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Simple Summary: Parathyroid glands are four in number and usually located adjacent to the thyroid
gland, however, variations in location and number can exist. Parathyroid glands produce and
release parathyroid hormone (PTH) important for maintaining blood calcium levels. In primary
hyperparathyroidism (PHPT), there is increased secretion of PTH with resultant elevated blood
calcium levels due to causes within the parathyroid gland, such as a single or multiple tumours
which could be benign or malignant. The role of imaging is to locate abnormal parathyroid gland
including its presence in unusual location if any, localise tumour within the parathyroid gland and
plan surgical approach. Additional role of imaging in a suspected case of parathyroid malignancy
is to look for any distant spread. There is emerging evidence to suggest that incidental detection of
enlarged parathyroid glands on routine CT by the radiologist, can lead to early diagnosis of PHPT
before obvious symptoms and signs develop. In this article, we have described the various imaging
modalites available for evaluation of various types of parathyroid tumours, along with their imaging
appearances and advantages and disadvantages. In addition, we have prepared a flowchart for
guiding management decisions for parathyroid tumours.

Abstract: Parathyroid pathologies are suspected based on the biochemical alterations and clinical
manifestations, and the predominant roles of imaging in primary hyperparathyroidism are localisa-
tion of tumour within parathyroid glands, surgical planning, and to look for any ectopic parathyroid
tissue in the setting of recurrent disease. This article provides a comprehensive review of embryology
and anatomical variations of parathyroid glands and their clinical relevance, surgical anatomy of
parathyroid glands, differentiation between multiglandular parathyroid disease, solitary adenoma,
atypical parathyroid tumour, and parathyroid carcinoma. The roles, advantages and limitations of
ultrasound, four-dimensional computed tomography (4DCT), radiolabelled technetium-99 (99mTc)
sestamibi or dual tracer 99mTc pertechnetate and 99mTc-sestamibi with or without single photon emis-
sion computed tomography (SPECT) or SPECT/CT, dynamic enhanced magnetic resonance imaging
(4DMRI), and fluoro-choline positron emission tomography (18F-FCH PET) or [11C] Methionine (11C
-MET) PET in the management of parathyroid lesions have been extensively discussed in this article.
The role of fluorodeoxyglucose PET (FDG-PET) has also been elucidated in this article. Management
guidelines for parathyroid carcinoma proposed by the American Society of Clinical Oncology (ASCO)
have also been described. An algorithm for management of parathyroid lesions has been provided at
the end to serve as a quick reference guide for radiologists, clinicians and surgeons.
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1. Introduction

Parathyroid glands synthesize and release parathyroid hormone (PTH) essential for
regulation of serum calcium levels. Primary hyperparathyroidism (PHPT) is the third most
common endocrine pathology in which there is increased secretion of PTH with resultant
elevated serum calcium levels due to causes intrinsic to parathyroid gland, such as a solitary
adenoma (commonest cause with 80–85% incidence), multiglandular parathyroid disease
(previously known as hyperplasia, with 10–15% incidence), atypical parathyroid tumour
(previously known as atypical adenoma, with 1.2–1.3% incidence), and parathyroid carci-
noma (0.1–5% incidence) [1–3]. PHPT is more commonly seen in women more than 50 years
of age and can be sporadic (most common, with 95% incidence), associated with radiation
exposure or sarcoidosis, or seen in association with hereditary and genetic syndromes, for
example, hyperparathyroidism jaw-tumour syndrome (HPJT), multiple endocrine neopla-
sia syndromes type 1, type 2A and 4, and isolated familial hyperparathyroidism [1,4–10].
Parathyroid carcinoma has equal gender incidence [5].

It is not possible to differentiate between various benign causes of PHPT based on the
elevated levels of serum calcium and PTH; moreover, PHPT can also be normocalcemic [1,11,12].
Parathyroid carcinomas may be suspected with serum calcium > 14–15 mg/dL and markedly
elevated levels of PTH; however, <10% of parathyroid carcinomas can be hormonally non-
functional and can only be suspected based on clinical examination findings [5,11,13–15].

Imaging cannot differentiate parathyroid adenoma from carcinoma, and diagnosis is
most often accomplished after parathyroidectomy [5]. The predominant role of imaging is to
locate abnormal parathyroid gland, including the presence of ectopic gland, if any, localise
lesions within parathyroid gland, and plan the surgical approach in case of PHPT and
when there is clinical suspicion of non-functioning parathyroid carcinoma. An additional
role of imaging in a suspected case of parathyroid carcinoma is to look for any distant
metastases. There is emerging evidence to suggest that biochemical screening, based on
opportunistic detection of enlarged parathyroid glands on routine CT by the radiologist,
can lead to early diagnosis of primary hyperparathyroidism before frank manifestations
develop [16,17].

Imaging plays a crucial role in recurrent disease. Morphological information, includ-
ing anatomic localisation and the extent of the parathyroid lesion, is provided by ultrasound
(US), including the recent contrast-enhanced US (CEUS), four-dimensional computed to-
mography (4DCT) and dynamic enhanced magnetic resonance imaging (4DMRI), whereas
functional information is provided by radiolabelled Technetium-99 (99mTc) sestamibi or
dual tracer 99mTc pertechnetate and 99mTc-sestamibi with or without single photon emission
computed tomography (SPECT) or SPECT/CT and fluoro-choline positron emission tomog-
raphy (18F-FCH PET or [11C]Methionine (11C-MET) PET [1,18,19]. Hybrid imaging such as
18F-FCH PET/4DCT and 18F-FCH PET/MRI can capture advantages of both structural and
functional imaging [1]. Surgical removal is the mainstay treatment for parathyroid lesions,
and precise localisation of abnormal parathyroid glands/parathyroid lesions on imaging
is crucial to perform focussed surgeries such as minimally invasive parathyroidectomy
(MIP) [4,20].

In this review article, we have comprehensively covered all aspects of parathyroid
gland imaging, including anatomy, embryology, variations and their clinical significance,
the role of various imaging modalities, their advantages and limitations, and the clinical,
laboratory and imaging features of various parathyroid lesions highlighting key differenti-
ating features. We have also provided an algorithm for the management of parathyroid
lesions at the end to serve as a reference guide for radiologists, clinicians and surgeons.
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2. Anatomy of Parathyroid Glands

In this section, we have described the embryology, anatomical variations, and surgical
anatomy of parathyroid glands. The clinical significance of embryology and anatomical
variations of parathyroid glands have also been described in this section.

