz, E.M.; Evans, D.B.; Gagel, R.F.; et al. Parathyroid carcinoma: A 22-year experience. Head Neck J. Sci. Spec. Head Neck 2004, 26, 716–726. [Google Scholar] [CrossRef]
- Betea, D.; Potorac, I.; Beckers, A. Parathyroid carcinoma: Challenges in diagnosis and treatment. Ann. D’endocrinologie 2015, 76, 169–177. [Google Scholar] [CrossRef]
- Do Cao, C.; Aubert, S.; Trinel, C.; Odou, M.F.; Bayaram, M.; Patey, M. Parathyroid carcinoma: Diagnostic criteria, classification, evaluation. Ann. D’endocrinologie 2015, 76, 165–168. [Google Scholar] [CrossRef]
- Schulte, K.M.; Talat, N. Diagnosis and management of parathyroid cancer. Nat. Rev. Endocrinol. 2012, 8, 612–622. [Google Scholar] [CrossRef] [PubMed]
- Pallauf, A.; Schopohl, J.; Makeschin, M.; Kirchner, T.; Reincke, M. Lethal generalized calcinosis and hypercalcemic crisis in primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 2015, 1, 17–18. [Google Scholar] [CrossRef] [PubMed]
- Villar-del-Moral, J.; Jimenez-Garcia, A.; Salvador-Egea, P.; Martos-Martínez, J.M.; Nuño-Vázquez-Garza, J.M.; Serradilla-Martín, M.; Gómez-Palacios, A.; Moreno-Llorente, P.; Ortega-Serrano, J.; de la Quintana-Basarrate, A. Prognostic factors and staging systems in parathyroid cancer: A multicenter cohort study. Surgery 2014, 1, 1132–1144. [Google Scholar] [CrossRef] [PubMed]
- Schulte, K.M.; Talat, N.; Galata, G.; Gilbert, J.; Miell, J.; Hofbauer, L.C.; Barthel, A.; Diaz-Cano, S.; Bornstein, S.R. Oncologic resection achieving r0 margins improves disease-free survival in parathyroid cancer. Ann. Surg. Oncol. 2014, 21, 1891–1897. [Google Scholar] [CrossRef] [PubMed]
- Schulte, K.M.; Gill, A.J.; Barczynski, M.; Karakas, E.; Miyauchi, A.; Knoefel, W.T.; Lombardi, C.P.; Talat, N.; Diaz-Cano, S.; Grant, C.S. Classification of parathyroid cancer. Ann. Surg. Oncol. 2012, 19, 2620–2628. [Google Scholar] [CrossRef] [PubMed]
- Talat, N.; Schulte, K.M. Clinical presentation, staging and long-term evolution of parathyroid cancer. Ann. Surg. Oncol. 2010, 17, 2156–2174. [Google Scholar] [CrossRef] [PubMed]
- Sandelin, K.; Auer, G.; Bondeson, L.; Grimelius, L.; Farnebo, L.O. Prognostic factors in parathyroid cancer: A review of 95 cases. World J. Surg. 1992, 16, 724–731. [Google Scholar] [CrossRef]
- Carlson, D. Parathyroid pathology: Hyperparathyroidism and parathyroid tumors. Arch. Pathol. Lab. Med. 2010, 1, 1639–1644. [Google Scholar] [CrossRef]
- DeLellis, R.A.; Mazzaglia, P.; Mangray, S. Primary hyperparathyroidism: A current perspective. Arch. Pathol. Lab. Med. 2008, 1, 1251–1262. [Google Scholar] [CrossRef]
- Erovic, B.M.; Harris, L.; Jamali, M.; Goldstein, D.P.; Irish, J.C.; Asa, S.L.; Mete, O. Biomarkers of parathyroid carcinoma. Endocr. Pathol. 2012, 23, 221–231. [Google Scholar] [CrossRef]
- Kruijff, S.; Sidhu, S.B.; Sywak, M.S.; Gill, A.J.; Delbridge, L.W. Negative parafibromin staining predicts malignant behavior in atypical parathyroid adenomas. Ann. Surg. Oncol. 2014, 21, 426–433. [Google Scholar] [CrossRef]
- Juhlin, C.C.; Nilsson, I.L.; Johansson, K.; Haglund, F.; Villablanca, A.; Höög, A.; Larsson, C. Parafibromin and APC as screening markers for malignant potential in atypical parathyroid adenomas. Endocr. Pathol. 2010, 21, 166–177. [Google Scholar] [CrossRef]
- Kassahun, W.T.; Jonas, S. Focus on parathyroid carcinoma. Int. J. Surg. 2011, 1, 13–19. [Google Scholar] [CrossRef]
- Wei, C.H.; Harari, A. Parathyroid Carcinoma: Update and Guidelines for Management. Curr. Treat. Options Oncol. 2012, 13, 11–23. [Google Scholar] [CrossRef]
- Mahajan, A.; Shukla, S.; Ankathi, S.K.; Shukla, A.; Vaish, R.; Suryavanshi, S.; Agarwal, U.; Patil, V.; Sahu, A.; Padashetty, S.; et al. Imaging Recommendations for Diagnosis, Staging, and Management of Cancer of the Thyroid, Parathyroid, and Salivary Glands. Indian. J. Med. Paediatr. Oncol. 2023, 44, 159–174. [Google Scholar] [CrossRef]
- Cohen, S.M.; Noel, J.E.; Puccinelli, C.L.; Orloff, L.A. Ultrasound Identification of Normal Parathyroid Glands. OTO Open 2021, 5, 2473974X211052857. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marchand, J.-G.; Ghander, C.; Bienvenu-Perrard, M.; Rouxel, A.; Buffet, C.; Russ, G. Normal Parathyroid Glands Are Most Often Seen on Neck Ultrasound. Acad. Radiol. 2024. [Google Scholar] [CrossRef]