2.1. Embryology

There are most commonly four parathyroid glands; one superior and one inferior on
either side [1,4,20]. The parathyroid glands originate at 5–6 weeks of gestation, from the
endoderm epithelial cells of the pharyngeal pouches [21]. At week 7 of gestation, they
begin to migrate along with the thyroid and thymus inferiorly and medially [21].

Superior parathyroid glands are derived from the fourth branchial pouch and are
associated with lateral thyroid anlage [21]. They attach to the inferiorly migrating thyroid
gland and are closely related to the posterolateral aspect of the respective thyroid lobes [21].
In >80% of the cases, the final positions of superior parathyroid glands are posterolateral to
the thyroid gland superior pole at the level of cricothyroid articulation [20,21].

Inferior parathyroid glands are derived from the third branchial pouch sharing a
common origin with the thymus gland; inferior parathyroid glands arise from the dorsal
wing, and the thymus gland arises from the ventral wing of the third branchial pouch [4,21].
The inferior parathyroid glands descend caudally and medially along with the thymus and
are most commonly located at the posterolateral aspect of the inferior pole of the thyroid
gland or within 1–2 cm [21–23].

Parathyroid glands are composed of chief cells and oxyphilic cells, fatty tissue, and
fibrovascular stroma [24].

2.2. Anatomical Variations

Supernumerary glands: Supernumerary glands are seen in 13% of the population;
2–3 glands are seen in 10% of the population, 5 glands in 5%, and 6 glands in 0.2% [1,21,25].
The maximum number of supernumerary glands reported in the literature was 12 [25,26].

Ectopic parathyroid gland: Superior parathyroid glands are more consistent in their
location owing to their shorter course of embryologic migration [21]. In approximately 4%
of cases, superior parathyroid glands can be located posterior to the mid-pole of thyroid
lobes, in 2% cases at the level of the upper pole, and in less than 1% of cases, they can be
located above the upper pole of the thyroid gland [4,21]. Superior parathyroid glands can be
ectopically located in the tracheoesophageal groove, retroesophageal (1%), retropharyngeal
(1%), posterior mediastinum, and intrathyroidal locations (0.2%) [4,21,26,27].

The inferior parathyroid glands are more prone to anatomical variations due to their
longer course of migration and can be located anywhere up to the superior border of the
pericardium [20,21]. If an inferior parathyroid gland fails to descend with the thymus, it
can be located close to the carotid bifurcation or within the ectopic thymic remnant [21].
In 2% cases, it can be located close to thymus in the anterior mediastinum, and the aor-
topulmonary window is another ectopic location [4,28]. Rarely, it can be located ectopically
within the thyroid or cranially to the superior parathyroid gland [4,21]. Ectopic parathyroid
glands can also be located in the submandibular and parotid glands [29–33].

2.3. Surgical Anatomy

The plane of the recurrent laryngeal nerve (RLN) close to the tracheoesophageal groove
differentiates between superior and inferior parathyroid glands, as the superior parathyroid
gland lies posterior to the RLN, and the inferior parathyroid gland lies anterior to it [20,21].
However, operative landmarks are altered in the presence of a non-recurrent laryngeal
nerve [20]. Eighty percent of superior parathyroid glands are located approximately 1 cm
cranially to the intersection of the RLN and inferior thyroid artery at the level of cricothyroid
articulation, and within 2 cm posteriorly to the thyroid gland [21,26,34]. In >80% cases,
once the surgeons have located one side of a superior parathyroid gland, they will be able
to locate the other side, as they have mirror symmetry. The inferior parathyroid glands
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have mirror symmetry in >70% of cases [21,26,35]. In 76–86% of cases, parathyroid glands
are supplied by the inferior thyroid artery [36].

2.4. Clinical Significance

Knowledge of the embryology and anatomy of parathyroid glands is essential to
identify lesions of the parathyroid glands on imaging. Bilateral neck exploration (BNE) and
minimally invasive parathyroidectomy (MIP) are the two operations usually performed for
PHPT. BNE allows visualisation of all the parathyroid glands with a single midline 2.5 cm
incision and has a brilliant long-term cure rate (>95%), but carries the risk of injuring the
bilateral RLN with resultant increased morbidity and longer hospital stay [20]. On the
other hand, MIP entails removal of only the diseased gland with a small incision, with
lesser morbidity and hospital stay, but requires precise pre-operative localisation of the
diseased gland on imaging [20].

In-depth knowledge of anatomical variations helps to locate ectopic parathyroid
glands on imaging, which in turn helps in surgical planning. Failure to locate ectopic
glands can result in failed surgical explorations and persistent PHPT [20].

A non-recurrent laryngeal nerve is more likely to be injured if the surgeons are unaware
of its presence pre-operatively on imaging. Hence, an aberrant right subclavian artery
and right-sided aortic arch with aberrant left subclavian artery should be mentioned
on pre-operative imaging, as they exhibit non-recurrent right and left laryngeal nerves,
respectively [20,34].

3. Clinical Manifestations and Laboratory Investigations of Parathyroid Lesions

Approximately 70–80% of the patients with benign PHPT are asymptomatic and de-
tected incidentally due to elevated serum calcium levels, and the remaining patients present
with symptoms and/or signs of PHPT, such as nephrolithiasis, nephrocalcinosis, hypercal-
ciuria, osteoporosis, osteitis fibrosa cystica, fragility fractures, hyperlipidaemia, diabetes,
constipation, ileus, peptic ulcers, pancreatitis, and/or symptoms of hypercalcemia; fatigue,
weakness, depression, anxiety, and cognitive impairment [10,37–39]. Asymptomatic pa-
tients can still have nephrolithiasis/nephrocalcinosis and decreased trabecular/cortical
bone density [10]. Normocalcemic variants of primary HPT can also occur, of which some
may show reduced bone mineral density [10,40–45]. Normohormonal PHPT refers to
patients with a normal PTH and elevated calcium levels, and such patients have a greater
propensity for multigland disease [46]. Five percent of PHPT cases have associated hered-
itary syndromes and present before 30 years of age with familial hypercalcaemia, MEN
syndromes, skin lesions, and HPJT. Familial hypocalciuric hypercalcaemia (FHH) syndrome
should be suspected when there is hypocalciuria along with hypercalcaemia [37,42,47–57].

Parathyroid carcinoma can be hormonally functional or non-functional. Clinical pre-
sentation of hormonally functional parathyroid carcinoma is similar to that of PHPT and
should be suspected when there are more severe symptoms and multiple system involve-
ment, particularly simultaneous skeletal (bones including jaw) and renal involvement due
to a more profound hypercalcemia, and familial syndromes [5,10,37–39,58–70].

Laboratory values of PTH and serum calcium cannot differentiate between various
causes of PHPT, unless serum calcium is more than 14 mg/dL or PTH is more than
three times the upper limit of normal, in which case parathyroid carcinoma should be
suspected [5,11,13]. However, <10% of parathyroid carcinomas can be hormonally non-
functional and suspected based on palpable neck nodes, hoarseness of voice due to recur-
rent laryngeal nerve (RLN) involvement, and metastatic disease [1,5,12,14,15]. Of patients
with parathyroid carcinoma, 6–30% present with lymph node metastasis, and 10–30%
present with metastases to lungs, liver or bones at the time of presentation [5,10,58–62,71].

The current 2022 World Health Organization (WHO) classification of parathyroid
tumours endorses usage of the terminology “multiglandular parathyroid disease (MGD)”
in place of hyperplasia in the setting of PHPT, and has replaced the terminology “atypical
adenoma” with “atypical parathyroid tumour” [3]. For the diagnosis of parathyroid
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carcinoma, one of the following findings is essential; angioinvasion, lymphatic invasion,
perineural invasion, invasion into adjacent structures locally, or, presence of metastasis [3].
Atypical parathyroid adenoma is a borderline tumour of uncertain malignant potential
which shares some histopathological findings of parathyroid carcinomas, such as band
forming fibrosis, increased mitotic activity, and presence of tumour cells within a thickened
capsule; however, definitive diagnostic findings of malignancy in the form of invasion and
metastasis are absent [3,10,51,72–76].

FNAB of a suspected parathyroid carcinoma is not recommended, as it cannot differ-
entiate adenoma from carcinoma, and also, because it carries the risk of tumour seeding
and upstaging the disease [5,77,78]. Diagnosis of parathyroid carcinoma is most often
accomplished after parathyroidectomy [5]. While evaluating a recurrent disease in a known
case of parathyroid carcinoma, a preoperative biopsy may be performed.

4. Imaging of Parathyroid Lesions

The goals of imaging are to locate the abnormal parathyroid gland; orthotopic or
ectopic location, localise lesion within the parathyroid gland and help in surgical planning,
and asses for invasiveness, enlarged neck nodes and distant metastasis in a suspected case of
parathyroid carcinoma [79]. An additional role of imaging, as already specified, is to detect
enlarged parathyroid glands on routine CT examinations, so that biochemical screening
can be performed based on the CT findings and patients with asymptomatic PHPT can
be identified early, thus narrowing the gap between diagnosis and treatment initiation
before frank manifestations develop [16,17]. Posttreatment imaging should be performed
when there is a suspicion of recurrence or elevated PTH or hypercalcemia [5]. Studies have
shown that normal parathyroid gland can be identified on US mainly at the lower pole of
the thyroid and in the infra-thyroid location as an oval-shaped homogeneously hyperechoic
structure [80,81].

Various imaging modalities for evaluation of parathyroid gland lesions include neck
US including CEUS, single photon scintigraphy with radiolabelled Technetium-99 ses-
tamibi or dual tracer 99mTc pertechnetate and 99mTc-sestamibi with or without SPECT or
SPECT/CT, 4DCT, 4DMRI, and fluoro-choline positron emission tomography (18F-FCH
PET) or [11C]Methionine (11C-MET) PET [1,18,19]. The roles of each of these imaging
modalities, along with their advantages and limitations, have been extensively described
in this section. Hybrid imaging, such as 18F-FCH PET/4DCT and 18F-FCH PET/MRI for
evaluation of parathyroid lesions, has also been elucidated in this section. In addition, the
role of fluorodeoxyglucose PET (FDG-PET) has also been described in this section.

4.1. Neck Ultrasound and Contrast-Enhanced Ultrasound

The patient is scanned with mild neck extension using a linear array high-frequency
probe (7.5–15 MHz) in transverse and longitudinal planes with a special focus behind
the thyroid gland medial to the carotid and jugular vessels where the parathyroid glands
are usually located [18]. The neck should be scanned from the carotid bifurcation to
sternal notch and the paratracheal spaces, carotid-jugular axis, and thyroid gland should
be included [79]. PA is a well-circumscribed, oval- or oblong-shaped, hypoechoic lesion
compared to the adjacent thyroid gland, located posterior (more commonly), anterior or
lateral to the thyroid at the superior/inferior polar regions, having an echogenic capsule,
and shows an enlarged feeding inferior thyroidal artery (feeding vessel sign) on colour
Doppler with a low resistive index on spectral Doppler [1,18]. Internal heterogeneity due
to fat, calcifications or haemorrhage can be seen [1]. US of a PA is shown in Figure 1.
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Figure 1. (a,b): Parathyroid adenoma on ultrasonography in a patient with primary hyperparathy-
roidism. (a) A well-defined oval-shaped homogeneously hypoechoic lesion (arrowhead) lateral to the
left lobe of thyroid gland (shown by 1, 2 and + sign). (b) Colour Doppler image shows feeding vessel
sign (arrowhead). Imaging findings are suggestive of parathyroid adenoma.

Multiple adenomas can be seen when associated with MEN 1 syndrome. MGD shows
bilaterally enlarged (may be asymmetric) homogeneous glands adjacent to the thyroid at
the polar regions. Parathyroid carcinoma can be seen as an inhomogeneous hypoechoic
lesion epicentred adjacent to the thyroid with hypervascularity on colour Doppler and the
presence of cystic degeneration [1,82,83]. US features in favour of parathyroid carcinoma
include large size (>3 cm), lobulated margins, central and peripheral vascularity, micro-
calcifications, and the presence of metastatic neck nodes [5,82–85]. Intraoperative US can
guide the surgical approach, as suggested by the American Head and Neck Society (AHNS)
Endocrine Section guidelines [1,86].

CEUS can help differentiate PA from MGD, as PA shows early peripheral enhance-
ment and central washout in the delayed phase, whereas MGD show intense homoge-
neous enhancement [82,83,86–88]. Shear wave elastography can help differentiate PA from
surrounding thyroid tissue by demonstrating significantly lower elasticity than thyroid
tissue [89]. In addition, US is the optimal modality for assessing the thyroid gland for
concurrent thyroid pathology.