- Walton, A.R.; Formby, M.R.; Kumar, A.R. Multimodality imaging in parathyroid carcinoma: A tale of two nodules. Radiol. Case Rep. 2015, 3, 914. [Google Scholar] [CrossRef]
- Halenka, M.; Karasek, D.; Frysak, Z. Four ultrasound and clinical pictures of parathyroid carcinoma. Case Rep. Endocrinol. 2012, 2012, 363690. [Google Scholar] [CrossRef]
- Nayyar, S.S.; Thiagarajan, S.; Chaukar, D.; Laskar, S.G.; Patil, A.; Mahajan AShah, S. Parathyroid carcinoma—An Experience of the Enigma Over 10 years. Indian. J. Endocrinol. Metab. 2020, 24, 137–142. [Google Scholar]
- Shah, R.; Gosavi, V.; Mahajan, A.; Sonawane, S.; Hira, P.; Kurki, V.; Bal, M.; Sathe, P.; Pai, P.; D’Cruz, A.; et al. Preoperative prediction of parathyroid carcinoma in an Asian Indian cohort. Head Neck 2021, 10, 2069–2080. [Google Scholar] [CrossRef] [PubMed]
- Zafereo, M.; Yu, J.; Angelos, P.; Brumund, K.; Chuang, H.H.; Goldenberg, D.; Lango, M.; Perrier, N.; Randolph, G.; Shindo, M.L.; et al. American Head and Neck Society Endocrine Surgery Section update on parathyroid imaging for surgical candidates with primary hyperparathyroidism. Head Neck 2019, 41, 2398–2409. [Google Scholar] [CrossRef] [PubMed]
- Pavlovics, S.; Radzina, M.; Niciporuka, R.; Brumund, K.; Chuang, H.H.; Goldenberg, D.; Lango, M.; Perrier, N.; Randolph, G.; Shindo, M.L.; et al. Contrast-Enhanced Ultrasound Qualitative and Quantitative Characteristics of Parathyroid Gland Lesions. Medicina 2021, 58, 2. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, T.; Agrawal, A.; Mahajan, S.; Thakur, M.H.; Mahajan, A. The Continuing Evolution of Molecular Functional Imaging in Clinical Oncology: The Road to Precision Medicine and Radiogenomics (Part II). Mol. Diagn. Ther. 2019, 7, 27–51. [Google Scholar] [CrossRef] [PubMed]
- Azizi, G.; Piper, K.; Keller, J.M.; Mayo, M.L.; Puett, D.; Earp, K.M.; Malchoff, C.D. Shear wave elastography and parathyroid adenoma: A new tool for diagnosing parathyroid adenomas. Eur. J. Radiol. 2016, 85, 1586–1593. [Google Scholar] [CrossRef] [PubMed]
- Bunch, P.M.; Kelly, H.R. Preoperative Imaging Techniques in Primary Hyperparathyroidism: A Review. JAMA Otolaryngol. Head Neck Surg. 2018, 144, 929–937. [Google Scholar] [CrossRef] [PubMed]
- Hindié, E.; Ugur, Ö.; Fuster, D.; Odoherty, M.; Grassetto, G.; Ureña, P.; Kettle, A.; Gulec, S.A.; Pons, F.; Rubello, D. 2009 EANM parathyroid guidelines. Eur. J. Nucl. Med. Mol. Imaging 2009, 36, 1201–1216. [Google Scholar] [CrossRef] [PubMed]
- Bunch, P.M.; Pavlina, A.A.; Lipford, M.E.; Sachs, J.R. Dual-Energy Parathyroid 4D-CT: Improved Discrimination of Parathyroid Lesions from Thyroid Tissue Using Noncontrast 40-keV Virtual Monoenergetic Images. Am. J. Neuroradiol. 2021, 42, 2001–2008. [Google Scholar] [CrossRef] [PubMed]
- Sepahdari, A.R.; Bahl, M.; Harari, A.; Kim, H.J.; Yeh, M.W.; Hoang, J.K. Predictors of Multigland Disease in Primary Hyperparathyroidism: A Scoring System with 4D-CT Imaging and Biochemical Markers. AJNR Am. J. Neuroradiol. 2015, 36, 987–992. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sho, S.; Yilma, M.; Yeh, M.W.; Livhits, M.; Wu, J.X.; Hoang, J.K.; Sepahdari, A.R. Prospective Validation of Two 4D-CT-Based Scoring Systems for Prediction of Multigland Disease in Primary Hyperparathyroidism. AJNR Am. J. Neuroradiol. 2016, 37, 2323–2327. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Becker, J.L.; Patel, V.; Johnson, K.J.; Guerrero, M.; Klein, R.R.; Ranvier, G.F.; Owen, R.P.; Pawha, P.; Nael, K. 4D-Dynamic Contrast-Enhanced MRI for Preoperative Localization in Patients with Primary Hyperparathyroidism. AJNR Am. J. Neuroradiol. 2020, 41, 522–528. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sacconi, B.; Argiro, R.; Diacinti, D.; Iannarelli, A.; Bezzi, M.; Cipriani, C.; Pisani, D.; Cipolla, V.; De Felice, C.; Minisola, S.; et al. MR appearance of parathyroid adenomas at 3 T in patients with primary hyperparathyroidism: What radiologists need to know for pre-operative localization. Eur. Radiol. 2016, 26, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Nael, K.; Hur, J.; Bauer, A.; Khan, R.; Sepahdari, A.; Inampudi, R.; Guerrero, M. Dynamic 4D MRI for Characterization of Parathyroid Adenomas: Multiparametric Analysis. AJNR Am. J. Neuroradiol. 2015, 36, 2147–2152. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mahajan, A.; Goh, V.; Basu, S.; Vaish, R.; Weeks, A.J.; Thakur, M.H.; Cook, G.J. Bench to bedside molecular functional imaging in translational cancer medicine: To image or to imagine? Clin. Radiol. 2015, 70, 1060–1082. [Google Scholar] [CrossRef] [PubMed]
- Vallabhajosula, S. 18F-labeled positron emission tomographic radiopharmaceuticals in oncology: An overview of radiochemistry and mechanisms of tumor localization. Semin. Nucl. Med. 2007, 37, 400–419. [Google Scholar] [CrossRef]
- Evangelista, L.; Ravelli, I.; Magnani, F.; Iacobone, M.; Giraudo, C.; Camozzi, V.; Spimpolo, A.; Cecchin, D. 18 F-choline PET/CT and PET/MRI in primary and recurrent hyperparathyroidism: A systematic review of the literature. Ann. Nucl. Med. 2020, 34, 601–619. [Google Scholar] [CrossRef] [PubMed]
- Zhang-Yin, J.; Gaujoux, S.; Delbot, T.; Gauthé, M.; Talbot, J.N. 18F-fluorocholine PET/CT imaging of brown tumors in a patient with severe primary hyperparathyroidism. Clin. Nucl. Med. 2019, 1, 971–974. [Google Scholar] [CrossRef] [PubMed]
- Morland, D.; Richard, C.; Godard, F.; Deguelte, S.; Delemer, B. Temporal uptake patterns of 18F-fluorocholine among hyperfunctioning parathyroid glands. Clin. Nucl. Med. 2018, 1, 504–505. [Google Scholar] [CrossRef] [PubMed]
- Rep, S.; Hocevar, M.; Vaupotic, J.; Zdesar, U.; Zaletel, K.; Lezaic, L. 18F-choline PET/CT for parathyroid scintigraphy: Significantly lower radiation exposure of patients in comparison to conventional nuclear medicine imaging approaches. J. Radiol. Prot. 2018, 38, 343–356. [Google Scholar] [CrossRef]
- Broos, W.A.M.; Wondergem, M.; Knol, R.J.J.; van der Zant, F.M. Parathyroid imaging with 18F-fluorocholine PET/CT as a first-line imaging modality in primary hyperparathyroidism: A retrospective cohort study. EJNMMI Res. 2019, 9, 72. [Google Scholar] [CrossRef]
- Giovanella, L.; Bacigalupo, L.; Treglia, G.; Piccardo, A. Will 18F-fluorocholine PET/CT replace other methods of preoperative parathyroid imaging? Endocrine 2021, 71, 285–297. [Google Scholar] [CrossRef] [PubMed]
- Piccardo, A.; Trimboli, P.; Rutigliani, M.; Puntoni, M.; Foppiani, L.; Bacigalupo, L.; Crescenzi, A.; Bottoni, G.; Treglia, G.; Paparo, F.; et al. Additional value of integrated 18 F-choline PET/4D contrast-enhanced CT in the localization of hyperfunctioning parathyroid glands and correlation with molecular profile. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 766–775. [Google Scholar] [CrossRef]
- Hope, T.A.; Graves, C.E.; Calais, J.; Ehman, E.C.; Johnson, G.B.; Thompson, D.; Aslam, M.; Duh, Q.-Y.; Gosnell, J.E.; Shen, W.T.; et al. Accuracy of 18F-fluorocholine PET for the detection of parathyroid adenomas: Prospective single-center study. J. Nucl. Med. 2021, 1, 1511–1516. [Google Scholar] [CrossRef]
- Gardner, C.J.; Wieshmann, H.; Gosney, J.; Carr, H.M.; Macfarlane, I.A.; Cuthbertson, D.J. Localization of metastatic parathyroid carcinoma by 18F FDG PET scanning. J. Clin. Endocrinol. Metab. 2010, 1, 4844–4845. [Google Scholar] [CrossRef] [PubMed]
- Arslan, N.; Rydzewski, B. Detection of a recurrent parathyroid carcinoma with FDG positron emission tomography. Clin. Nucl. Med. 2002, 27, 221–222. [Google Scholar] [CrossRef]
- Van den Bruel, A.; Bijnens, J.; Van Haecke, H.; Vander Poorten, V.; Dick, C.; Vauterin, T.; De Geeter, F. Preoperative imaging for hyperparathyroidism often takes upper parathyroid adenomas for lower adenomas. Sci. Rep. 2023, 13, 7568. [Google Scholar] [CrossRef]
- Hoang, J.K.; Reiman, R.E.; Nguyen, G.B.; Januzis, N.; Chin, B.B.; Lowry, C.; Yoshizumi, T.T. Lifetime Attributable Risk of Cancer From Radiation Exposure During Parathyroid Imaging: Comparison of 4D CT and Parathyroid Scintigraphy. AJR Am. J. Roentgenol. 2015, 204, W579–W585. [Google Scholar] [CrossRef] [PubMed]