4.2. Dual Phase Technetium-99 Sestamibi, and Dual Tracer Technetium-99 Pertechnetate and
Technetium-99 -Sestamibi Scintigraphy, with or without Single Photon Emission Computed
Tomography or Single Photon Emission Computed Tomography/Computed Tomography

The principle behind 99mTc Sestamibi imaging is the increased accumulation of 99mTc
sestamibi in hyperfunctioning parathyroid gland due to abundant mitochondria within the
oxyphil cells of parathyroid gland [9]. A typical protocol for 99mTc Sestamibi imaging is
shown in Table 1 [9].

On 99mTc Sestamibi, PA shows focal increased radiotracer uptake near the supe-
rior/inferior polar region of the thyroid in the early phase, with persistent uptake in the
delayed phase. It has advantages over US in detecting ectopic and far-posterior lesions [90].
The dual phase allows differentiation of PA and MGD from the normal thyroid tissue, as de-
layed wash-out is seen in PA and MGD, and early wash-out is seen in thyroid tissue, while
both show uptake [4]. Figures 2 and 3 show parathyroid adenoma and multiglandular
parathyroid disease, respectively, on 99mTc Sestamibi.

Impression: Dual-phase (early and delayed) 99mTc-MIBI parathyroid scintigraphy
demonstrates parathyroid adenoma located inferior to the lower pole of right lobe of
thyroid gland.
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Table 1. Protocol for parathyroid 99mTc sestamibi imaging.

Parameters Description

Coverage Entire neck and thorax till base of heart

Phases Dual phase: at 10–15 min and 90–150 min after intravenous
administration of radiopharmaceutical

Image acquisition
- Large field-of-view gamma cameras with low-energy

high-resolution collimators.
- Additionally, SPECT/CT from skull base to heart base

Energy window 140 ± 10 keV

Matrix size 128 × 128 or 256 × 256 (better)
SPECT: single photon emission computed tomography; CT: computed tomography.
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Figure 2. A 61-year-old male with recurrent renal stones presented with lower back ache. Serum
parathyroid hormone: 2231.3 pg/mL. (a) Early image (performed at 15 min post-99mTc- methoxy-
isobutylisonitrile [MIBI] injection, planar static imaging of the cervical and thoracic area in the anterior
view): Homogenous tracer uptake in both lobes of the thyroid gland, with a focus of increased radio-
tracer accumulation seen in the region of inferior pole of right lobe of thyroid. (b) Delayed image
(performed 120 min after the 99mTc MIBI injection): Persistent focal moderately increased tracer
retention in the region of inferior pole of right lobe of thyroid gland, with washout of tracer from the
rest of the thyroid gland.

Impression: Dual-phase (early and delayed) 99mTc-MIBI parathyroid scintigraphy
demonstrates features suggestive of parathyroid hyperplasia.

False positive results can occur in the presence of thyroid nodules and neck nodal
metastases [90].

In some cases, tracer may rapidly wash out from parathyroid or be retained by thy-
roid/solid thyroid nodules, and such cases may require the dual-tracer method using
99mTc pertechnetate and 99mTc-sestamibi scintigraphy [9,18]. In addition, this single-phase
dual-isotope technique has increased sensitivity for detecting MGD as compared to single-
isotope dual-phase scans [90].

Scintigraphy can aid in preoperative identification of hyperfunctioning parathyroid
glands in typical as well as in ectopic locations (Figure 4) [9].
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Figure 3. A 33-year-old male presented with joint pain while walking, with pain in right more than
left hip, along with back and knee pain. Serum parathyroid hormone: >2500 pg/mL. Computed
tomography (CT) of hip joints revealed diffuse osteopenia, multiple lytic lesions (brown tumour)
in lumbar vertebrae and pelvic bones. (a) Early static views (performed at 15 min post 99mTc-
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except focal tracer retention noted bilaterally over upper and lower poles of both thyroid lobes.
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Figure 4. A 23-year-old female with pain in bilateral hip, knee and elbow joints associated with
weakness in walking. Ultrasonography (USG) was normal. Computed tomography (CT) showed a
6.8 × 10.7 × 15.4 cm enhancing lesion in suprasternal space posteriorly, abutting the left infrahyoid
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Impression: Ectopic parathyroid in mediastinum at the right paracardiac region.
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SPECT images, when fused with CT, provide better anatomic localisation compared to
planar images [9,91].

99mTc Sestamibi scan may also be used pre-operatively to detect the parathyroid gland
with the lowest uptake, which may be partially autografted or preserved [9]. It also plays a
role in the recurrent setting to localise the hyperfunctioning gland, prior to second surgery [9].

4.3. Four-Dimensional Computed Tomography

Four-dimensional computed tomography (4DCT) is a multiphasic multiplanar dy-
namic contrast-enhanced CT of the parathyroid gland in which usually a three-phase study
is performed; non-contrast, arterial phase and delayed venous phase [1,20]. Important
information that a surgeon expects from a radiologist on a 4DCT includes: a. number of
lesions, b. size of the lesion, c. location of the parathyroid lesion with respect to surgical
landmarks such as cricoid cartilage, tracheoesophageal groove, d. presence or absence of
ectopic parathyroid tissue, e. associated thyroid abnormalities (if present), and f. arterial
anomalies associated with a nonrecurrent laryngeal nerve, for example, aberrant right
subclavian artery or right-sided aortic arch with aberrant left subclavian artery [20]. A
typical parathyroid adenoma is usually hypodense to thyroid on non-contrast scan, hyper-
enhancing in the arterial phase with washout in the venous phase, usually located posterior
to thyroid at the superior/inferior polar regions [20]. PA may show an enlarged feeding
inferior thyroidal artery (polar vessel sign) in the arterial phase [1]. For parathyroid lesions
that are isodense to thyroid in the arterial and venous phases, dual-energy CT 4DCT can
help in differentiating the parathyroid lesion from thyroid tissue using non-contrast 40-keV
virtual monoenergetic images [92].

One of the studies showed that an irregularly shaped parathyroid lesion showing
heterogeneity, invasion of surrounding structures, short/long-axis ratio > 0.76, and long
axis diameter > 30 mm, had high negative predictive value, and the presence of calcifica-
tion within the tumour had 100% positive predictive value to diagnose for parathyroid
carcinoma on CECT. The presence of metastatic neck nodes should raise suspicion of
parathyroid carcinoma [20,85]. A typical 4DCT protocol is shown in Table 2 [1,20].

Table 2. Four-dimensional computed tomography (4DCT) protocol for parathyroid gland.

Parameters Description

Coverage Maxilla to carina

Iodinated contrast material administration 100 mL (370 mg iodine/mL) injected at
3–4 mL/s, followed by 40 mL saline flush

Phases Non-contrast, arterial, delayed venous

Arterial phase 25–30 s after start of injection

Delayed venous phase 60 s after start of injection

Thickness 1.25 mm

Tube voltage (kVp) 140

Tube current (mA) Minimum 180 and maximum 300

Interval 1 mm

Display field of view (DFOV) (cm) 25

Imaging cannot differentiate parathyroid adenoma (PA) from carcinoma unless cervi-
cal adenopathy or distant metastasis is present to suggest parathyroid carcinoma (Figure 5).

Two scoring systems have been developed and prospectively validated for predicting
MGD using 4DCT: a composite multigland disease score calculated from 4DCT imaging
findings (number of lesions and maximum diameter of the largest lesion) and the Wisconsin
Index (the product of the serum calcium and PTH levels), and a 4DCT multigland disease
score obtained by using the CT data alone [93,94]. Both these scoring systems have been
found to be valuable in surgical planning by predicting MGD with specificities of 72%, 86%,
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and 100% for composite MGD scores of ≥4, ≥5, and 6, respectively, and 74% and 88% for
4DCT scores of ≥3 and 4, respectively, in the prospective setting [93,94].
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Figure 5. A 32-year-old male with a family history of parathyroid carcinoma presented with elevated
serum calcium and parathyroid hormone. (a) Heterogeneously enhancing mass (arrow) arising
posterior to the right lobe of thyroid gland on contrast-enhanced computed tomography (CECT),
infiltrating the thyroid lobe and occupying the right trachea-oesophageal groove, findings suggestive
of parathyroid carcinoma. (b) Osteolytic lesions in bilateral clavicles (arrows) on CECT, suggestive of
biopsy-proven brown tumours.

4.4. Four-Dimensional Magnetic Resonance Imaging

It is usually a second-line modality for problem-solving in equivocal cases or may
be used as an alternative imaging modality in place of 4DCT to avoid radiation dose [1].
One of the studies has shown that dynamic contrast-enhanced MRI has excellent diagnos-
tic performance for preoperative localisation in primary hyperparathyroidism: 92% for
single-gland disease and 74% in MGD [95]. Features associated with PA include oval shape
with longest to shortest diameter ratio of >2, homogeneous or marbled T2 hyperintensity,
fluid fat interface on out-of-phase imaging between thyroid gland and PA (not seen in
intrathyroidal PA), and rapid post-contrast enhancement [96]. Studies have shown that a
combination of time-to-peak/wash-in/washout using dynamic 4DMRI can help in differen-
tiating PA from neck nodes, as PAs show significantly quicker time-to-peak, higher wash-in,
and higher washout compared with neck nodes, and this combination can also help in
differentiating PA from thyroid tissue, as PAs show higher peak enhancement, quicker
time-to-peak, higher wash-in, and higher washout compared with thyroid tissue [97].

Figure 6 shows CT and MRI of a PA in a patient with PHPT.
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Figure 6. (a–c): CT and MRI of parathyroid adenoma in a patient with primary hyperparathyroidism.
(a) Late venous phase 4DCT shows a well defined oval-shaped hypodense lesion (arrowhead)
measuring 0.9 × 0.8 cm posterior to the inferior pole of right lobe of thyroid gland, suggestive of
parathyroid adenoma. T2WI (b) shows intermediate signal intensity of the parathyroid adenoma,
which shows intense post-contrast enhancement (arrowhead in (c)).
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4.5. Fluoro-Choline Positron Emission Tomography and 11C Methionine Positron
Emission Tomography

18F-FCH is not a parathyroid-specific biomarker but a generalised tracer, taken
up by the neoplastic cells [98]. Neoplastic cells with high proliferative rates show
increased demand for phospholipid synthesis and hence take up choline [1,99]. PAs show
increased choline uptake due to increased lipid-dependent choline kinase activity from
elevated PTH secretion [100]. Brown tumours also show increased uptake [101,102]. In
comparison to Technetium (99mTc) Sestamibi imaging, 18F-FCH PET has better resolution
and lesser acquisition time, hence it is accepted as an alternative first-line imaging
modality [9,103–105].

11C-MET PET may serve as a dependable second-line imaging modality to enable MIP,
owing to its overall good sensitivity and positive predictive value [19].

4.6. Hybrid Imaging with Fluoro-Choline Positron Emission Tomography/Four-Dimensional
Computed Tomography and Fluoro-Choline Positron Emission Tomography/Magnetic
Resonance Imaging

Improved structural characterization has been found with both these hybrid imaging
techniques [1,106]. 18F-FCH PET/MRI is more useful for characterizing parathyroid lesions
in the paediatric population and for guiding curative surgeries [107].

4.7. Fluorodeoxyglucose Positron Emission Tomography

The role of FDG PET-CECT is to detect distant metastases in a suspected case
of parathyroid carcinoma. Additional imaging for metastatic disease is not routinely
performed for hyperparathyroidism unless the suspicion for parathyroid carcinoma
is high [5,108,109]. For detection of recurrence, FDG PET-CECT should be performed
3–6 months after treatment [5].

Table 3 shows the difference between MGD, solitary adenoma and carcinoma based
on clinical and laboratory parameters and imaging [5,10,11,13,18,84,85,92].

Table 3. Difference between multiglandular parathyroid disease, solitary adenoma and carcinoma
using clinical and laboratory parameters and imaging.

Clinico-Radio-
Pathological Features

Multiglandular Parathyroid
Disease Solitary Parathyroid Adenoma Parathyroid Carcinoma

Age
Variable, usually >50 years
Early onset in hereditary
forms

>50 years
Around 50 years
Early onset in HPJT and
familial forms

Gender Females Females Equal gender incidence

Clinical manifestations

Symptoms of primary
hyperparathyroidism
and those associated with
familial syndromes and MEN
(when present)

Asymptomatic
Symptoms of primary
hyperparathyroidism

Symptoms of primary
hyperparathyroidism
especially simultaneous bone
and renal disease (functional),
HPJT, symptoms associated
with familial syndromes and
MEN (when present),
palpable neck nodes,
hoarseness of voice due to
RLN palsy

Laboratory parameters

Serum calcium: <13 mg/dL
Serum PTH: Mildly to
severely elevated
Hypocalciuria in FHH

Serum calcium: <13 mg/dL
Serum PTH: Mildly to moderately
elevated

Serum calcium: >14 mg/dL
Serum PTH: more than three
times upper limit of normal
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Table 3. Cont.