- Krol, J.P.; Joosten, F.B.M.; de Boer, H.; Bernsen, M.L.E.; Slump, C.H.; Oyen, W.J.G. Four-dimensional computed tomography as first-line imaging in primary hyperparathyroidism, a retrospective comparison to conventional imaging in a predominantly single adenoma population. EJNMMI Rep. 2024, 1, 11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Patel, D.D.; Bhattacharjee, S.; Pandey, A.K.; Kopp, C.R.; Ashwathanarayana, A.G.; Patel, H.V.; Barnabas, R.; Bhadada, S.K.; Dodamani, M.H. Comparison of 4D computed tomography and F-18 fluorocholine PET for localisation of parathyroid lesions in primary hyperparathyroidism: A systematic review and meta-analysis. Clin. Endocrinol. 2023, 99, 262–271. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Luo, Y.; Jin, S.; Wang, O.; Liao, Q.; Zhu, Q.; Liu, H. Can we skip technetium-99 m sestamibi scintigraphy in pediatric primary hyperparathyroidism patients with positive neck ultrasound results? Pediatr. Radiol. 2023, 53, 2253–2259. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Christensen, J.W.; Ismail, A.; Søndergaard, S.B.; Bennedbaek, F.N.; Nygaard, B.; Jensen, L.T.; Trolle, W.; Holst-Hahn, C.; Zerahn, B.; Kristensen, B.; et al. Preoperative imaging in primary hyperparathyroidism: Are 11 C-Choline PET/CT and 99m Tc-MIBI/123 Iodide subtraction SPECT/CT interchangeable or do they supplement each other? Clin. Endocrinol. 2022, 97, 258–267. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, S.W.; Shim, S.R.; Jeong, S.Y.; Kim, S.J. Direct Comparison of Preoperative Imaging Modalities for Localization of Primary Hyperparathyroidism: A Systematic Review and Network Meta-analysis. JAMA Otolaryngol. Head Neck Surg. 2021, 1, 692–706. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Murugan, N.; Kandasamy, D.; Sharma, R.; Goyal, A.; Gupta, A.K.; Tandon, N.; Gupta, N.; Goswami, R.; Vurthaluru, S.; Damle, N.; et al. Comparison of 4DMRI and 4DCT for the preoperative evaluation of patients with primary hyperparathyroidism. Eur. J. Radiol. 2021, 138, 109625. [Google Scholar] [CrossRef]
- de Jong, M.C.; Jamal, K.; Morley, S.; Beale, T.; Chung, T.; Jawad, S.; Hurel, S.; Simpson, H.; Srirangalingam, U.; Baldeweg, S.E.; et al. The use of computed tomography as a first-line imaging modality in patients with primary hyperparathyroidism. Hormones 2021, 20, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Whitman, J.; Allen, I.E.; Bergsland, E.K.; Suh, I.; Hope, T.A. Assessment and Comparison of 18F-Fluorocholine PET and 99mTc-Sestamibi Scans in Identifying Parathyroid Adenomas: A Metaanalysis. J. Nucl. Med. 2021, 1, 1285–1291. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Özdemir, E.; Genç, M.; Aydos, U.; Polat, Ş.B.; Kandemir, Z.; Tam, A.A.; Yildirim, N.; Türkölmez, Ş. Comparison of 99mTc-MIBI planar scintigraphy, SPET/CT and ultrasonography in detection of parathyroid adenoma in patients with primary hyperparathyroidism. Hell J. Nucl. Med. 2020, 23, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Saerens, J.; Velkeniers, B.; Keyaerts, M.; Raeymaeckers, S.; Vanhoeij, M.; Blotwijk, S.; Bravenboer, B. Value of [11C]-Methionine PET/CT in Preoperative Localization of Parathyroid Adenomas. Horm. Metab. Res. 2021, 53, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Bioletto, F.; Barale, M.; Parasiliti-Caprino, M.; Prencipe, N.; Berton, A.M.; Procopio, M.; Deandreis, D.; Ghigo, E. Comparison of the diagnostic accuracy of 18F-Fluorocholine PET and 11C-Methionine PET for parathyroid localization in primary hyperparathyroidism: A systematic review and meta-analysis. Eur. J. Endocrinol. 2021, 25, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Okudan, B.; Seven, B.; Coskun, N.; Albayrak, A. Comparison between single-photon emission computed tomography/computed tomography and ultrasound in preoperative detection of parathyroid adenoma: Retrospective review of an institutional experience. Nucl. Med. Commun. 2019, 40, 1211–1215. [Google Scholar] [CrossRef] [PubMed]
- Kairemo, K.; Jessop, A.C.; Vija, A.H.; Ding, X.; Spence, D.; Kappadath, S.C.; Macapinlac, H.A. A Prospective Comparative Study of Using Ultrasonography, 4D-CT and Parathyroid Dual-Phase Scintigraphy with SPECT in Patients with Primary Hyperparathyroidism. Diagnostics 2021, 28, 2006. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Christakis, I.; Vu, T.; Chuang, H.H.; Fellman, B.; Figueroa, A.M.; Williams, M.D.; Busaidy, N.L.; Perrier, N.D. The diagnostic accuracy of neck ultrasound, 4D-Computed tomographyand sestamibi imaging in parathyroid carcinoma. Eur. J. Radiol. 2017, 95, 82–88. [Google Scholar] [CrossRef]
- Taslakian, B.; Trerotola, S.O.; Sacks, B.; Oklu, R.; Deipolyi, A. The Essentials of Parathyroid Hormone Venous Sampling. Cardiovasc. Intervent. Radiol. 2017, 40, 9–21. [Google Scholar] [CrossRef]
- Ho, J.; Kim, D.; Lee, J.E.; Hong, N.; Kim, B.M.; Kim, D.J.; Kim, J.; Lee, C.R.; Kang, S.-W.; Jeong, J.J.; et al. Parathyroid venous sampling for the preoperative localisation of parathyroid adenoma in patients with primary hyperparathyroidism. Sci. Rep. 2022, 29, 7058. [Google Scholar] [CrossRef]
- Yang, X.; Chen, X.; Xu, H.; Chen, J.; Yao, B.; Lin, Q.; Deng, H.; Xu, W. Selective venous sampling in primary hyperparathyroidism caused by ectopic parathyroid gland: A case report and literature review. BMC Endocr. Disord. 2023, 23, 141. [Google Scholar] [CrossRef]
- Doppman, J.L.; Hammond, W.G. The anatomic basis of parathyroid venous sampling. Radiology 1970, 95, 603–610. [Google Scholar] [CrossRef]
- Wafae, N.; Hirose, K.; Franco, C.; Wafae, G.C.; Ruiz, C.R.; Daher, L.; Person, O.C. The anatomy of the human thyroid veins and its surgical application. Folia Morphol. 2008, 67, 221–225. [Google Scholar]
- Doppman, J.L.; Mallette, L.E.; Marx, S.J.; Monchik, J.M.; Broadus, A.; Spiegel, A.M.; Beazley, R.; Aurbach, G.D. The localization of abnormal mediastinal parathyroid glands. Radiology 1975, 115, 31–36. [Google Scholar] [CrossRef]
- Ogilvie, C.M.; Brown, P.L.; Matson, M.; Dacie, J.; Reznek, R.H.; Britton, K.; Carpenter, R.; Berney, D.; Drake, W.M.; Jenkins, P.J.; et al. Selective parathyroid venous sampling in patients with complicated hyperparathyroidism. Eur. J. Endocrinol. 2006, 155, 813–821. [Google Scholar] [CrossRef]
- Lebastchi, A.H.; Aruny, J.E.; Donovan, P.I.; Quinn, C.E.; Callender, G.G.; Carling, T.; Udelsman, R. Real-time super selective venous sampling in remedial parathyroid surgery. J. Am. Coll. Surg. 2015, 220, 994–1000. [Google Scholar] [CrossRef]
- Seehofer, D.; Steinmuller, T.; Rayes, N.; Podrabsky, P.; Riethmüller, J.; Klupp, J.; Ulrich, F.; Schindler, R.; Frei, U.; Neuhaus, P. Parathyroid hormone venous sampling before reoperative surgery in renal hyperparathyroidism: Comparison with noninvasive localization procedures and review of the literature. Arch. Surg. 2004, 139, 1331–1338. [Google Scholar] [CrossRef]
- Estella, E.; Leong, M.S.; Bennett, I.; Hartley, L.; Wetzig, N.; Archibald, C.A.; Harper, J.S.; Cuneo, R.C. Parathyroid hormone venous sampling prior to reoperation for primary hyperparathyroidism. ANZ J. Surg. 2003, 73, 800–805. [Google Scholar] [CrossRef]
- Merchavy, S.; Luckman, J.; Guindy, M.; Segev, Y.; Khafif, A. 4D MRI for the localization of parathyroid adenoma: A novel method in evolution. Otolaryngol.—Head Neck Surg. 2016, 154, 446–448. [Google Scholar] [CrossRef] [PubMed]
- Huber, G.F.; Hüllner, M.; Schmid, C.; Brunner, A.; Sah, B.; Vetter, D.; Kaufmann, P.A.; von Schulthess, G.K. Benefit of 18 F-fluorocholine PET imaging in parathyroid surgery. Eur. Radiol. 2018, 28, 2700–2707. [Google Scholar] [CrossRef] [PubMed]
- Kluijfhout, W.P.; Pasternak, J.D.; Beninato, T.; Drake, F.T.; Gosnell, J.E.; Shen, W.T.; Duh, Q.-Y.; Allen, I.E.; Vriens, M.R.; de Keizer, B.; et al. Diagnostic performance of computed tomography for parathyroid adenoma localization; a systematic review and meta-analysis. Eur. J. Radiol. 2017, 88, 117–128. [Google Scholar] [CrossRef]
- Tian, Y.; Tanny, S.T.; Einsiedel, P.; Lichtenstein, M.; Stella, D.L.; Phal, P.M.; Miller, J.A. Four-dimensional computed tomography: Clinical impact for patients with primary hyperparathyroidism. Ann. Surg. Oncol. 2018, 25, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Feingold, D.L.; Alexander, H.R.; Chen, C.C.; Libutti, S.K.; Shawker, T.H.; Simonds, W.F.; Marx, S.J.; Skarulis, M.C.; Doppman, J.L.; Schrump, D.S.; et al. Ultrasound and sestamibi scan as the only preoperative imaging tests in reoperation for parathyroid adenomas. Surgery 2000, 1, 1103–1110. [Google Scholar] [CrossRef]
- Koea, J.B.; Shaw, J.H. Parathyroid cancer: Biology and management. Surg. Oncol. 1999, 1, 155–165. [Google Scholar] [CrossRef]
- Vaidya, T.; Agrawal, A.; Mahajan, S.; Thakur, M.H.; Mahajan, A. The Continuing Evolution of Molecular Functional Imaging in Clinical Oncology: The Road to Precision Medicine and Radiogenomics (Part I). Mol. Diagn. Ther. 2019, 7, 1–26. [Google Scholar] [CrossRef]
- Chakrabarty, N.; Mahajan, A. Imaging Analytics using Artificial Intelligence in Oncology: A Comprehensive Review. Clin. Oncol. 2024, 36, 498–513. [Google Scholar] [CrossRef]