Clinico-Radio-
Pathological Features

Multiglandular Parathyroid
Disease Solitary Parathyroid Adenoma Parathyroid Carcinoma

Imaging features

Imaging morphology
Bilaterally enlarged (may be
asymmetric) homogeneous
polar glands adjacent to
thyroid on US, 4DCT, 4DMRI
Imaging characteristics
Intense homogeneous
enhancement on CEUS.

Imaging morphology
Well circumscribed homogeneous
oval/oblong-shaped polar lesion
adjacent to thyroid with feeding
vessel sign on US and 4DCT.
Imaging characteristics
Hypoechoic on US
Early peripheral enhancement
and central washout in the
delayed phase on CEUS.
Hypodense to thyroid on
non-contrast scan, usually
hyper-enhancing in the arterial
phase with feeding vessel sign
and washout in the venous phase
on 4DCT.
Homogeneous or marbled T2
hyperintensity lesion with fluid
fat interface on out-of-phase
imaging between thyroid gland
and PA, and rapid post-contrast
enhancement on 4DMRI.

Imaging morphology
Large (>3 cm) heterogeneous
lesion, irregular shape,
epicentred adjacent to thyroid
with lobulated margins
infiltrating thyroid and
surrounding structures,
short/long-axis ratio >0.76,
long axis diameter >30 mm,
presence of central and
peripheral vascularity, and
intratumoural calcification
along with metastatic neck
nodes on US, 4DCT, 4DMRI.
Parathyroid carcinoma is
differentiated from PA
based on morphological
features only.

Functional imaging

Technetium(99mTc) Sestamibi:
Focal uptake over bilateral
upper and lower poles of
thyroid lobes in the early
phase, with persistent uptake
in the delayed phase.

Dual-energy CT 4DCT:
Differentiation of parathyroid
lesion from thyroid tissue using
non-contrast 40-keV virtual
monoenergetic images for
parathyroid lesions which are
isodense to thyroid in the arterial
and venous phases.
99mTc Sestamibi: Early phase
shows focal increased radiotracer
uptake near the superior/inferior
polar region of thyroid, with
persistent uptake in the delayed
phase.

FDG-PET CT: Distant
metastasis
No specific characteristics on
Technetium (99mTc) Sestamibi

Pi
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and may not be feasible due to limited 
field of view. 
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assessment of lesions in the 
retroclavicular, mediastinal and 
retroesophageal locations. 
Local invasion of structures less well 
appreciated than with cross-sectional 
imaging.  
Superior parathyroid adenomas may 
be falsely assigned to the inferior 
position. 
Reduced sensitivity for depicting far 
posterior lesions. 
Reduced effectiveness in obese 
patients. 

99mTc sestamibi or dual tracer 99mTc 
pertechnetate and 99mTc-sestamibi 
scintigraphy  

Can localise hyperfunctioning 
parathyroid in orthotopic or ectopic 
location. 
Operator-independent  
Enhanced visualisation of far posterior 
lesions that US is likely to miss. 
Both functional and anatomic 
information with SPECT/CT. 

Effective radiation dose of 12 mSv.  
Superior parathyroid adenomas may 
be falsely assigned to the inferior 
position on Technetium-99 sestamibi 
SPECT/CT. 
Adenomas with rapid washout can be 
missed. 
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PA: parathyroid adenoma, HPJT: hyperparathyroidism jaw-tumour syndrome. MEN: multiple endocrine neo-
plasia, RLN: recurrent laryngeal nerve, PTH: primary hyperparathyroidism, FHH: familial hypocalciuric hy-
percalcaemia, US: ultrasound, CEUS: contrast-enhanced ultrasound, 4DCT: four-dimensional computed to-
mography, 4DMRI: four-dimensional magnetic resonance imaging, FDG-PET: fluorodeoxyglucose positron
emission tomography.

Table 4 shows advantages and limitations of various imaging
modalities [1,9,18,90,110,111].
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Table 4. Advantages and limitations of various imaging modalities for evaluating parathyroid lesions.

Imaging Modality Advantages Limitations

US with CEUS

No radiation
Easy availability
Dynamic scanning technique, hence area of
interest can be focused by the operator
Low cost
Can be performed intraoperatively for guiding the
surgeons.
CEUS can help differentiate PA from MGD
Enlarged lymph nodes associated with a
parathyroid lesion may suggest parathyroid
carcinoma.
Optimal modality for concurrent evaluation of
thyroid pathologies.

Operator-dependent.
Localisation of ectopic gland difficult and may not
be feasible due to limited field of view.
Lack of acoustic window limits assessment of
lesions in the retroclavicular, mediastinal and
retroesophageal locations.
Local invasion of structures less well appreciated
than with cross-sectional imaging.
Superior parathyroid adenomas may be falsely
assigned to the inferior position.
Reduced sensitivity for depicting far posterior
lesions.
Reduced effectiveness in obese patients.

99mTc sestamibi or
dual tracer 99mTc
pertechnetate and
99mTc-sestamibi
scintigraphy

Can localise hyperfunctioning parathyroid in
orthotopic or ectopic location.
Operator-independent
Enhanced visualisation of far posterior lesions that
US is likely to miss.
Both functional and anatomic information with
SPECT/CT.

Effective radiation dose of 12 mSv.
Superior parathyroid adenomas may be falsely
assigned to the inferior position on Technetium-99
sestamibi SPECT/CT.
Adenomas with rapid washout can be missed.
False positives in presence of thyroid nodules and
neck nodes.
Reduced sensitivity in those taking calcium
channel blockers.

4DCT

Short imaging time
High spatial resolution to detect small lesions
within the orthotopic and ectopic glands.
Features of local invasion and metastatic cervical
adenopathy may suggest parathyroid carcinoma.
Increased sensitivity for MGD.
Improved localisation after failed surgery.

High effective radiation dose of 28 mSv.
Need for iodinated contrast media.

4DMRI
No radiation
Features of local invasion and metastatic cervical
adenopathy may suggest parathyroid carcinoma

Longer scan time
Claustrophobic patients unable to tolerate MRI.
Need for gadolinium contrast injection.