- Apostolopoulos, I.D.; Papandrianos, N.I.; Papageorgiou, E.I.; Apostolopoulos, D.J. Artificial Intelligence Methods for Identifying and Localizing Abnormal Parathyroid Glands: A Review Study. Mach. Learn. Knowl. Extr. 2022, 4, 814–826. [Google Scholar] [CrossRef]
- Sandqvist, P.; Sundin, A.; Nilsson, I.-L.; Grybäck, P.; Sanchez-Crespo, A. Primary Hyperparathyroidism, a Machine Learning Approach to Identify Multiglandular Disease in Patients with a Single Adenoma Found at Preoperative Sestamibi-SPECT/CT. Eur. J. Endocrinol. 2022, 187, 257–263. [Google Scholar] [CrossRef]
- Stefaniak, B.; Cholewiński, W.; Tarkowska, A. Application of Artificial Neural Network Algorithm to Detection of Parathyroid Adenoma. Nucl. Med. Rev 2003, 6, 111–117. [Google Scholar]
- Yoshida, A.; Ueda, D.; Higashiyama, S.; Katayama, Y.; Matsumoto, T.; Yamanaga, T.; Miki, Y.; Kawabe, J. Deep Learning-Based Detection of Parathyroid Adenoma by 99mTc-MIBI Scintigraphy in Patients with Primary Hyperparathyroidism. Ann. Nucl. Med. 2022, 36, 468–478. [Google Scholar] [CrossRef]
- Chen, J.; Guo, Q.; Jiang, Z.; Wang, H.; Yu, M.; Wei, Y. Recognition of Hyperparathyroidism Based on Transfer Learning. In Proceedings of the 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Seoul, Republic of Korea, 16–19 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 2959–2961. [Google Scholar]
- Apostolopoulos, I.D.; Papathanasiou, N.D.; Apostolopoulos, D.J. A Deep Learning Methodology for the Detection of Abnormal Parathyroid Glands via Scintigraphy with 99mTc-Sestamibi. Diseases 2022, 10, 56. [Google Scholar] [CrossRef]
- Jarabek, L.; Jamsek, J.; Cuderman, A.; Rep, S.; Hocevar, M.; Kocjan, T.; Jensterle, M.; Spiclin, Z.; Macek Lezaic, Z.; Cvetko, F.; et al. Detection and localization of hyperfunctioning parathyroid glands on [18F]fluorocholine PET/ CT using deep learning—Model performance and comparison to human experts. Radiol. Oncol. 2022, 13, 440–452. [Google Scholar] [CrossRef]
- Valavi, S.; Hajianfar, G.; Masoudi, S.F.; Maghsudi, M.; Sohrabi, M.; Bitarafan Rajabi, A.; Oveisi, M.; Rahmim, A.; Shiri, I.; Zaidi, H. Parathyroid Adenoma Subtype Decoding by Using SPECT Radiomic Features and Machine Learning Algorithms. J. Nucl. Med. 2022, 63 (Suppl. 2), 3235. [Google Scholar]
- Ezenekwe, C.; Zhang, M.; Hussain, I.; Zhang, Y.; Ginat, D. Utilizing radiomic features of arterial phase computed tomography for delineating parathyroid adenomas from surrounding anatomical structures. J. Clin. Transl. Res. 2024, 10, 112. [Google Scholar] [CrossRef]
Parameters | Description |
---|---|
Coverage | Entire neck and thorax till base of heart |
Phases | Dual phase: at 10–15 min and 90–150 min after intravenous administration of radiopharmaceutical |
Image acquisition |
|
Energy window | 140 ± 10 keV |
Matrix size | 128 × 128 or 256 × 256 (better) |
Parameters | Description |
---|---|
Coverage | Maxilla to carina |
Iodinated contrast material administration | 100 mL (370 mg iodine/mL) injected at 3–4 mL/s, followed by 40 mL saline flush |
Phases | Non-contrast, arterial, delayed venous |
Arterial phase | 25–30 s after start of injection |
Delayed venous phase | 60 s after start of injection |
Thickness | 1.25 mm |
Tube voltage (kVp) | 140 |
Tube current (mA) | Minimum 180 and maximum 300 |
Interval | 1 mm |
Display field of view (DFOV) (cm) | 25 |
Clinico-Radio-Pathological Features | Multiglandular Parathyroid Disease | Solitary Parathyroid Adenoma | Parathyroid Carcinoma |
---|---|---|---|
Age | Variable, usually >50 years Early onset in hereditary forms | >50 years | Around 50 years Early onset in HPJT and familial forms |
Gender | Females | Females | Equal gender incidence |
Clinical manifestations | Symptoms of primary hyperparathyroidism and those associated with familial syndromes and MEN (when present) | Asymptomatic Symptoms of primary hyperparathyroidism | Symptoms of primary hyperparathyroidism especially simultaneous bone and renal disease (functional), HPJT, symptoms associated with familial syndromes and MEN (when present), palpable neck nodes, hoarseness of voice due to RLN palsy |
Laboratory parameters | Serum calcium: <13 mg/dL Serum PTH: Mildly to severely elevated Hypocalciuria in FHH | Serum calcium: <13 mg/dL Serum PTH: Mildly to moderately elevated | Serum calcium: >14 mg/dL Serum PTH: more than three times upper limit of normal |
Imaging features | Imaging morphology Bilaterally enlarged (may be asymmetric) homogeneous polar glands adjacent to thyroid on US, 4DCT, 4DMRI Imaging characteristics Intense homogeneous enhancement on CEUS. | Imaging morphology Well circumscribed homogeneous oval/oblong-shaped polar lesion adjacent to thyroid with feeding vessel sign on US and 4DCT. Imaging characteristics Hypoechoic on US Early peripheral enhancement and central washout in the delayed phase on CEUS. Hypodense to thyroid on non-contrast scan, usually hyper-enhancing in the arterial phase with feeding vessel sign and washout in the venous phase on 4DCT. Homogeneous or marbled T2 hyperintensity lesion with fluid fat interface on out-of-phase imaging between thyroid gland and PA, and rapid post-contrast enhancement on 4DMRI. | Imaging morphology Large (>3 cm) heterogeneous lesion, irregular shape, epicentred adjacent to thyroid with lobulated margins infiltrating thyroid and surrounding structures, short/long-axis ratio >0.76, long axis diameter >30 mm, presence of central and peripheral vascularity, and intratumoural calcification along with metastatic neck nodes on US, 4DCT, 4DMRI. Parathyroid carcinoma is differentiated from PA based on morphological features only. |
Functional imaging | Technetium(99mTc) Sestamibi: Focal uptake over bilateral upper and lower poles of thyroid lobes in the early phase, with persistent uptake in the delayed phase. | Dual-energy CT 4DCT: Differentiation of parathyroid lesion from thyroid tissue using non-contrast 40-keV virtual monoenergetic images for parathyroid lesions which are isodense to thyroid in the arterial and venous phases. 99mTc Sestamibi: Early phase shows focal increased radiotracer uptake near the superior/inferior polar region of thyroid, with persistent uptake in the delayed phase. | FDG-PET CT: Distant metastasis No specific characteristics on Technetium (99mTc) Sestamibi |
Pi |
Imaging Modality | Advantages | Limitations |
---|---|---|
US with CEUS | No radiation Easy availability Dynamic scanning technique, hence area of interest can be focused by the operator Low cost Can be performed intraoperatively for guiding the surgeons. CEUS can help differentiate PA from MGD Enlarged lymph nodes associated with a parathyroid lesion may suggest parathyroid carcinoma. Optimal modality for concurrent evaluation of thyroid pathologies. | Operator-dependent. Localisation of ectopic gland difficult and may not be feasible due to limited field of view. Lack of acoustic window limits assessment of lesions in the retroclavicular, mediastinal and retroesophageal locations. Local invasion of structures less well appreciated than with cross-sectional imaging. Superior parathyroid adenomas may be falsely assigned to the inferior position. Reduced sensitivity for depicting far posterior lesions. Reduced effectiveness in obese patients. |
99mTc sestamibi or dual tracer 99mTc pertechnetate and 99mTc-sestamibi scintigraphy | Can localise hyperfunctioning parathyroid in orthotopic or ectopic location. Operator-independent Enhanced visualisation of far posterior lesions that US is likely to miss. Both functional and anatomic information with SPECT/CT. | Effective radiation dose of 12 mSv. Superior parathyroid adenomas may be falsely assigned to the inferior position on Technetium-99 sestamibi SPECT/CT. Adenomas with rapid washout can be missed. False positives in presence of thyroid nodules and neck nodes. Reduced sensitivity in those taking calcium channel blockers. |
4DCT | Short imaging time High spatial resolution to detect small lesions within the orthotopic and ectopic glands. Features of local invasion and metastatic cervical adenopathy may suggest parathyroid carcinoma. Increased sensitivity for MGD. Improved localisation after failed surgery. | High effective radiation dose of 28 mSv. Need for iodinated contrast media. |
4DMRI | No radiation Features of local invasion and metastatic cervical adenopathy may suggest parathyroid carcinoma | Longer scan time Claustrophobic patients unable to tolerate MRI. Need for gadolinium contrast injection. |
18F-FCH PET | Advantages of both structural and functional information. Can detect small lesions in MGD. | Uptake by generalised neoplastic process, tracer not specific to parathyroid gland. High cost Radiation exposure |