18F-FCH PET
Advantages of both structural and functional
information.
Can detect small lesions in MGD.

Uptake by generalised neoplastic process, tracer
not specific to parathyroid gland.
High cost
Radiation exposure

US: ultrasound, CEUS: contrast-enhanced ultrasound, SPECT: single photon emission computed tomography,
4DCT: four-dimensional computed tomography, MRI: magnetic resonance imaging, 18F-FCH PET: fluoro-choline
positron emission tomography, MGD: multiglandular parathyroid disease, PA: parathyroid adenoma.

5. Comparative Studies on Performance of Various Imaging Modalities

Table 5 shows studies comparing the performance of various imaging modalities in
the evaluation of PHPT based on a PubMed search covering the last 5 years [112–124].
Purely imaging studies having comparison between at least two imaging modalities have
been incorporated in this table. As shown in Table 5, US and 4DCT can be considered
as the first-line imaging modalities for evaluation of PHPT. FCH PET/CT has a greater
sensitivity than 4DCT in detecting lesions in PHPT. 99mTc-MIBI scintigraphy could increase
the specificity in paediatric patients suspected to have multigland disease on US.
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Table 5. Comparative studies evaluating performance of various imaging modalities in primary hyperparathyroidism (PHPT).

Studies Imaging Modality PA MGD PA and/or MGD
(Not Specified) Comments

Krol et al.
[112]

4DCT

Patient and localisation
S = 70.6%
PPV = 86.1%
Lateralization
S = 62.7%
PPV = 88.9%

- -

Significantly higher sensitivity of 4DCT for
patient and localisation level

US + 99Tc MIBI SPECT/CT

Patient and localisation
S = 51.9%
67.9%
Lateralization
S = 44.4%
PPV = 85.7%

Patel et al. [113]

18F-FCH PET/CT - -

Patient-wise analysis
S = 92%
DR = 92.4%
Lesion-wise analysis
S = 90%
Negative conventional
imaging/persistent PHPT
S = 84% FCH PET/CT scan had a higher pooled sensitivity

than 4DCT in detecting patients with PHPT

4DCT

Patient-wise analysis
S = 85%
DR = 76.85%
Lesion-wise analysis
S = 79%
Negative conventional
imaging/persistent PHPT
S = 72%

He et al.
[114]

US - - S = 100% 99mTc-MIBI scintigraphy could increase the speci-
ficity in paediatric patients with multigland dis-
ease suspected by US.99Tc MIBI S = 93.8%
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Table 5. Cont.

Studies Imaging Modality PA MGD PA and/or MGD
(Not Specified) Comments

Christensen et al. [115]
11C-Choline PET - - S = 82%

Di-SPECT S = 87%

Lee et al.
[116]

Choline PET-CT - - 0.987

Highest surface under the cumulative ranking
curve (SUCRA) value of Choline PET-CT for
localisation

MET PET-CT 0.7046

MIBI SPECT 0.5465

MIBI planar 0.0585

Dual tracer 0.3241

US 0.1286

CT 0.7780

MRI 0.4700

Murugan et al.
[117]

4DCT - -

S = 96.7%
Sp = 66.6%
A = 95.2%
PPV = 98.3%
NPV = 50%

4DMRI

S = 96.7%
Sp = 66.6%
A = 95.2%
PPV = 98.31%
NPV50%

de Jong et al.
[118]

CT A = 81%
US and CT could be considered as a first-line
imaging modality in patients with PHPT
considered for MIP.

US and CT A = 50% S = 88%

US and sestamibi A = 62% A = 40% S = 65%

Whitman et al.
[119]

18F-FCH
PET

S = 0.96 18F-FCH PET demonstrates high localisation
accuracy in patients with hyperparathyroidism.

99mTc-sestamibi scans S = 0.54
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Table 5. Cont.

Studies Imaging Modality PA MGD PA and/or MGD
(Not Specified) Comments

Özdemir et al.
[120]

Planar scintigraphy

S = 80.4%
Sp = 42.8%
PPV = 91.1%
A = 75.8%

- -

SPECT/CT

S = 80.4%
Sp = 57.7%
PPV = 91.1%
A = 77.5%

US

S = 88.2%
Sp = 85.7%
PPV = 97.8%
A = 87.9%

SPECT + US

S = 94.1%
Sp = 71.4%
PPV = 96%
A = 91.3%

Saerens et al.
[121]

US

S = 36/90 40%
Sp = 211/221 95.5%
PPV = 36/46 78.3%
NPV = 211/265 79.6%

- -

Subtraction scintigraphy

S = 24/75 32%
Sp = 169/185 91.4%
PPV = 24/40 60%
NPV = 169/220
76.8%

MET-PET/CT

S = 13/22 59.1%
Sp = 44/46 95.7%
PPV = 13/15 86.7%
NPV = 44/53 83%

4DCT

S = 5/8 62.5%
Sp = 24/25 96%
PPV = 5/6 83.3%
NPV = 24/27 88.9%
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Table 5. Cont.

Studies Imaging Modality PA MGD PA and/or MGD
(Not Specified) Comments

Bioletto et al.
[122]

18F-FCH
PET

- - S = 92%
PPV = 95% Superior performance of 18F-Fluorocholine in

terms of sensitivity
MET-PET S = 80%

PPV = 95%

Okudan et al.
[123]

99Tc MIBI SPECT/CT
S = 92.17%
PPV = 94.64%
A = 87.60%

- - Tc-MIBI SPECT/CT is more accurate than
ultrasound for the preoperative identification of
single PAs in patients with PHPT who are
candidates for MIP.US

S = 75.89%
PPV = 90.43%
A = 70.25%

Kairemo et al.
[124]

Dual-phase scintigraphy
including SPECT/CT S = 93% - -

4DCT S = 93%

US S = 73%

PA: parathyroid adenoma, MGD: multiglandular parathyroid disease, US: ultrasound, 4DCT: four-dimensional computed tomography, SPECT: single photon emission computed
tomography, MRI: magnetic resonance imaging, 18F-FCH PET/CT: fluoro-choline positron emission tomography, A: accuracy, S: sensitivity, Sp: specificity, PPV: positive predictive value,
NPV: negative predictive value, DR: detection rate, MIP: minimally invasive parathyroidectomy.
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A study by Christakis et al. on parathyroid carcinoma showed accuracies of 80%, 82%,
95% for US, 4DCT and 99Tc MIBI SPECT/CT respectively and a combined accuracy of
100% [125].