Studies | Imaging Modality | PA | MGD | PA and/or MGD (Not Specified) | Comments |
---|---|---|---|---|---|
Krol et al. [112] | 4DCT | Patient and localisation S = 70.6% PPV = 86.1% Lateralization S = 62.7% PPV = 88.9% | - | - | Significantly higher sensitivity of 4DCT for patient and localisation level |
US + 99Tc MIBI SPECT/CT | Patient and localisation S = 51.9% 67.9% Lateralization S = 44.4% PPV = 85.7% | ||||
Patel et al. [113] | 18F-FCH PET/CT | - | - | Patient-wise analysis S = 92% DR = 92.4% Lesion-wise analysis S = 90% Negative conventional imaging/persistent PHPT S = 84% | FCH PET/CT scan had a higher pooled sensitivity than 4DCT in detecting patients with PHPT |
4DCT | Patient-wise analysis S = 85% DR = 76.85% Lesion-wise analysis S = 79% Negative conventional imaging/persistent PHPT S = 72% | ||||
He et al. [114] | US | - | - | S = 100% | 99mTc-MIBI scintigraphy could increase the specificity in paediatric patients with multigland disease suspected by US. |
99Tc MIBI | S = 93.8% | ||||
Christensen et al. [115] | 11C-Choline PET | - | - | S = 82% | |
Di-SPECT | S = 87% | ||||
Lee et al. [116] | Choline PET-CT | - | - | 0.987 | Highest surface under the cumulative ranking curve (SUCRA) value of Choline PET-CT for localisation |
MET PET-CT | 0.7046 | ||||
MIBI SPECT | 0.5465 | ||||
MIBI planar | 0.0585 | ||||
Dual tracer | 0.3241 | ||||
US | 0.1286 | ||||
CT | 0.7780 | ||||
MRI | 0.4700 | ||||
Murugan et al. [117] | 4DCT | - | - | S = 96.7% Sp = 66.6% A = 95.2% PPV = 98.3% NPV = 50% | |
4DMRI | S = 96.7% Sp = 66.6% A = 95.2% PPV = 98.31% NPV50% | ||||
de Jong et al. [118] | CT | A = 81% | US and CT could be considered as a first-line imaging modality in patients with PHPT considered for MIP. | ||
US and CT | A = 50% | S = 88% | |||
US and sestamibi | A = 62% | A = 40% | S = 65% | ||
Whitman et al. [119] | 18F-FCH PET | S = 0.96 | 18F-FCH PET demonstrates high localisation accuracy in patients with hyperparathyroidism. | ||
99mTc-sestamibi scans | S = 0.54 | ||||
Özdemir et al. [120] | Planar scintigraphy | S = 80.4% Sp = 42.8% PPV = 91.1% A = 75.8% | - | - | |
SPECT/CT | S = 80.4% Sp = 57.7% PPV = 91.1% A = 77.5% | ||||
US | S = 88.2% Sp = 85.7% PPV = 97.8% A = 87.9% | ||||
SPECT + US | S = 94.1% Sp = 71.4% PPV = 96% A = 91.3% | ||||
Saerens et al. [121] | US | S = 36/90 40% Sp = 211/221 95.5% PPV = 36/46 78.3% NPV = 211/265 79.6% | - | - | |
Subtraction scintigraphy | S = 24/75 32% Sp = 169/185 91.4% PPV = 24/40 60% NPV = 169/220 76.8% | ||||
MET-PET/CT | S = 13/22 59.1% Sp = 44/46 95.7% PPV = 13/15 86.7% NPV = 44/53 83% | ||||
4DCT | S = 5/8 62.5% Sp = 24/25 96% PPV = 5/6 83.3% NPV = 24/27 88.9% | ||||
Bioletto et al. [122] | 18F-FCH PET | - | - | S = 92% PPV = 95% | Superior performance of 18F-Fluorocholine in terms of sensitivity |
MET-PET | S = 80% PPV = 95% | ||||
Okudan et al. [123] | 99Tc MIBI SPECT/CT | S = 92.17% PPV = 94.64% A = 87.60% | - | - | Tc-MIBI SPECT/CT is more accurate than ultrasound for the preoperative identification of single PAs in patients with PHPT who are candidates for MIP. |
US | S = 75.89% PPV = 90.43% A = 70.25% | ||||
Kairemo et al. [124] | Dual-phase scintigraphy including SPECT/CT | S = 93% | - | - | |
4DCT | S = 93% | ||||
US | S = 73% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakrabarty, N.; Mahajan, A.; Basu, S.; D’Cruz, A.K. Imaging Recommendations for Diagnosis and Management of Primary Parathyroid Pathologies: A Comprehensive Review. Cancers 2024, 16, 2593. https://doi.org/10.3390/cancers16142593
Chakrabarty N, Mahajan A, Basu S, D’Cruz AK. Imaging Recommendations for Diagnosis and Management of Primary Parathyroid Pathologies: A Comprehensive Review. Cancers. 2024; 16(14):2593. https://doi.org/10.3390/cancers16142593
Chicago/Turabian StyleChakrabarty, Nivedita, Abhishek Mahajan, Sandip Basu, and Anil K. D’Cruz. 2024. "Imaging Recommendations for Diagnosis and Management of Primary Parathyroid Pathologies: A Comprehensive Review" Cancers 16, no. 14: 2593. https://doi.org/10.3390/cancers16142593
APA StyleChakrabarty, N., Mahajan, A., Basu, S., & D’Cruz, A. K. (2024). Imaging Recommendations for Diagnosis and Management of Primary Parathyroid Pathologies: A Comprehensive Review. Cancers, 16(14), 2593. https://doi.org/10.3390/cancers16142593