6. Parathyroid Venous Sampling

Parathyroid venous sampling (PVS) or selective venous sampling is an invasive
method to localise abnormal parathyroid glands in the setting of PHPT (hypercalcemia
and elevated PTH levels). In PVS, abnormal parathyroid glands can be located based
on the territory drained by a particular vein/veins and noting the corresponding PTH
concentrations [126].

6.1. Indications of PVS

1. Inability of non-invasive studies to pre-operatively locate abnormal parathyroid
gland [127].

2. Discordant findings between different imaging modalities regarding location of ab-
normal parathyroid gland [127].

3. Post-surgical persistent hypercalcemia and elevated parathyroid hormone (PTH)
levels [126,128].

4. Recurrence of PHPT after prior surgery, with non-visualization or discordant repeat
non-invasive imaging findings [126,128].

5. In patients with familial hyperparathyroid syndromes who frequently have MGD [126].

6.2. Venous Drainage of Parathyroid Glands

Awareness regarding normal and abnormal venous drainage of normally located and
ectopic parathyroid glands is pertinent for the interpretation of PVS results.

The thyroid plexus (formed by the three pairs of thyroid veins) provides the drainage
pathway for the parathyroid veins, which subsequently drain inferiorly via the inferior
thyroid veins [129]. The superior, middle and inferior thyroid veins drain the superior
thyroid pole, mid-thyroid pole and inferior thyroid pole, respectively. Both superior and
middle thyroid veins drain into the ipsilateral internal jugular vein (IJV) [130]. The drainage
of inferior thyroid veins is commonly into the left brachiocephalic vein, either separately or
by forming a common trunk. Less frequently, the right inferior thyroid vein drains directly
into the right brachiocephalic vein [129].

Ectopically located parathyroid glands in the mediastinum drain mainly into the
thymic vein, and occasionally into the inferior mesenteric vein (IMV) or into the inferior
thyroid vein common trunk [131]. Drainage of the left thymic vein is into the antero-inferior
aspect of the left brachiocephalic vein in the midline, whereas drainage of the right thymic
vein is directly into the superior vena cava (SVC) and cannot be normally catheterised.

6.3. Procedure and Interpretation of Parathyroid Venous Sampling

After a standard Seldinger approach from the common femoral vein, a baseline blood
sample may be taken from the common iliac vein or the SVC to serve as a baseline con-
trol [126]. It is important to selectively catheterise inferior, middle and superior thyroid
veins and thymic veins and obtain samples from these sites. Upon selective catheterisation
of one of the thyroid veins, a retrograde venogram can help identify the anatomy, facili-
tating localisation of other desired vessels [126]. When selective sampling is not possible,
IJV should be sampled at superior, middle and inferior locations, along with sampling
of the left brachiocephalic vein (left side, mid and right side). All the mediastinal veins
draining into the inferior left brachiocephalic vein should be catheterised and sampled.
Blood samples can also be taken from the unusual sites of right atrium, internal mammary
veins, infrarenal inferior vena cava (IVC), suprarenal IVC, and from the hepatic veins, for
localisation of metastatic parathyroid carcinoma.

These samples are properly labelled with regard to the locations within the veins
from where they were obtained, and are either sent to a laboratory for PTH assays or
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used for PTH assays performed onsite [126]. A 1.5–2-fold increase in the PTH level from
a specific cervical or mediastinal vein, in comparison to a peripheral vein, is considered
to be unusually elevated [132–135]. A super-selective venous sampling study with real-
time rapid PTH assay gave a sensitivity and positive predictive value of 86% and 93%,
respectively, with a gradient of ≥2 [133].

7. Algorithm for Management

An algorithm for management of parathyroid lesions is shown in the flowchart be-
low (Figure 7).
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American Society of Clinical Oncology (ASCO) recommendations are practised for
the management of parathyroid carcinomas [5,8]. Parathyroid carcinomas are staged as
localised, metastatic, or recurrent instead of using the four-stage system [5]. Surgical
removal without capsular disruption to achieve R0 resection (grossly and microscopically
negative margins) is the mainstay treatment [5]. Central regional lymph nodal clearance
should be performed with suspected nodal involvement [5,13,71]. RLN, though preserved,
may be resected if the tumour capsule abuts or invades RLN [5]. Intraoperative PTH levels
may return to normal after resection of hormonally active disease; however, persistent
elevation may suggest metastatic disease, hence re-exploration should not be performed [5].
Re-exploration with en bloc resection is warranted if postoperative specimen histology is
concerning for malignancy or atypia [113,136–141]. There is no role for chemotherapy, and
no standard radiotherapy exists for parathyroid carcinoma. Decisions for adjuvant RT are
to be made in a multidisciplinary tumour board on an individualised basis [5].

8. Role of Artificial Intelligence

Artificial intelligence-related research in oncology, mainly using deep learning, has
provided an impetus for holistic cancer care, including precision oncology [142,143]. Quite
a few studies have been conducted to locate abnormal parathyroid glands and identify
abnormalities (mainly adenoma) using machine learning (ML) and deep learning (DL) algo-
rithms on imaging, with or without the combination of clinical and laboratory parameters,
and have shown promising results [144]. While most of the studies have been based on
parathyroid scintigraphy, one of the studies employed US images [145–149]. One of the
studies showed the feasibility of using DL with FCH-PET to detect and localise PHPT [150].
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Two studies used radiomic features for identifying PA; one extracted radiomic features
from delayed parathyroid SPECT combined with ML, and another correlated radiomic
data of 4DCT with pathology-proven PA [151,152].

These studies have shown that artificial intelligence can help in the preoperative
identification and localisation of PA and detection of MGD, and large imaging datasets and
explainable algorithms can further enhance its utility.

9. Conclusions

Ultrasound (US) and 4DCT are typically the first-line imaging modalities for evalu-
ating primary hyperparathyroidism (PHPT). Choline PET offers increased sensitivity for
detecting small lesions and improved localisation, though it is more expensive. Technetium-
99 sestamibi scans can identify hyperfunctioning parathyroid glands in both orthotopic
and ectopic locations but have limited efficacy in cases of multigland disease. Parathyroid
venous sampling can be useful when pre-operative imaging results are discordant or in
recurrent cases. FDG PET-CECT plays a role in assessing distant metastasis in parathy-
roid carcinoma.
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